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Abstract: Many real-world spatial systems can be conceptualized as networks. In these
conceptualizations, nodes and links represent system components and their interactions, respectively.
Traditional network analysis applies graph theory measures to static network datasets. However,
recent interest lies in the representation and analysis of evolving networks. Existing network automata
approaches simulate evolving network structures, but do not consider the representation of evolving
networks embedded in geographic space nor integrating actual geospatial data. Therefore, the
objective of this study is to integrate network automata with geographic information systems (GIS) to
develop a novel modelling framework, Geographic Network Automata (GNA), for representing and
analyzing complex dynamic spatial systems as evolving geospatial networks. The GNA framework
is implemented and presented for two case studies including a spatial network representation of (1)
Conway’s Game of Life model and (2) Schelling’s model of segregation. The simulated evolving
spatial network structures are measured using graph theory. Obtained results demonstrate that the
integration of concepts from geographic information science, complex systems, and network theory
offers new means to represent and analyze complex spatial systems. The presented GNA modelling
framework is both general and flexible, useful for modelling a variety of real geospatial phenomena
and characterizing and exploring network structure, dynamics, and evolution of real spatial systems.
The proposed GNA modelling framework fits within the larger framework of geographic automata
systems (GAS) alongside cellular automata and agent-based modelling.

Keywords: geographic network automata; geographic automata systems; complex networks; network
science; geographic information systems and science; complex systems

1. Introduction

As geospatial data becomes increasingly available, networks are used as a powerful conceptual
framework to represent and analyze a wide array of complex spatial systems in social, urban, and
ecological contexts [1–3]. The conceptualization of complex spatial systems as networks begins from the
bottom-up, where system components are represented as georeferenced nodes and interactions between
components are represented as links. Sets of local interactions between nodes form the global network
structure. The representation of complex spatial systems as networks offers a well-developed toolkit
for analysis [4,5]. Specifically, graph theory can be applied to describe the spatial structures of real
phenomena and explore the tightly coupled relationship between spatial structure and spatial dynamics.

Network dynamics can be distinguished between dynamics on a network or the dynamics of
networks [6]. In the former, the information or materials dynamically propagate through a set of
spatially arranged nodes and links. For example, in ecology, the spatio-temporal dynamics of species
dispersal is highly dependent on the spatial structure of habitat features across the landscape [3].
Likewise, in epidemiology, the spatio-temporal dynamics of disease spread is forecasted using the
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spatial structure of human contact networks [7]. In an urban context, a variety of transportation
networks determine dynamics of human mobility [8]. The latter, dynamics of networks refers to
dynamic changes in the network structure also known as network evolution. In this process, nodes and
links are added, removed, rewired, or change properties over space and time [9]. Network evolution
occurs as a function of the dynamics of the network itself, interactions between the network and the
surrounding matrix, and the dynamics tightly-coupled to the network structure [10]. For example,
dynamics of species dispersal may, in turn, affect the connectivity of the landscape, dynamics of
disease spread may alter the human contact network, and traffic may damage streets, forcing their
closure or require the construction of new streets to reduce congestion, thus forcing the evolution of
transportation networks.

Network evolution is not well understood since detailed datasets representing real phenomena as
networks over geographic space and time have been limited due to the lack of appropriate datasets.
Conventional spatial network analysis tends to focus on describing and cataloguing static spatial
network structures or exploring the effect of static spatial network structures on spatial dynamics.
Some examples of this include exploring processes of gentrification on a static network of residential
properties [11], ecological dispersal dynamics on static landscape connectivity networks [3,12], mobility
dynamics on static road networks [13,14], and epidemics on static contact networks [7,15] and on
airline networks [16].

Models representing phenomena such as predator–prey dynamics [17], fungal growth [9], and
human epidemics [18] as evolving non-spatial networks have been developed by applying sub-rules
representing network dynamics to network structures that alter the network structure itself over
time. This methodology was formalized as network automata (NA) [9,19] where network topology
changes over time. However, these proposed NA frameworks are not integrated with geographic
information systems (GIS) nor do they use actual geospatial data. Despite the demand for a shift
from descriptive measures of spatial network structures to the study of evolving complex spatial
networks that would facilitate the long-standing interest in the investigation into the link between
spatial network structure and space-time dynamics, NA have not yet been explored in application to
geospatial dynamic phenomena.

Therefore, the objectives of this study are to integrate concepts of geographic information science
(GIScience) and systems (GIS), complex systems, and network theory to (1) propose a theoretical
framework for a novel modelling approach called Geographic Network Automata (GNA) that is used
to represent and analyze complex spatial systems as evolving networks, (2) demonstrate the proposed
theoretical framework by developing and implementing two GNA models based on Conway’s Game
of Life [20] and Schelling’s Spatial Segregation Model [21,22], and (3) apply graph theory to analyze
several different evolving spatial networks and their behavior. The proposed GNA models provide the
means for a clear explanation of the GNA framework so that it can be easily applied to a real-world
geospatial phenomenon. Firstly, the theoretical background for both the GNA modelling approach as
well as the graph theory used for the analysis of GNA outputs is provided. Next, the GNA modelling
framework is presented in application to the spatially explicit network version of Conway’s Game of
Life [20] and Schelling’s Segregation Model [21,22] to demonstrate the GNA framework and explore
changes in network structure and dynamics as they evolve over space and time. Lastly, the use of the
GNA framework in application to a broad range of geospatial phenomena is discussed.

2. Geographic Network Automata (GNA)

This section first presents the general GNA modelling framework for the network representation
of real-world spatial phenomena and second introduces the theoretical background for the application
of graph theory to analyze the GNA spatial network SN outputs.
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2.1. GNA Modeling Framework

A geographic network automaton (GNA) is a mathematical representation of a complex system
or parts of a system as an evolving spatial network and can be expressed as follows:

GNA = [UN, SN, J, R, C, ∆t] (1)

where the components of a GNA are (1) a spatial network SN composed of a set of nodes N and a set
of links L that represent a system or some part of a system of interest that evolves over time; (2) an
underlying network UN structure that influences and is potentially influenced by the spatial network
SN of interest; (3) neighborhood(s) J that defines neighboring nodes; (4) transition rules R that simulate
system dynamics between neighboring nodes; (5) connection costs C that measures the resistance of
the matrix between neighboring nodes or the process of network evolution; and (6) time, where the
topology of the spatial network SN at time t + 1 is a function of the spatial network SN, the underlying
network UN, the neighborhood J, and the applied transition rules R and connection costs C at time t.

The GNA approach can be operationalized to model a variety of phenomena by executing each
stage detailed in Table 1.

Table 1. Operationalizing the GNA approach.

Stage Description

1. Conceptualize
system of interest as
spatial network SN

Define
• the components that make up the systems of interest to be represented as nodes

• the interactions, flows, and relationships to be represented as links
• the node and link spatial, non-spatial, and topological attributes Determine

•whether the phenomenon is best represented by a weighted or
directional network

whether there is an underlying network UN structure that influences the spatial
network SN and vice versa

Consider the scale at which the system has been abstracted and the limitations

2. Identify important
graph theory measures

Identify which global or local graph theory measures are valuable to measure the
spatial or non-spatial characteristics of the evolving spatial network SN. This is a

function of the purpose of the model.

3. Determine the
neighborhood J

Determine which t nodes v j are within the neighborhood of node vi based on
distance, weight, cost, and/or probability

4. Develop transition
rules

Develop the rules representing interactions between neighboring nodes that result in
network evolution i.e., change of state, location, or connectivity of nodes

5. Develop connection
costs

Identify influences that the matrix has on network structure i.e., geographic barriers,
distance thresholds, cost surface

6. Implement the GNA

Input geospatial datasets to represent geographic barriers, cost surface analysis,
underlying network UN structures, and/or initial spatial network SN

Develop
• georeferenced node automata and link objects based on conceptualization
• programming functions that implement transition rules and connection costs
• programming functions that calculate local and global graph theory measures

7. Test the GNA Perform sensitivity testing, model calibration, and validation using
independent datasets

8. Execute model and
scenarios Execute model and scenarios for the necessary number of time steps

9. Apply graph theory
to characterize network

structures

Execute developed programming functions that calculate local and global graph
theory measures to enhance the understanding of the phenomena being simulated,

to compare network structures as the network evolves, or to compare network
structures between scenarios
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The GNA framework requires data acquired from different sources including synthetic geospatial
data, actual geospatial data, and data from the literature as an input to initialize node location,
parameterize nodes, and to implement the network matrix and any potential geographic barriers.
These types of data are also required to parameterize transition rules and connection cost. Datasets
independent of model development are required for model testing.

In stage 1, a system or part of a system of interest is conceptualized as an evolving spatial network
SN. For example, in the network representation and analysis of spatio-temporal patterns of forest insect
infestation [23], one can imagine a network of nodes representing forest stands, some of which are
infested with an invasive insect species. If the distance between an infested forest stand node vi and
an uninfested forest stand node v j is less than the maximum dispersal distance of the invasive insect
species, node v j will become infested. Over time, as the forest insect infestation worsens, the number
of nodes that are infested increases. The set of nodes that are infested are thus the nodes that are of
primary interest to the modeler as their evolution can be measured and analyzed using graph theory.
Thus, the spatial network SN represents an infestation network, where nodes represent infested forest
stands and links represent the movement of a swarm of invasive insects between nodes. Of course,
there is also an underlying network UN structure which is static. This network is composed of all
forest stand nodes and is referred to as the landscape connectivity network. The underlying network
UN plays a major role in the behavior of the SN and in many cases, the SN can influence the UN as
forest stands die out in response to the insect infestation and are removed from the network.

As demonstrated in the example above, it is often the case that a spatial network of primary
interest SN is formed based on an underlying network UN (Figure 1a) where UN is the underlying
network, SN is the spatial network, J is the defined neighborhood, R are the transition rules, C is the
connection cost, and ∆t is the time increment of the GNA model. This type of GNA can be defined by
expression (1).

In the less common case where there is no underlying network UN and the network evolves as a
function of its own structure (Figure 1b), a spatial network of interest SN is formed independent of an
underlying network. Therefore, the GNA expression (1) is modified and presented as:

GNA = [SN, J, R, C, ∆t] (2)

Both the evolving spatial network SN generated by the GNA and the underlying network UN is
composed of a set of nodes N representing components of a system. Pairs of nodes are connected by
links L, representing interactions or relationships between system components. The spatial network
SN can be expressed as:

SN = [Ns, Ls] (3)

An underlying network UN can also be expressed as:

UN = [Nu, Lu] (4)

The sets of nodes N and links L in the spatial network SN or underlying network UN are further
expressed as:

N = [v1, v2, . . . , vn] where v is a node in the set of nodes N; n is the number of nodes in N. (5)

L = [e1, e2, . . . , em] where e is a link in the set of links L; m is the number of links in L. (6)

Each node v and link e in the set of nodes N and links L are defined by several spatial, non-spatial,
and network properties (Table 2). Nodes N are defined by their spatial properties, most importantly
geographic location which in turn facilitates the measurement of geographic distance d between any
two nodes. Depending on the type of phenomenon that the set of nodes represent, other geometric
properties such as area and perimeter may be of interest. Nodes N are also defined by network
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properties such as the number and list of connections a node v has to other nodes in the network or
node weight. A weight is a value that is assigned to a node and can be used to quantify the magnitude
of flow, importance, suitability, or preference within a set of nodes N.
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Figure 1. Different complex spatial network SN dynamics (a) of a primary network of interest SN that
evolves over time and (b) on a network SN where the network of interest evolves over time as a function
of an underlying network UN.

Table 2. Examples of spatial, non-spatial, and network properties for both nodes v and links e.

Property Type Description Examples of Node
Properties

Examples of Link
Properties

Spatial Geometric properties
pertaining to the node v or link l

Location (x, y coordinates),
area, distance from,

perimeter

Length, coordinates of
end points, direction

Non-Spatial
Qualitative and quantitative

non-spatial attributes
pertaining to the node v or link l

Name, ID, color, value, type,
state

Name, ID, color, value,
type, state

Network
Measurements derived from
network theory pertaining to

the node v or link l

Degree, betweenness,
weight, clustering coefficient,

list of neighbors
Weight, list of end nodes

Links L are also defined by their spatial properties, which differ slightly from the spatial properties
of nodes. Whereas nodes N are always embedded in geographic space, in most cases, links L are
not. The exception is a planar network such as a road network, in which case the link length is of
interest. Links also contain the important network property of link weight, which can be used to
quantify the magnitude of flow of individuals, materials, or information between nodes. Links are
either unidirectional or bidirectional, meaning that flow occurs in one or both directions respectively.
Both nodes N and links L have non-spatial properties which are qualitative or quantitative attributes
used to describe the network node or link.

Transition rules R are designed to represent the real-world dynamics between system elements
and determine the evolution of the spatial network SN. Transition rules are in most cases applied
to node vi’s neighborhood J, defined as the set of nodes v j connected to node vi in some way. The
development of transition rules R depends on whether the spatial dynamics are represented on a
network or of a network. In the case of representing dynamics on a network, transition rules R may be
defined where the spatial network SN interacts with the underlying network UN. For example, at time
step t, node vi in the SN forms a link to node v j in the UN if node v j has some weight. The nodes v j
that meet these conditions make up node vi’s neighborhood J. In the case of representing dynamics of a
network, the development of transition rules R depends on interactions between nodes within the SN.
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For example, at time step t, if there are less than three nodes within a certain proximity to node vi,
a new node v j is spawned within this proximity and a link forms between node vi and node v j. The
nodes v j that meet these distance-based conditions make up node vi’s neighborhood J. Connection
cost C evaluates the resistance of the geographic space between nodes to both the formation of links
between nodes or to the generation of new nodes. This space between nodes is referred to as the cost
matrix. Resistance in this context may be a function of distance between nodes or the low suitability of
the matrix for connecting nodes or the spawning of new nodes.

The spatial and topological organization of the spatial network SN and in some cases the UN,
specifically what nodes are connected to what nodes using which links, are recorded in the NxN
adjacency matrices ASN and AUN, respectively. In these tables, the existence of a link between two
nodes in a network is recorded using a value of 1, with the alternative recorded using a value of 0.

In the case of simulating dynamics on a network, applied transition rules R and connection costs
C influence the underlying network UN, which in turn influences the spatial network SN and thus
alter the information recorded within the adjacency matrices at each time step. Therefore, spatial
network SN evolution with each time step is defined where the adjacency matrix at the subsequent
time step t + 1 is a function of the underlying network UN, the neighborhood J, the generative rules
R, the connection cost C, and the adjacency matrix at the previous time t. In the case of simulating
dynamics of a network, applied transition rules R and connection costs C alter the spatial network SN
and thus alter the information recorded within the adjacency matrix at each time step. Therefore, the
spatial network SN evolution is defined where the adjacency matrix at the subsequent time step t + 1
is a function of the neighborhood J, the generative rules R, the connection cost C, and the adjacency
matrix at the previous time t.

2.2. GNA Spatial Network Analysis using Graph Theory

The output of a GNA is a sequence of evolving spatial networks of primary interest SN representing
a real-world phenomenon over space and time. This representation is useful because the structure
of spatial networks can be characterized using graph theory measures [24–27]. The structural and
dynamical properties of real-world networks often exhibit some or many of the same properties of
four well-defined theoretical graph types: regular, random, small-world, and scale-free. These types
of graphs can be distinguished from one another using a few simple global graph theory measures
including average degree <k>, degree distribution P(k), average clustering coefficient <C>, and average
path length <l> (Table 3). Each type of graph can be considered in a non-spatial or spatial context. In a
non-spatial context, the location of nodes is of no concern, but instead, the way in which nodes are
connected to other nodes. In a spatial context, nodes have a location in geographic space.

Table 3. Selected graph theory measures to characterize and analyze spatial networks.

Graph Theory
Measure Definition

Average degree <k>
The number of connections a node has to other nodes in the network is a localized
measure, specific to each node, and is referred to as node degree k. Therefore, the
mean degree across all nodes in the network is referred to as average degree <k>.

Degree distribution P(k) The fraction of nodes in the network with degree k, calculated for the entire
distribution of k is referred to as degree distribution P(k).

Average clustering
coefficient <C>

Clustering coefficient C measures the likelihood of nodes that are connected to
node i are also connected to each other. When C = 1, all nodes connected to node i
are also connected to each other and when C = 0, none are connected to each other.
This is a localized measure specific to each node. Average clustering coefficient <C>

measures the average C across all nodes in the network.

Average shortest path
length <l>

The average number of intermediate nodes and links in the shortest path between
all pairs of nodes in the network is referred to as average path length <l>.
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Networks that exhibit properties of regular graphs are composed of a set of nodes and links, where
each node has the exact same number of links of degree k [28]. A regular graph that is non-spatial is
presented in a way that does not consider the spatial location of nodes, but rather is concerned with the
way in which the nodes are connected. For example, nodes might be arranged in a circle where each
node is connected to its neighboring nodes. The circular arrangement is spatially meaningless, but
rather is selected for better understanding of the topology of the graph. A spatial regular graph may
be arranged so that its georeferenced nodes are organized in a manner where all links are of the same
length d and all nodes have the same degree k. In either case, since all nodes are tightly connected to
their nearest neighbors, both non-spatial and spatial regular graphs have a high clustering coefficient
<C>. The localized connections result in a longer average shortest path length <l> between pairs of
nodes in the network.

Unlike regular graphs, properties of non-spatial random graphs differ significantly from random
spatial graphs. Networks that exhibit the properties of random graphs that are non-spatial are
composed of nodes that are connected to other nodes at random [29]. As the graph is non-spatial,
connections between nodes are not influenced by the distance between them. Random graphs that are
non-spatial are defined by a degree distribution P(k) where all nodes have a similar degree k. This
well-defined average degree produces a Poisson degree distribution P(k). Since any two nodes are
connected at random, the average clustering coefficient <C> and the average path length <l> are
very small. A non-spatial random graph is also known as an Erdos–Renyi (E-R) graph after the two
mathematicians who first introduced the concept of random graphs.

There are two main types of random spatial graphs. The first type is referred to as a random
geometric graph (RGG), composed of nodes that are randomly located in geographic space. Unlike a
non-spatial random graph, nodes in an RGG are not connected randomly, but rather connect to other
nodes if the distance between the two nodes falls within a selected distance threshold d [30]. The distance
threshold d can be defined using Euclidean, Manhattan, or geodesic distance [31]. The properties
of RGGs differ from traditional non-spatial random graphs because the distance threshold produces
localized clustering between adjacent nodes and a lack of long-distance connections, characteristic
of many spatially embedded real networks [25]. The inclusion of geographic space as a constraint in
network structure provides more realistic representations of real phenomena than non-spatial networks.
Thus, RGGs have been used as a model to better understand many types of real phenomena ranging
from telecommunication networks to social networks. A second type of random spatial graph is
referred to as a spatial E-R graph. In this representation, nodes are distributed randomly in geographic
space and are connected at random based on the probability p.

Small-world graphs, both their non-spatial and spatial counterparts, are characterized by a
structure that falls between regular graphs that have no randomness at all and random graphs that are
entirely random [32]. Like a regular graph, the majority of nodes in small-world graphs are connected
to their nearest neighbors, however a few nodes are connected to distant nodes. This type of graph
also produces a Poisson degree distribution P(k) when graphing the degree distribution as a histogram.
However, small-world graphs are different than regular or random graphs because the few distant
connections between nodes produce a high average clustering coefficient <C>, but dramatically reduce
the average path length <l>. Social networks typically exhibit properties of small-world graphs, where
there exist only a few intermediate acquaintances between any two people in the world. Dynamics on
a small-world network such as the passing of information or a virus is highly efficient. Specifically,
because of this short average path length <l> the passing of information or the spreading of a virus
from node i to node j can occur with just a few intermediaries.

Networks, either non-spatial or spatial, with properties characteristic of scale-free graphs typically
have a degree distribution P(k) where a few nodes have a disproportionately large degree and the
majority of nodes have a very small degree [33]. This produces a scale-free degree distribution with a
low average clustering coefficient <C> and a small average path length <l>. Barabasi and Albert (1999)
refer to networks with power-law distributions as “scale-free” networks because the same power-law
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distribution remains across all scales in the network. This network structure is explained by growth
and preferential attachment, meaning that as the network forms, the probability that a new link will
be added to node vi is proportional to the degree k of that node and can result in the formation of
hubs with an anomalously large number of links. These types of network are robust to random attack,
however, the loss of a hub in a targeted attack would cause system failure [34]. Node degree is not the
only factor contributing to preferential attachment [35] and several modifications have been proposed
where the probability that a new link will be added to node vi is proportional to node age [36,37].

Global graph theory measures can be used to characterize the overall network structures, to give
insight into spatial dynamics that take place on those structures, to compare between different systems,
and to compare between the same system as it evolves over time. Some important global graph theory
measures are presented in Table 3 that provide a complete snapshot of network structure that includes
but are not limited to number of nodes n, number of links m, average degree <k>, degree distribution
P(k), average clustering coefficient <C>, and the average shortest path length <l>. These particular
measures are used to characterize the network structures produced by the GNA models presented in
the following sections.

3. Geographic Network Automata Case Studies

In the following sections, the application of the proposed GNA framework to the spatially explicit
network version of the Game of Life GNAGOL and Schelling’s Segregation GNASEG is presented. Both
models are developed using the Java programming language in the Eclipse integrated development
environment using the REcursive Porous Agent Simulation Toolkit (Repast) [38].

3.1. GNA Game of Life GNAGOL

The Game of Life is selected as the first case study to present the GNA framework because it
is a well-known model of a theoretical system that is inherently simple and operates in space and
time. The original Game of Life is a cellular automaton developed by John Conway in 1970 that was
designed to simulate dynamics of reproduction, death, and survival of cells in a lattice. Applying
these dynamics to nodes in a network permits the exploration of spatial network evolution, specifically
spatial network growth and shrinkage as nodes are added and removed over time. Therefore, this case
study facilitates broader learning about spatial network dynamics and evolution.

3.1.1. GNAGOL Modelling Framework

The GNAGOL model simulates an evolving spatial network SN which is constrained to an
underlying random geometric graph (RGG) network UN. Based on the expression (1), the GNAGOL can
be presented as:

GNAGOL = [UNGOL, SNGOL, J, R, C, ∆t] (7)

where the GNAGOL is a function of the underlying network UNGOL, the spatial network of interest
SNGOL, the neighborhood J, the transition rules R, the connection cost C, and time ∆t.

The underlying RGG UNGOL is static where a set of nodes N are located randomly in geographic
space and the total number of nodes n = 2000. The number of nodes n was chosen to demonstrate the
GNA methodology. Node vi and node v j in the set of nodes N are connected by a link and thus are
considered neighboring nodes if the Euclidean distance dij between them is less than 1 km. The given
range for d defines the neighborhood J for each node. As the spatial distribution of all nodes is random
rather than a regular tessellation, nodes in the UNGOL do not have the same number of neighboring
nodes. This differs from the traditional formulism of the CA version of the Game of Life which operates
on a regular spatial tessellation where all cells have the exact same number of neighbors. Each node
in the set of nodes N can be defined by its location (x, y coordinates), the distances d between its
neighboring nodes, and its “alive” or “dead” state. Lastly each node is defined by its local network
properties including its degree k, clustering coefficient C, and shortest path length l.
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The spatial network SNGOL is composed of nodes with the same spatial and network properties,
however, nodes in this network can only be in the “alive” state. Transition rules representing dynamics
of reproduction, death, and survival are applied underlying network UNGOL where nodes are added,
removed, and rewired over time, thus producing an evolving spatial network of “alive” nodes SNGOL
that can be analyzed. There are four transition rules R based on the Game of Life [20], which are
applied to the UNGOL at time t and determine the UNGOL and the SNGOL at time t + 1, as follows:

R1—to simulate the dynamics of underpopulation, any live node vi with some number or fewer of
alive neighbors j dies and is removed from the spatial network SNGOL;

R2—to simulate the dynamics of survival of the fittest, any alive node vi with exactly some number
of alive neighbors maintains their alive state and thus their place in the spatial network SNGOL;

R3—to simulate the dynamics of overpopulation, any alive node vi with some number or more of
alive neighbors j dies and is removed from the spatial SNGOL;

R4—to simulate the dynamics of reproduction, any dead node vi with exactly some number of alive
neighbors, j becomes an alive node and is added to the spatial network SNGOL.

Although the influence of the cost matrix on system dynamics is not formally explored in the
traditional Game of Life, a barrier is introduced into the GNAGOL to demonstrate the use of the
connection cost C in the GNA framework. The connection cost C is as follows:

C1—a link cannot form between node vi and node v j if it intersects the barrier
For any model run, the underlying network structure UNGOL is always the same, although the

states of the nodes change. The UNGOL and subsequently the SNGOL are initialized at time t0 where 50%
of the 2000 nodes are randomly selected as “alive”. The underlying network UNGOL in the GNAGOL

implements a synchronized node update process. First, the number of alive neighboring nodes is
calculated for each node in the underlying network UNGOL. Second, the transition rules R are applied
and the state of each node changes based on its number of live neighbors. Finally, the new number of
alive nodes is calculated. If the node is alive, the node stays or becomes part of the spatial network of
interest SNGOL and connects to its live neighbors. The GNAGOL is run for 20 time-steps after which the
evolving spatial network SNGOL reaches equilibrium and the majority of the nodes are satisfied.

3.1.2. GNAGOL Scenarios

Two scenarios were developed by adjusting the transition rules R1–R4 of the GNAGOL model
to represent different spatial behaviors simulated using evolving spatial networks SNGOL. Scenario
1 uses transition rules R presented in Table 4 to generate a spatial network that grows and expands
over time. To foster a growing network, rules are calibrated so that having more neighbors is desirable
i.e., parameter x is selected in a way that reproduction and overpopulation is encouraged while
underpopulation is discouraged. Scenario 2 uses the transition rules R presented in Table 4 to generate
a spatial network that shrinks and declines in size over space and time. To foster a shrinking network,
rules are calibrated so that having less neighbors is desirable i.e., parameter x is selected so that
reproduction and overpopulation is discouraged and underpopulation is encouraged. In both scenarios,
the connection cost C1 remains the same, where a link cannot form between node vi and node v j if it
intersects the barrier. There are several real-world examples of systems as networks that may exhibit
these types of spatio-temporal behaviors. A growing network, where the number of nodes and links
increases consistently over time can be representative of any type of diffusion-based phenomena like
spread of invasive species, transmission of disease, spread of computer viruses, urban sprawl, flooding,
and communication networks. A shrinking network, where nodes are continuously removed from
the network may be representative of processes such as deforestation, loss of habitat due to invasive
species, loss of agricultural land, and drought. The GNA is not limited to simulating these two types
of network evolution since network evolution emerges from implemented transition rules intended
to represent location dynamics between nodes. One other general type of network evolution might
be network fluctuation as some parts of the network grow while simultaneously other parts of the
network shrink.
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Table 4. Transition rules and their parameterization specific to each scenario for GNAGOL.

Rule Scenario Parameter x

R1. To simulate the dynamics of underpopulation, any live node i with x
live neighbors j dies and is removed from the spatial network SN

Scenario 1 ≤6

Scenario 2 ≤11

R2. To simulate the dynamics of survival of the fittest, any live node i with
x live neighbors j maintains their alive state and thus their place in the

spatial network SN.

Scenario 1 =7, 8, 13, or 14

Scenario 2 NA

R3. To simulate the dynamics of overpopulation, any live node i with x live
neighbors j dies and is removed from the spatial SN.

Scenario 1 ≥15

Scenario 2 ≥20

R4. To simulate the dynamics of reproduction, any dead node with x live
neighbors j becomes a live node and is added to the spatial network SN.

Scenario 1 >8 and <13

Scenario 2 >11 and <20

3.1.3. GNAGOL Results

The output of the GNAGOL is a series of spatial networks SNGOL that evolve as a function of
transition rules R that are applied to the underlying network UNGOL. Specifically, the measured
evolving network SNGOL structure is limited by the underlying random geometric graph (RGG)
structure UNGOL and thus the GNAGOL in both scenarios produce an evolving spatial network SNGOL
that is also an RGG. The structure of the underlying network UNGOL does not allow for the emergence
of a spatial network of interest SNGOL that has properties of other graph types such as scale-free
or small-world. Based on the random evolving spatial network structure SNGOL produced by the
GNAGOL, the network structures observed and measured here characterize RGGs as they respond
to dynamics that cause growth and shrinking responses. As many types of real phenomena are
represented and modelled by RGGs, it is important to understand how processes that operate on the
RGG structure might be impacted by changes in their structure. In the following section, the obtained
GNAGOL simulation results are presented and the evolving spatial network SNGOL is analyzed using
graph theory measures.

GNAGOL Simulation Results

The obtained simulation results from both scenarios are presented in Figure 2. In both scenarios,
following initialization, 50% of nodes are selected randomly as “alive” (Figure 2a).

Scenario 1—the application of the transition rules R developed to simulate spatial network
growth initially forms a configuration that is composed of thick clusters of nodes (Figure 2b). Since
the transition rules R create an imbalance in favor of node reproduction (R4) and survival (R2), the
clusters expand over time as “dead” nodes close to the edge of clusters eventually have enough “live”
neighbors that are required for them to reproduce and join the spatial network SNGOL (Figure 2c–e).
As such, the network as a whole grows over time as if “spreading”. Chain and loop-like structures
form as the interiors of each cluster die from overpopulation and the exteriors of each cluster die from
underpopulation, leaving the rest of the nodes in the cluster with the correct number of links survive
until the next time step. The loop-like configurations and the repeating patterns are like that of the
patterns that are produced in the original version of the Game of Life.

Scenario 2—the application of the transition rules R developed to simulate spatial network
shrinkage initially forms a sparse set of clusters, where some clusters are connected to the larger spatial
network and others are not (Figure 2f). This is a result of the transition rules R that are designed to
reduce node reproduction and eliminate node survival. As a result, the network quickly shrinks until
the network is reduced to a repeating sequence of relatively stable loop-like configurations (Figure 2g–i).
As soon as a configuration is produced that is unstable, resulting in the loss or gain of nodes, the
network collapses and all nodes die from underpopulation.
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GNAGOL Spatial Network Analysis Results

General Trends—the evolving spatial network SNGOL is characterized by the number of nodes
n, number of links m, the average clustering coefficient <C>, the average degree of alive nodes <k>,
and average path length <l> calculated for each iteration for scenario 1 (Figure 3a) and scenario 2
(Figure 3b). In general, in scenario 1, the network grows steadily in size over time. The rate of growth
is faster in early time steps and slows in later time steps as the network finds a stable configuration
and less dead nodes are available to reproduce and join the network as live nodes. In scenario 2, the
network decreases in size over time with only a few time steps where the number of nodes increases
slightly before then decreasing. The results indicate that the network measures collected for the
shrinking network (Figure 3b) are noisier than the network measures collected for the growing network
(Figure 3a). In the growing network, in all time steps, the number of nodes and links is greater than
in the previous time-step. In the shrinking network scenario, in some time-steps, the number of
nodes and links increase before sharply decreasing. This noise is a function of applying the rules for
overpopulation. Nodes survive, reproduce, and rewire to other nodes. As their degree increases over
time, it surpasses the struct threshold set by R3 and then dies in the next iteration.

Correlations between Graph Theory Measures—Table 5 presents the correlation between graph
theory measures obtained from the generated spatial networks in scenario 1 (Table 5a) and scenario 2
(Table 5b).

Table 5. Correlation matrix presenting the Pearson’s Correlation (r) for each pair of the graph theory
measures obtained from the evolving spatial network SNGOL generated by two scenarios representing
(a) network growth and (b) network shrinkage. Each graph theory measure is numbered from 1 to 5.

(a) Scenario 1: Network Growth

Graph Theory Measure (1) (2) (3) (4) (5)

(1) Number of Nodes 1.00

(2) Number of Links 0.99 1.00

(3) Average Clustering Coefficient −0.97 −0.98 1.00

(4) Average Path Length 0.79 0.79 −0.82 1.00

(5) Average Degree 0.99 0.99 −0.98 0.8 1.00

(b) Scenario 2: Network Shrinkage

Graph Theory Measure (1) (2) (3) (4) (5)

(1) Number of Nodes 1.00

(2) Number of Links 0.94 1.00

(3) Average Clustering Coefficient −0.73 −0.67 1.00

(4) Average Path Length 0.74 0.94 −0.58 1.00

(5) Average Degree 0.99 0.95 −0.72 0.74 1.00

Scenario 1: based on the results presented in Table 5a, the growing spatial network SNGOL
structure exhibits a strong positive correlation between number of nodes and the number of links,
average path length, and average degree. Conversely, there is a strong negative correlation between
average clustering coefficient and the number of nodes, number of links, average path length, and
average degree.

Scenario 2: the shrinking network structure SNGOL exhibits strong to moderate positive correlations
between the number of nodes and the number of links, average, path length, and average degree (Table 5b).
There is a moderate to weak negative correlation between average clustering coefficient and the number of
nodes, number of links, average path length, and average degree.
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In general, for the evolving spatial networks SNGOL simulated in all scenarios, as RGGs grow
in size, the number of links, the average path length, and the average degree increase while the
clustering coefficient decreases. Conversely, as RGGs shrink, the number of links, the average path
length, and average degree also decrease, while the clustering coefficient increases. These findings
support conclusions that graph theory measures are dependent on network size [39]. These correlations
are particularly interesting because the relationship between network size and other graph theory
measures are not well understood and rarely explored in the literature, especially in the case of spatially
explicit networks.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 25 
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Figure 3. The calculated number of nodes, number of links, average clustering coefficient, average
degree, and average path length for the obtained spatial network SNGOL as it evolves over space and
time generated from (a) scenario 1: network growth and (b) scenario 2: network shrinkage.

Degree Distribution. When an evolving network undergoes growth (scenario 1) and network
size increases, node degree increases, which produces a degree distribution with a left negative skew
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(Figure 4a). When an evolving network undergoes shrinkage (scenario 2), nodes are removed, leaving
remaining nodes with a smaller degree, producing a degree distribution with a right positive skew
(Figure 4b).
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The Game of Life is a well-known model of a theoretical spatial system selected as a case study
to demonstrate clearly the GNA modelling framework, however the presented GNAGOL does not
incorporate real geospatial datasets. In the case of a geospatial application of the GNA modelling
framework to real-world phenomena, the elements of the GNA including the initial network state, the
underlying network, the transition rules, the connection cost, and the spatial and temporal resolution
would need to be designed to properly reflect a particular real-world system and include geospatial
data to permit GNA development, calibration, sensitivity analysis to initial conditions and parameters,
and validation. This process would be the same for designing any cellular automaton or for an
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agent-based model. In the following section, a second model that incorporates real geospatial data into
the GNA modelling framework is presented.

3.2. GNA Schelling’s Segregation GNASEG

Schelling [21,22] has presented a model that was able to capture spatial patterns of human
segregation, the self-organization of heterogeneous individuals into clusters of “alike” individuals,
using one rule. This rule is as follows: if an individual is dissatisfied with the composition of others that
live within its neighborhood, the individual moves elsewhere until it is satisfied. This rule provides
a way to model highly complex social processes that pull people together based on similarities in
language, interests, gender, ethnicity, careers, political views, education, language, and so on. Shelling’s
work has been extended to explore the effects of parameter adjustments including individual tolerance,
neighborhood size, population structures, and utility functions driving segregation [40,41]. In other
research studies, models are parameterized based on real data [42–44]. In many cases, segregation is
modelled as networks [45–48], however, network representation and analysis of the spatial processes
of segregation using real geospatial data has not been explored.

In this section, a second GNA is developed. The GNASEG model is a prototype for representing
patterns of segregation in an urban environment. The model presented is more advanced than the
GNAGOL model as it incorporates real geospatial data forming an underlying network, accesses several
node neighborhood types for which the transition rules are implemented, and explores dynamics
between several different node types. In this network, unlike the GOL, the network evolution is not
characterized by addition or removal of nodes, but rather the rewiring of a similar number of nodes
change location over time.

3.2.1. GNASEG Modelling Framework

The GNASEG model simulates an evolving spatial network SN which is constrained to an
underlying spatial network UN of urban residential properties. Therefore, based on the expression (1),
the GNASEG can be presented as:

GNASEG = [UNSEG, SNSEG, J, R, C, ∆t] (8)

where the GNASEG is a function of the underlying network UNSEG, the tightly coupled spatial network of
interest SNSEG, the neighborhood J, the transition rules R, the connection cost C, and time increment ∆t.

The underlying spatial network UNSEG is constructed where total number of nodes n = 20,213.
Each node vi in the set of nodes N represents the actual location of unoccupied residential properties
located in several neighborhoods in the City of Vancouver, Canada including the West End, Downtown
Vancouver, Hastings Sunrise, Strathcona, and Grandview Woodland. The location of the properties is
obtained from real geospatial data produced by the City of Vancouver and can be characterized as
having a clustered spatial pattern. Residential properties in only a few Vancouver neighborhoods
are included in the study and thus limit the number of nodes n in order to maintain computational
efficiency. In the underlying spatial network UNSEG, node vi and node v j in the set of nodes N are
connected by a link and thus are considered neighboring properties if the Euclidean distance dij is
smaller than a given neighborhood J range, in this case dij <= 50 m. The value for the neighborhood
was selected by calculating the average nearest neighbor distance in meters. Since the neighborhood is
defined by proximity, the graph is considered a geometric graph. However, because the nodes are not
distributed randomly in geographic space, the underlying network is not considered an RGG.

For any model run, the underlying network structure UNSEG is always the same. Each node and
link in the set of nodes N and links L for the underlying spatial network UNSEG can be defined by its
spatial properties including location (x, y coordinates) and the distances d between other nodes. Each
node can also be characterized by its state “occupied” or “unoccupied”. Lastly each node is defined by
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its local network properties, where each individual node has a degree k, a clustering coefficient C, and
a shortest path length l.

The spatial network SNSEG is composed of nodes representing the location of families that occupy
the properties in Downtown Vancouver. It is assumed that only one family occupies each property.
Nodes in the spatial network SNSEG have the same spatial and network properties as the underlying
network UNSEG, however, nodes have two states of either “Class A” or “Class B”. Node vi and node v j
in the spatial network are connected by a link if dij <= 50 m. The SNSEG is initialized at time t0 where
of the 20,213 nodes representing residential properties, 33% are vacant, 33% are occupied by Class A,
and 33% are occupied by Class B. The initial allocation of families to properties that are of Class A or
Class B is equally likely.

The spatial network SNSEG emerges from segregation dynamics between neighboring family
nodes in the spatial network SNSEG and unoccupied property nodes in the underlying network UNSEG.
Furthermore, the spatial network SNSEG is limited by the availability of properties in the underlying
network UNSEG. There are two transition rules R, which are applied at time t and determine the SNSEG
at time t + 1. For their implementation, two types of neighborhoods J are considered. Neighborhood
JA only considers the neighboring family nodes v j of family node vi contained in the spatial network
SN. Neighborhood JB only considers the neighboring occupied and unoccupied property nodes v j of
family node vi in the underlying network UNSEG. The transition rules R are as follows:

R1—based on the definition of neighborhood JA, if node vi’s neighborhood is composed of a higher
ratio of neighbors of the opposite class, the node is dissatisfied and moves to a new unoccupied location.

R2—based on the definition of neighborhood JB, if node vi’s neighborhood is composed of a
higher ratio of unoccupied properties than occupied properties, the node is dissatisfied and moves to a
new unoccupied location.

Each property node in the underlying network UNSEG keeps track of its neighboring property
nodes, whether they are unoccupied, occupied by Class A, or occupied by Class B. This information is
used by the family node vi to understand the neighborhood’s composition and to determine whether it
is satisfied with its location or not. The GNASEG is run for 20 time-steps, after which the model reaches
equilibrium and the majority of agents are satisfied meaning that there is little movement beyond
20 time-steps.

3.2.2. GNASEG Results

The GNASEG outputs consist of a series of spatial networks SNSEG that evolve as a function of the
transition rules R that are applied to the spatial network SNSEG as well as the interactions between
the SNSEG and the UNSEG. In the following section, simulation results for the obtained GNASEG are
presented and the generated evolving spatial network SNSEG is analyzed using graph theory measures.

GNASEG Simulation Results

The obtained simulation results from the GNASEG are presented in Figure 5. The model is initialized
at time t0 where one third of the residential properties in the selected Vancouver neighborhoods are
assigned at random as being occupied by Class A, one third of the residential properties are assigned
at random as being occupied by Class B, and one third of the residential properties remain unoccupied
(Figure 5a). The inset map for Figure 5a shows in detail the random composition of the classes several
city blocks and how they are connected. At time t20, nearly all the nodes are satisfied with their location
(Figure 5b). The inset map for Figure 5b shows the no longer random geographic distribution of nodes,
but instead, properties that are in proximity are occupied by nodes of the same class.
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is presented as it becomes increasingly segregated at (b) t20. The inset maps for each time step are
presented for each showing the composition of neighborhoods at t0 and t20, respectively.

GNASEG Spatial Network Analysis Results

General Trends—the evolving spatial network SNSEG can be described as not shrinking or growing,
but re-wiring, meaning the connections between nodes change over time as nodes change location.
The spatial network SNSEG is characterized by the following graph theory measures: the number of
nodes n, number of links m, average clustering coefficient <C>, average degree of nodes <k>, average
path length <l>, and assortativity, calculated for each time step (Figure 6). Assortativity measures
the degree to which connected nodes are alike, in this case, the degree to which nodes belonging to
Class A are connected to Class A and vice versa. If the assortativity for the network is 1, nodes are
only connected to nodes of the same class. Thus, the graph theory measure assortativity is capable of
quantifying the degree of segregation in the spatial network and is useful because it summarizes all
spatial interactions across the entire study area.

In general, the number of nodes connected to the spatial network SNSEG slightly decreases over
time as some nodes move to locations with no neighbors at all and become satisfied. Conversely, the
number of links increases over time. This can be explained whereby, initially, city blocks composed of
many properties contain several unoccupied properties (Figure 5a inset). Unoccupied properties are
not connected to the spatial network SNSEG, they instead make up the underlying network UNSEG.
This reduces both the average degree and the clustering coefficient of occupied properties because
many neighboring residential properties in close proximity to a node are unoccupied. Based on
the transition rule R2, family nodes in the spatial network SNSEG are dissatisfied if there are more
unoccupied properties than occupied properties in their neighborhood. Therefore, over time, the
clusters of homogenous occupied urban residential properties and clusters of unoccupied properties
form (Figure 5b inset). As some city blocks no longer contain any unoccupied properties, the degree
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and the clustering coefficient of these nodes increase. As a result of this behavior, the average clustering
coefficient and average degree of the spatial network SNSEG increase over time, decreasing the average
path length. Finally, assortativity increases significantly over time from 0.0 to 0.7 as the network
becomes increasingly segregated.
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Figure 6. Values obtained for number of nodes, number of links, average clustering coefficient, average
degree, average path length, and assortativity for the spatial network SNSEG as it evolves over space
and time.

Correlations between Graph Theory Measures—Table 6 presents the correlation between graph
theory measures obtained from the generated spatial networks SNSEG. It is important to note that some
of the correlations between the graph theory measures are a function of the spatial dynamics that take
place on the network. For example, segregation processes increase assortativity and simultaneously
increase the average clustering coefficient, which in turn creates a strong positive correlation between
these two measures.

Table 6. Correlation matrix presenting Pearson’s Correlation (r) for each pair of the graph theory
measures obtained from the evolving spatial network SNSEG. Each graph theory measure is numbered
from 1 to 5.

Graph Theory Measures (1) (2) (3) (4) (5) (6)

(1) Number of Nodes 1.00

(2) Number of Links −0.82 1.00

(3) Average Clustering Coefficient −0.72 0.97 1.00

(4) Average Path Length 0.42 −0.74 −0.80 1.00

(5) Average Degree −0.83 0.99 0.96 −0.74 1.00

(6) Assortativity −0.70 0.95 0.99 −0.82 0.95 1.00
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Degree Distribution—the degree distribution is a Poisson distribution and remains relatively stable
as the spatial network SNSEG changes over time. Specifically, the degree distribution for t5, t10, and t15

is characterized by an index of dispersion of 0.98. The degree distribution is initially slightly skewed
to the right before becoming more normal with an index of dispersion of 0.99 as the average degree
increases slightly as presented in Figure 7.
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When comparing the obtained results for the two case studies, the number of nodes and the number
of links are strongly negatively correlated in the spatial network SNSEG and are strongly positively
correlated in the spatial network SNGOL. This is a function of the transition rules in the spatial network
SNSEG that force the re-wiring of the network to a configuration with more links that better satisfies
a lesser number of family nodes. Furthermore, the SNSEG is not an RGG since the nodes are not
organized randomly, but are instead clustered. Despite these differences between the network types,
there are four correlations that hold true in both GNA case study model outputs. In all networks
produced by both models, (1) the number of nodes and average clustering coefficient is strongly negatively
correlated, (2) the number of nodes and average path length is positively correlated, (3) the number of
links and average degree is strongly positively correlated, and (4) the average path length and the average
clustering coefficient is strongly negatively correlated. The developed GNASEG is a model designed for
the purpose of presenting the GNA modelling framework that implements a real geospatial dataset.
The developed GNASEG prototype is highly scalable and thus provides a starting point that would
facilitate easy parameterization using additional real data in the future.

4. Discussion and Conclusion

This study introduces the novel modelling framework of Geographic Network Automata (GNA)
that can be used for the representation and analysis of complex spatio-temporal systems as evolving
and dynamic networks. The proposed GNA modelling approach presented in this study fits within
the larger modelling framework of geographic automata systems (GAS) [49,50], a suite of geographic
modelling approaches that includes cellular automata (CA) and agent-based modelling (ABM). GAS
modelling frameworks seek to capture the complexity inherent to real geographic phenomena by
simulating local level interactions from which system-level behavior emerges. While the GNA discretely
represent interactions between nodes using links, CA represent local dynamics between cells [51]
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and ABMs represent interactions between individuals or “agents” [52,53]. Like the proposed GNA
modelling approach, CA and ABM under the GAS theoretical framework are coupled with geographic
information systems (GIS) and geospatial data sets and have been used to model a variety of real
geographic phenomena with early studies in urban [54,55], social [56], and ecological systems [57]. The
addition of the proposed GNA modelling approach helps to better theoretically situate other modelling
approaches that are in some ways “hybrids”, including for example graph-cellular automata [58] and
network-based ABMs [59–61].

While the proposed GNA modelling approach fits well within the framework of GAS, it maintains
a strong departure from the classic cell-based CA and vector-based ABM. The developed GNA
approach is designed to explicitly leverage network representations, network-based neighborhoods,
network-based transition rules, and network analysis using graph theory for the simulation of complex
spatio-temporal phenomena. The GNA modelling framework differs from traditional GAS including
CA and ABM because of its uniquely explicit view of the network-based relationships and interactions
between the spatial features that is represented by links and the NxN adjacency matrix A. The GNA
modelling framework places emphasis on the representation, analysis, and visualization of relational
data, interactions, and flows.

In CA and ABMs, transition rules are implemented to simulate relationships, interactions, and
flows, but they are not often represented explicitly nor measured discretely. Instead, the way in which
the system responds to these interactions is measured. The GNA offers a more flexible modelling
framework than traditional CA where nodes may be mobile, may have several defined neighborhood
types for which the transition rules are implemented, and non-deterministic system-level behavior.
Furthermore, the GNA offers explicit representation of interactions as links and thus provides “X-ray”
vision of the model that can be used for measuring and visualizing large sets of interactions between
components of a system in a way that ABMs traditionally do not.

“Networks are everywhere” is a phrase found in many studies that review network research
that ultimately speaks to the interdisciplinary nature and usefulness of abstracting real systems into
complex spatial dynamic networks. This speaks to the potential for the GNA to be implemented
on many other geospatial applications for the representation, characterization, and analysis of a
variety of complex systems. Complex spatial networks are a natural fit for representing and analyzing
relationships and interactions and as such, the GNA modelling framework is an ideal approach for
applications when interaction, relationships, dynamics, and flows between sets of components are of
interest. The application potential is vast and includes movement and flows of information, people,
resources, money, ecological species, energy, disease, and transportation vehicles over time and across
points in geographic space. Naturally, the study of spatial and non-spatial relationships between
individuals is also an ideal application for these modelling approaches. In addition, the proposed GNA
modelling approach would be ideal to better understand interactions between two or more tightly
coupled systems over space and time such as interactions among policy, social, and environmental
systems. The proposed GNA modelling framework was not developed with the intention to replace
other GAS nor does it claim to be better than, but instead, offers novel means for representation and a
new lens for analysis of complex spatio-temporal phenomena.

The presented GNA models successfully represent dynamic spatial phenomena as networks as
demonstrated using the two case studies. The quantification of the simulated network structures using
network measures can reveal new understanding of the phenomena. In the Game of Life example, the
network measures offer a way to quantify common behaviors of spatio-temporal phenomena such as
growth and shrinkage. In the segregation example, it is revealed that the network measure assortativity
can be very useful for quantifying segregation at the individual level and as a whole. This has been a
challenge with traditional segregation indices which tend to summarize segregation within various
units of measure i.e., census boundaries and as such are subject to the modifiable areal unit problem.

The Game of Life GNAGOL example presented in this research study, simulates the evolution of
network structures composed of nodes that are geographically referenced. The segregation GNASEG
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example uses real GIS data for the study area in City of Vancouver to represent the actual location of
nodes where each node represents a residential property in the city. There is a qualitative difference
between the two case studies where the level of GIS integration is increased from the GNAGOL to the
GNASEG. Integrating GIS and network automata and thus providing the framework of geographic
network automata are advantageous in three ways: (1) the network structure and dynamics can be
linked to georeferenced data representing real world phenomena, (2) the geovisualization of simulated
evolving spatial networks are georeferenced to a study area, and (3) both the spatial analysis using GIS
and network analysis of the generated spatial network structures can be leveraged.

Even though the GNASEG incorporates actual spatial data to form the underlying network UNSEG,
future work may focus on additional parameterization and full model testing and validation. Model
validation is seen as the degree of agreement between simulated spatial network structures and
observed real-world spatial patterns, which should be evaluated using datasets that are independent
of model development and calibration. Future work would require the exploration of model validation
approaches suitable for comparing evolving networks with real datasets even in the face of data scarcity
like the NEAT validation approach [62].

In conclusion, this study presents geographic network automata (GNA), a modelling approach
developed for the simulation of spatial systems as evolving complex spatial networks. The novelty of
the GNA approach lies in its ability to represent the tight coupling between spatial network structure
and network dynamics, resulting in network space–time evolution. The GNA approach acknowledges
that for many phenomena network evolution occurs in geographic space, and thus geospatial data and
geographic information systems can be leveraged for representing and analyzing real systems. The
GNA modelling framework adopts a complex systems approach by simulating local spatial interactions
between georeferenced nodes represented by links from which a complex network emerges. Ultimately,
this approach is a new class of GAS alongside ABM and CA models. The framework is implemented
using a spatial network representation of two GNA models including Conway’s Game of Life and
Shelling’s Segregation Model where the implemented transition rules simulate dynamics between
nodes at the very local level, altering the structure of the spatial network, which in turn influences the
dynamics between nodes. Graph theory is then used to characterize and measure the structure and
behavior of simulated networks. The developed GNA approach is both general and flexible so that it
can be applied to represent and analyze many real geographical systems including urban, social, and
ecological and has the potential to be used in knowledge discovery and decision-making processes.
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