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Abstract: Roads represent a major source of mortality for many species. To mitigate road mortality, it
is essential to know where collisions with vehicles are happening and which species and populations
are most affected. For this, moving platforms such as mobile mapping systems (MMS) can be used
to automatically detect road-killed animals on the road surface. We recently developed an MMS to
detect road-killed amphibians, composed of a scanning system on a trailer. We present here a smaller
and improved version of this system (MMS2) for detecting road-killed amphibians and small birds.
It is composed of a stereo multi-spectral and high definition camera (ZED), a high-power processing
laptop, a global positioning system (GPS) device, a support device, and a lighter charger. The MMS2
can be easily attached to any vehicle and the surveys can be performed by any person with or without
sampling skills. To evaluate the system’s effectiveness, we performed several controlled and real
surveys in the Évora district (Portugal). In real surveys, the system detected approximately 78% of
the amphibians and birds present on surveyed roads (overlooking 22%) and generated approximately
17% of false positives. Our system can improve the implementation of conservation measures, saving
time for researchers and transportation planning professionals.

Keywords: road ecology; robotics; computer vision; conservation; mitigation; wildlife-vehicle
collision

1. Introduction

Roads negatively affect wildlife, from direct mortality to habitat fragmentation [1,2]. Mortality
caused by collision with vehicles on roads is a major threat to many species [3]. Some groups
are particularly vulnerable like amphibians and birds due to their ecological characteristics and
foraging/hunting habits [4–7].

Monitoring wildlife-vehicle collisions (WVCs) is essential to establish correct mitigation measures.
Many countries have national monitoring systems for identifying species’ mortality hotspots [8,9].
These surveys are performed by car at low speed (20–30 km/h) and are therefore expensive and
time-consuming. The need to stop at every detected WVC makes the process somewhat dangerous
for the surveyors, mainly during the survey of amphibians on rainy nights (e.g., [6,7]). Furthermore,
identification errors may occur because the users’ skills to detect and identify the animals are not
equal [10]. Moreover, many WVCs, namely the smallest, are very difficult to detect and are easily
overlooked. Therefore, more efficient methods for surveying roads over larger areas and for reducing
identification errors are necessary.

For broader and continuous monitoring programs, surveys should be logistically and economically
achievable. Robotics and computer vision can provide the necessary tools to automatically
detect wildlife-vehicle collisions by passive surveys, with the consequent reduction in costs and
resources [11,12]. Moving platforms such as mobile mapping systems (MMSs) can take images from
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the road surfaces, automatically identify objects using intelligent algorithms, and extract the necessary
geospatial data to locate WVCs [13,14].

We recently developed a MMS to detect wildlife-vehicle collisions of amphibians, composed
of a scanning system on a trailer [11,12]. The system included a trichromatic line scan camera, a
light-emitting diode, a global positioning system (GPS) device, and an industrial computer. This system
created a continuous road surface image, obtaining an object resolution of less than one millimeter [11].
Real surveys provided a correct classification rate of amphibians of 84% and a rate of failed classification
of 16% [12]. One main advantage of this system is the possibility of checking the recorded images to
find overlooked animals back at the office, something impossible to do in traditional surveys [6,7].
This system is ideal for passive surveys, which are more economical and less time-consuming [12].
Anyone with or without sampling skills can survey while travelling. However, the system has some
limitations: the size and weight makes it cumbersome, the road sampling width is not large (the camera
only captures one meter of the road width, not enough to cover an entire one-way road), the sampling
length is limited to an external power source capacity (approximately one hour), and the total price of
the system may be somewhat expensive (15,000 €) [11,12].

We present here an improved version of a mobile mapping system (MMS2) for detecting
amphibians and small birds. This new version has a considerably reduced size and weight (see
Figure 1). Aside from the size, the MMS2 has other improvements to the previous version: it can
be easily attached to the back of any vehicle, it has a more straightforward workflow and unlimited
energetic consumption, the sampling width effectively covers a one-way national road, and the system
is considerably cheaper (2000 €), making it easier to implement elsewhere. Furthermore, we have
improved the detection algorithm of animals on roads and also increased the image database. Due
to the unlimited sampling length and less time-consuming survey process, the system can be used
to cover wider areas (e.g., placing the MMS2 in commercial vehicles with long daily travels). While
humans may be able to detect and identify an animal more accurately, the verification of thousands
of images is time-consuming and hampers the research. For this, computer vision algorithms with
automatic animal detection have an essential role.
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Figure 1. Image of: (a) the mobile mapping system 1 (MMS1) outdoors and (b) the mobile mapping
system 2 (MMS2) attached to the back of a vehicle. The complete MMS2 system also includes a laptop
and a lighter charger that go inside the vehicle.

2. Materials and Methods

2.1. Description of the Mobile Mapping System 2

The mobile mapping system 2 (MMS2) was designed to automatically detect wildlife-vehicle
collisions of amphibians and small birds on roads (Figure 1b). It includes:
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(1) A ZED stereo camera (Stereolabs Inc): a lightweight (159 g), dual 4 MP camera with a maximum
high-resolution of 4416 × 1242 pixels at a maximum frequency of 100 Hz. This camera has a wide-angle
video and depth view (110◦), a depth perception up to 20 mm, and 6-DoF positional tracking. It captures
at a video resolution of 1080 p HD at 30 FPS or 2 K at 15 FPS. The sensor format is 16:9 for a horizontal
field of view. The battery consumption is 5 V/380 mA;

(2) High-power processing computer (GL553VD ASUS laptop): laptop with a GTX1050 GPU from
Nvidia, and an Intel I7-7700HQ with 8 CPUs of 2.8 GHz with 16 GB of RAM;

(3) GPS receptor: GPS SIM808 (SIMCOM) and Glonass receptor with location-based service (LBS)
positioning and omni-positioning. It retrieves the GPS coordinates of the MMS2;

(4) Attachment device: sucker support for bicycles; and
(5) Lighter charger for vehicles for unlimited sampling length (does not depend on an external

power source, but rather depends on the car battery; the system runs uninterruptedly as long as the
vehicle is working).

A diagram of the system architecture is presented in Figure 2. The system is controlled by several
applications: mobile software to turn the device off and on, desktop software to collect and save images,
desktop software to detect the WVCs in images, and software that continuously pin-points the device
coordinates along the way.
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2.2. Algorithms

We used the state-of-the-art machine learning computer vision algorithm convolutional neural
network (CNN, a class of deep neural networks; [15]) to automatically detect WVCs on roads. CNNs
are regularized versions of multilayer perceptrons (i.e., fully connected networks where each layer of
neurons is connected to all neurons in the next layer; [15,16]). This self-learning algorithm needs to be
trained with images of live animals, road-killed animals, and any object likely to be found on roads
(e.g., garbage thrown away by drivers). This architecture is capable of handling small sets of images
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(commonly between 1000 and 3000 images). However, with a greater image database, the algorithm
efficiency usually increases.

We performed some trials with several state-of-the-art deep learning image classifiers: VGG16,
VGG19 (Visual Geometry Group; [17]), ResNet50 (Residual Networks; [18]), Inception V3 [19], and
Xception [20]. For that, we used 150 images, 25 of which contained animals. Then, we measured
the efficiency of each image classifier in detecting the animals with the Keras library pre-trained
models [21]: the VGG16 detected approximately 62% of the animals, the VGG19 42%, the ResNet 35%,
the Inception V3 62%, and the Xception 23%. We thus selected the VGG16, which showed the best
efficiency (parameters: weights, 0.0005; input tensor, true; pooling, max). The VGG16 is a simple
network, using only 3 × 3 convolutional layers stacked on top of each other in increasing depth [17].

We trained the algorithm with 1296 collected images of road-killed and alive amphibians and
birds obtained from the University of Évora image database and from the RoadKills project database.
In addition, we also fed the algorithm with 1250 recorded images by the MMS2. In total, we trained
the algorithm with 2546 images of road-killed and live amphibians and birds.

We used the max pooling process to reduce the pixel density of the images, thereby reducing the
computing time and minimizing model overfitting [22]. Max pooling is a sample-based discretization
process with the aim of down-sampling an image, thus reducing its spatial size (i.e., width and
height). It is common to insert pooling layers between consecutive convolutional layers in a CNN
architecture [22]. Convolutional layers are the main building blocks of a convolutional network, where
each neuron is connected to local neurons in the previous layer and the same set of weights is used
for every neuron. Two fully connected layers (i.e., layers where each neuron is connected to every
neuron in the previous layer) are then followed by a SoftMax classifier (a generalization of the binary
form of logistic regression that delivers the probabilities for each class; a higher probability means a
higher confidence that the image belongs to that class; [23,24]). We also applied batch normalization
and dropout. Batch normalization normalizes the activations of a given input image before passing it
to the next layer in the network. It is very effective at reducing the number of epochs (number of times
the algorithm sees the entire dataset) required to train a CNN as well as stabilizing training itself. Our
model ran on 25 epochs with the 2546 images of the training database. Dropout forces the network to
become more robust. It is the process of disconnecting random neurons between layers. This reduces
overfitting (i.e., reduces the number of false positives), increases the accuracy of animal detection (i.e.,
increases the rate of correct classification and decreases the rate of failed classification), and allows our
network to generalize better for unfamiliar images.

2.3. Testing Framework

Some preliminary tests were performed in order to find the optimal luminosity and color
configuration of the camera. For that, we went through the surveyed roads on different days with
different light and weather conditions. Then, we verified the captured images, changing the camera
configurations every time (exposure, white balance, brightness, contrast, hue, and saturation), until
we found the optimal combination of parameters. After that, we tested the efficiency of the MMS2 in
detecting small birds and amphibians using controlled and real surveys.

For the controlled situations, we used dead specimens from the collection of the University of
Évora: 10 specimens of amphibians, 10 of birds, five of mammals, five of reptiles, and 10 items of
garbage frequently found on roads. We performed 12 surveys in a small road section in Évora (South
Portugal; Figure 3), with different vehicle speeds (from 20 to 100 km/h) in order to find the most
appropriate settings (Table 1). Additionally, we randomly distributed 58 dead specimens of eight bird
species (Carduelis carduelis, Cyanistes caeruleus, Erithacus rubecula, Passer domesticus, Sylvia atricapilla,
Sylvia melanocephala, Strix aluco, and Tyto alba) on two paved roads and its road verges (roads N4 and
M529; Figure 3). These species were selected because they are the most commonly found road-kill in
the Évora region (António Mira, personal communication). We schematically noted the location of
each specimen for further comparison with the recorded images.
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Table 1. Camera configuration and results of the controlled surveys. The best configuration resulted in
a correct classification rate of 80% and originated 20% of false positives (in bold). Resolution: camera
resolution; FPS: frames per second; Speed: approximate vehicle speed; Total images: total number of
frames produced; Images with animals: total number of frames with the presence of wildlife-vehicle
collisions (WVCs); True positives: number of frames the algorithm detected a WVC correctly; Failed
classification: number of frames the algorithm overlooked a WVC; False positives: number of frames
in which the algorithm detected a WVC incorrectly; Correct classification: percentage of true positives
from the total number of images with animals.

Resolution FPS Speed Total
Images

Images with
Animals

True
Positives

Failed
Classification

False
Positives

Correct
Classification

2208 × 1242 60 80 km/h 1406 53 39 14 (26.4%) 9 (18.8%) 73.5%
2208 × 1242 30 60 km/h 980 25 20 5 (20%) 5 (20%) 80%
1920 × 1080 60 30 km/h 1250 42 31 11 (26.2%) 7 (18.4%) 73.8%
1920 × 1080 30 60 km/h 680 35 27 8 (22.9%) 6 (18.2%) 77.1%
1280 × 720 60 70 km/h 1560 32 24 8 (25%) 6 (20%) 75%
1280 × 720 30 30 km/h 850 42 31 11 (26.2%) 7 (18.4%) 73.8%
1280 × 720 80 20 km/h 2230 52 37 15 (28.8%) 9 (19.6%) 71.2%
1280 × 720 60 100 km/h 1120 30 19 11 (36.7%) 6 (24%) 63.3%

2208 × 1242 60 30 km/h 1420 25 19 6 (24%) 4 (17.4%) 76%
1920 × 1080 60 30 km/h 1600 26 19 7 (26.9%) 5 (20.8%) 73.1%
2208 × 1242 30 40 km/h 820 32 25 7 (21.9%) 6 (19.4%) 78.1%
1920 × 1080 30 40 km/h 905 34 26 8 (23.5%) 6 (18.8%) 76.5%

Finally, we performed several real surveys on national roads in Évora (Figure 3) with a total
distance of 720 km for 12 days. The real surveys were always performed at a vehicle speed between 40
and 80 km/h. After our vehicle with the MMS2 travelled through the selected roads, a vehicle from the
University of Évora wildlife-vehicle collisions monitoring program (LIFE LINES project [25]) repeated
the same path to cross information.

In all situations, we manually checked the images with WVCs (in real surveys, using the GPS
coordinates collected by the University of Évora whenever they detected a WVC) and the ones the
algorithm classified as WVCs. In each trial, we manually counted the number of frames with WVCs.

3. Results

After some preliminary tests, we selected the optimal configuration for the camera luminosity
and color (automatic adjustment of exposure, white balance and gain, brightness = 1, contrast = 6, hue
= 0, saturation = 2). The best configuration for a person to identify correctly the animal, in relation to
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image quality and sharpness, was a camera resolution of 2208 × 1242 and a vehicle speed of around 60
km/h. This configuration produced images with a pixel size of 0.002 mm, and a horizontal field of
view of 76◦. The MMS2 generated an image at every 60 cm of a given road, resulting in at least three
images for each object on the road.

The controlled surveys with different combinations of camera resolution and vehicle speed resulted
in a correct classification rate (i.e., percentage of detected animals) between 63.3 and 80% and a percentage
of false positives (i.e., percentage of frames where the algorithm detected a WVC incorrectly) between
17.4 and 24% (Table 1). The algorithm excluded between 20 and 36.7% of images with WVCs (rate of
failed classification, i.e., percentage of overlooked WVCs). The configuration with the best performance
was the combination of a resolution of 2208 × 1242, 30 FPS, and a vehicle speed of 60 km/h with 80% of
correct classifications, 20% of failed classifications, and 20% of false positives (Table 1).

The real surveys resulted in a rate of correct classification of 78%, overlooking therefore 22% of
the animals on surveyed roads (Figure 4). Approximately 17% of the images classified with WVCs
were false positives. The algorithm classified 37.1% of the detected animals to the species level (the
remainder was classified as “others”). Together, the controlled surveys and real surveys resulted in
more than a million road images. We compiled the main differences between the MMS1 and the MMS2
in Table 2.
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Figure 4. Examples of images captured by the MMS2 during real surveys: in the two upper images,
the algorithm failed to detect the WVC (failed classification); in the middle images, the algorithm
correctly detected the WVC (correct classification); and in the lower ones, the algorithm detected an
animal incorrectly (false positive). The ZED camera is a dual-camera, always providing two images
with slightly different angles.
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Table 2. Comparison and main differences between the MMS1 and the MMS2 [11,12].

MMS1 MMS2

Size See Figure 1a See Figure 1b
Approximate cost 15.000 € 2.000 €
Sampling length Approximately 1 h/30 km Unlimited
Sampling width 1 m 6–7 m

Maximum vehicle speed 70 km/h 60 km/h
Adequate to all weather and light conditions Yes No

Attachable to any car No Yes
Mean rate of correct classification on real surveys 84% 78%
Mean percentage of false positives on real surveys 80% 17%

4. Discussion

Machine learning and computer vision are increasingly being applied in ecology for conservation
purposes (e.g., [24,26]). For instance, two common applications are camera traps with the purpose of
studying species’ ecology or the verification of uploaded images by citizen scientists, with automatic
detection and identification of the species [24,26]. Most algorithms that have been developed to identify
animals are trained to detect alive animals [26], which is easier because individuals of the same species
rarely have different aspects. Both for humans and algorithms, detecting and identifying WVCs is
much more complex and challenging as in many cases, the specimens are in very bad condition.

This improved version of the mobile mapping system has great potential for national monitoring
surveys in search of WVCs. The algorithm has good effectiveness in detecting birds and amphibians
with very high animal detectability. In controlled surveys, with the best system configuration, the
MMS2 detected approximately 80% of the amphibians and small birds on surveyed roads (Table 1),
while in real surveys, the system detected on average 78% of the animals. The MMS2 overlooked
around 22% of animals in real surveys, which was worse than the previous version (the MMS1
overlooked 16% of present amphibians; [12]). The MMS1 has the great advantage of having a lighting
system, equally illuminating every part of the image. This, together with the better image resolution
and lower image distortion, may be the reason for a higher rate of correct classification with the MMS1.
However, 22% of overlooked animals is still an acceptable error as in traditional surveys, it is never
really known how many animals are missed. Furthermore, despite being a time-consuming process,
the system allows for the checking of all images after the survey, or at least the true and false positives.
Similar to the MMS1, this system worked properly at 60 km/h (the MMS1 worked well at 70 km/h
as maximum). At higher speeds, the image quality, sharpness, and focus might be compromised,
hampering the correct identification of the road-killed animal.

The biggest improvement of the MMS2 over the previous version (besides the reduction in size
and cost and the increase in the sampling width; see Table 2) is the great reduction in false positives.
The MMS1 created around 80% of false positives [12], while the MMS2 produced approximately
17% of false positives. This is a great advantage, as the manual verification of all false positives
is very time-consuming. The MMS1 created images with better resolution (road surface resolution
under a millimeter [11]) in comparison with the images obtained with the MMS2. Furthermore, the
image resolution by MMS2 depends on how the device is attached to the car, while the position of
the MMS1 in the trailer was fixed. Nevertheless, the number of false positives in the MMS2 was
greatly reduced, possibly due to the improvement of the detection algorithm and to the bigger image
database for training the algorithm. Moreover, the algorithm of the MMS2 is much more robust than
the previous version, which only uses simpler image processing and computer vision methods and not
machine learning.

However, there are some disadvantages of this system: (1) as in the previous version, it still
requires human intervention to determine if the animal is alive or road-killed; (2) the weather conditions
may affect the images’ quality, hampering the correct animal identification: harsh light hampers the
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camera to rapidly adjust the exposure, while very humid conditions may accumulate water drops
in the camera, with the need to clean it once in a while; (3) the system is not suitable to use at night:
there is no light system as in the previous version; (4) a high storage capacity is necessary (the tests
originated 1.65 terabytes of images); (5) specialized people are needed for image processing and animal
identification; and (6) a workstation is necessary for computing heavy data. Nevertheless, with the
growth of the image database, the algorithm will continue to improve, with a continuous reduction in
errors. The new algorithm has been trained to specifically detect road-killed amphibians and birds on
roads, but as in the previous version [12], it could potentially be trained to detect any animal group,
object, or road feature.

The implementation of an easy to use system and a straightforward methodology for monitoring
wildlife-vehicle collisions is needed to better apply and monitor the success of mitigation measures [27].
Our system can be used on national roads everywhere and may contribute to the improvement of
national wildlife-vehicle collision databases that can be used for determining priority sites, and species
or populations for conservation. Moreover, our system can save substantial amounts of time for
researchers and transportation planning professionals. We hope that our system will be used to increase
the data and research on road ecology.
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