
 International Journal of

Geo-Information

Article

Constructing Geospatial Concept Graphs from
Tagged Images for Geo-Aware Fine-Grained
Image Recognition

Naoko Nitta *, Kazuaki Nakamura and Noboru Babaguchi

Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan;
k-nakamura@comm.eng.osaka-u.ac.jp (K.N.); babaguchi@comm.eng.osaka-u.ac.jp (N.B.)
* Correspondence: naoko@comm.eng.osaka-u.ac.jp; Tel.: +81-6-6879-7745

Received: 27 April 2020; Accepted: 25 May 2020; Published: 27 May 2020
����������
�������

Abstract: While visual appearances play a main role in recognizing the concepts captured in images,
additional information can provide complementary information for fine-grained image recognition,
where concepts with similar visual appearances such as species of birds need to be distinguished.
Especially for recognizing geospatial concepts, which are observed only at specific places, geographical
locations of the images can improve the recognition accuracy. However, such geo-aware fine-grained
image recognition requires prior information about the visual and geospatial features of each concept
or the training data composed of high-quality images for each concept associated with correct
geographical locations. By using a large number of images photographed in various places and
described with textual tags which can be collected from image sharing services such as Flickr,
this paper proposes a method for constructing a geospatial concept graph which contains the
necessary prior information for realizing the geo-aware fine-grained image recognition, such as
a set of visually recognizable fine-grained geospatial concepts, their visual and geospatial features,
and the coarse-grained representative visual concepts whose visual features can be transferred to
several fine-grained geospatial concepts. Leveraging the information from the images captured by
many people can automatically extract diverse types of geospatial concepts with proper features for
realizing efficient and effective geo-aware fine-grained image recognition.

Keywords: tagged images; concept graphs; geospatial concepts; visual concepts; fine-grained image
recognition; geo-aware image recognition

1. Introduction

Recent developments in deep learning techniques has enabled us to accurately recognize the
concepts captured in images based on visual appearances. While the task of image recognition
generally targets on distinguishing generic coarse-grained concepts such as dogs, birds, and cars,
fine-grained image recognition targets on distinguishing visually similar subordinate concepts such
as breeds of dogs, species of birds, or models of cars. While many approaches have been proposed
for discriminating their subtle visual differences by focusing on local parts in the images or by
learning discriminative visual feature representation, others leverage the additional information such
as geographic locations where the images were captured, so that the visually similar concepts are
distinguished based on their captured locations [1].

Such geo-aware fine-grained image recognition is possible for the concepts whose subordinate
concepts are likely to be observed at different locations. Birds [2], plants, and animals [3,4] have
been used as examples of such concepts, since not only the image datasets of their individual species
are publicly available [2,5] but the observed locations of the individual species can also be obtained
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from databases of biological diversity. While the manually created datasets for a predetermined set
of fine-grained geospatial concepts enable us to improve the recognition performance, the domains of
recognizable concepts are limited due to the availability of such datasets.

On the other hand, there have been some attempts to automatically extract the knowledge about
concepts or create image datasets of concepts by using internet search engines or on-line image sharing
services such as Flickr [6], where the images are uploaded with manually assigned textual tags [7–13].
Especially, since Flickr images are also assigned with geo-coordinates of their captured locations,
they have been used for extracting the knowledge about geospatial concepts [14–16] such as their
visual and geospatial features which are necessary to recognize each concept in images. Since people
capture images of anything that attracts their attentions and upload them to Flickr, using Flickr images
as the information source would enable us to obtain prior information about any type of fine-grained
geospatial concepts that people would be interested in, as long as they are captured only at specific
locations by several people. The expected geospatial concepts whose prior information can be extracted
from Flickr images include local places of interest, local species, transportation systems, local landscape
styles, and so forth.

Although Flickr images would help increase the diversity of concepts/domains that the geo-aware
fine-grained image recognition can be applied to without the manual labor, the problem with when
using Flickr images is that their statistics are long-tailed, that is, a few concepts are highly representative
and have most of the images, whereas most concepts are observed rarely with only a few images [17,18].
In other words, many images are assigned with tags representing generic coarse-grained concepts,
while only a few images are assigned with tags representing their subordinate fine-grained concepts,
which are not sufficient for learning their visual features. Since the subordinate fine-grained concepts
(e.g., breeds of dogs) are generally visually similar to their representative concept corresponding
to their domain (e.g., dog), this can be solved based on the ideas of transfer learning, where the
visual features of the representative concepts are used for recognizing their subordinate fine-grained
concepts [19]. Since Flickr images are assigned with multiple tags, such concept relations can also be
discovered based on the tag co-occurrence.

Based on the ideas discussed above, this paper proposes a method for constructing a geospatial
concept graph, which represents a structured knowledge about geospatial concepts necessary for
geo-aware fine-grained image recognition, by utilizing tagged images shared on Flickr. The proposed
method firstly extracts diverse geospatial concepts and visual concepts by examining the spatial locality
and visual uniformity of each tag. Then, the relations among concepts are extracted by examining the
tag co-occurrence and their visual similarity to determine the fine-grained geospatial concepts and
their representative visual concepts.

The contributions of the paper are:

• Our method can automatically extract fine-grained geospatial concepts of various domains with
their geospatial and visual features. Further, the representative concepts for each geospatial
concept are automatically determined so that the reliable visual features extracted from the
representative concepts with many example images can be shared to recognize their subordinate
geospatial concepts. The extracted knowledge is represented as a graph, composed of nodes
representing concepts and edges representing their relations.

• While existing work has verified that the accuracy of the fine-grained image recognition can
be improved by using the geographical location information where the image was captured,
the domains of the recognizable concepts are limited to those the visual and geospatial features
of which can be obtained from manually prepared databases. Further, what kinds of fine-grained
geospatial concepts in the real world should or can be recognized are not known. By using
Flickr images, our work can increase the diversity of concepts/domains to which such geo-aware
fine-grained image recognition can be applied without the manual labor and by considering the
interest of general public.
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• The geospatial concept graph constructed from a set of Flickr images posted in the U.S. in a year
is evaluated based on the results of geo-aware image recognition for a set of Flickr images posted
in a different year. The results show the potential of using the prior information obtained from
Flickr images for the automatic geo-aware fine-grained recognition, for example, of the images
captured by smart phones with GPS systems.

2. Related Work

Recent deep learning-based techniques, especially convolutional neural networks (CNNs),
are extensively used to recognize generic coarse-grained concepts such as dogs, birds, and cars
with high accuracy based on the visual features [20–24]. Large image datasets such as ImageNet [25]
and Places [26], which contain many example images for a given set of concepts, have played a key role
in advancing their performances. In addition to the visual features within the given images themselves,
the prior knowledge about the real world, such as about the co-occurrence of concepts that often
appear together in an image, can be used to further improve the recognition performance [27–30].
Such knowledge is often represented as a graph, where nodes represent concepts and edges represent
their relations. As the knowledge graph, existing database such as WordNet [31] and DBpedia [32] are
often used. The knowledge can also be automatically obtained from image databases with manually
assigned high-quality object labels such as LabelMe [33] and Visual Genome [34]. The high-quality
object labels can also be obtained by applying CNNs to an image dataset [30]. Such prior knowledge
is especially useful for distinguishing visually similar fine-grained concepts [35,36]. For recognizing
fine-grained concepts, the knowledge graph has been constructed from the dataset of images with
accurate attribute annotations [35].

In order to increase the diversity of the concepts in the knowledge graph, images assigned with
sentence descriptions can also be used [7]. Further, for decreasing the cost of manual annotations,
many methods use a dataset of image-text pairs automatically collected from the web, for example,
images retrieved by text-based image search services [8–12,37] or tagged images uploaded to image
sharing services such as Flickr [13]. Such image-text pairs are likely to contain noises. For example,
irrelevant images can be collected as example images for each concept, or images for different concepts
can be collected together when the same tags have multiple meanings. Thus, after collecting the images
for a text query or tag, clustering techniques are often applied to the images to filter out outliers or to
divide the images into sub-concepts.

Since the Flickr images are assigned with geographical coordinates where the images are captured,
they have often been used as a prior knowledge for geo-aware image recognition. Search-based
approaches were firstly proposed where, for a given image, its nearest neighbors in terms of captured
locations and visual appearances [14–16] are retrieved from a set of Flickr images. Then, for the tags
assigned to the retrieved images, their relevancy is determined based on the geospatial or visual
distances to the given image, number of their users, their spatial locality, and so forth. While this
approach becomes inefficient for a larger set of Flickr images, many methods were proposed to find
popular local landmarks from Flickr images, which can be used as the target set of fine-grained
geospatial concepts of image recognition. Since many images of popular landmarks would be posted
to Flickr, the images are clustered based on their geographical coordinates and visual features to find
clusters, each of which corresponds to a landmark [38–40]. Then, local feature points are detected
from each image, so that the local feature points are matched among the images to calculate their
similarity. The images which are most similar to other images can be determined as the representative
images [39,40], and they can be used as the model images to be used in the search-based
approaches [39].

More recent methods use learning-based approaches which learn classifiers for a predetermined
set of concepts based both on geospatial and visual features. Flickr images have been used to
extract location-sensitive concepts with sufficient number of example images, which still resulted in
learning classifiers for rather generic coarse-grained geospatial concepts such as ski and beach [41].
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For fine-grained geospatial concepts, manually created image datasets and biodiversity databases for
a set of predetermined fine-grained concepts have been used [2,5] to learn the relationships between
images and concepts and between locations and concepts separately [2–4].

In order to extract the prior knowledge for fine-grained geo-aware image recognition, the target
of this paper is to extract diverse location-sensitive concepts , which can have only a limited number
of example images due to the long-tail characteristics of Flickr images [18]. Instead of the clustering
techniques for finding popular location-sensitive concepts, the spatial distribution of each tag is
generally examined to extract such less popular location-sensitive concepts [42,43]. The novelty of our
work is that we additionally consider the visual features to discover diverse visually recognizable
geospatial concepts. Then, in order to handle the problem that it is hard to train visual-based
classifiers for fine-grained concepts with only a small number of example images, we use the ideas
of transfer learning, which transfers the knowledge for some representative concepts with sufficient
number of example images [17]. Such representative concepts are often the concepts representing
the domains (e.g., dog) of the fine-grained concepts (e.g., breeds of dogs) [19], and such concept
relations can also be extracted from Flickr images based on the tag co-occurrence and represented
as a graph. Thus, this paper proposes to construct a geospatial concept graph for representing the
knowledge about diverse fine-grained geospatial concepts, including their geospatial features and
their representative visual concepts whose visual features can be transferred to increase the diversity
of domains for the fine-grained geo-aware image recognition.

3. Proposed Method

Our assumption is that the image In captured at the geographical coordinate ln = (latn, lonn) is
uploaded to Flickr with a set of text tags Wn = {wp|p ∈ N} by the user un. Given a set of images
uploaded to Flickr, S = {(In, Wn, ln, un)|n ∈ N}, our goal is to construct a graph representing the
knowledge about the visual geospatial concepts, each of which has some visual characteristics and can
only be observed at specific locations. These visual geospatial concepts are considered the fine-grained
geospatial concepts, which can be recognized by the geo-aware image recognition. Some of these
visual geospatial concepts can share similar visual characteristics, which can be represented by more
coarse-grained visual concepts.

The knowledge is represented as a directed graph G = 〈V, A〉, where V are the nodes representing
concepts and A are the edges representing their relations. In the constructed graph, V is a union of a
set of visual geospatial concepts Vvg and a set of representative visual concepts Vrep, which commonly
represent the visual characteristics of several visual geospatial concepts. A is a set of relations among
the visual geospatial concepts wp ∈ Vvg and their representative visual concepts wr ∈ Vrep. The visual
geospatial concept wp ∈ Vvg is associated with locations as its geospatial features and with their
representative visual concepts as its visual features. The representative visual concept wr ∈ Vrep is
associated with its visual features.

The graph is constructed by the following 3 steps as shown in Figure 1.

Step (1) Geospatial Concept Extraction
Tags used only in specific locations are extracted as geospatial concepts Vgeo with their
geospatial features.

Step (2) Visual Concept Extraction
Tags assigned to images with visually uniform appearance are extracted as visual concepts Vvis
with their visual features.

Step (3) Representative Visual Concept Extraction
Tags extracted both as geospatial and visual concepts are considered as visual geospatial concepts
Vvg = Vgeo ∩ Vvis, which have both geospatial and visual features. For each visual geospatial
concept wp ∈ Vvg, its representative visual concepts wr ∈ Vvis are selected from visual concepts
based on their co-occurrence frequency and visual similarity. As a result, A = {(wp, wr)|wp ∈
Vvg, wr ∈ Vvis} and Vrep = {wr|(wp, wr) ∈ A} are extracted.
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The details of each step are described in the following subsections.

Figure 1. Overview of Proposed Method

3.1. Geospatial Concept Extraction

The whole geographical area containing the captured locations of all images in S is first divided
into J sub-areas to examine the discretized spatial distributions of each text tag [44]. Since images
are posted densely from populated places, the spatial distribution of Flickr images is not uniform.
Uniformly dividing the area would erroneously increase the spatial locality of many tags in the
populated areas [43,45]. Thus, the area is recursively divided so that the same number of images
are uniformly posted from each sub-area rj(j = 1, · · · , J). At each iteration, an area is divided into
2 sub-areas at the median point alternately for each axis (latitude and longitude). Then, for each
tag wp ∈ W, where W = ∪nWn, a set of their posted locations Lp = {ln|wp ∈ Wn} is collected.

The area-based frequency histogram Fp = { f j
p|j = 1, · · · , J} is obtained as the discretized spatial

distribution of Lp to examine its spatial locality, where f j
p represents the number of the users of the tag

wp in the sub-area rj.
The idea of the term frequency and inverse document frequency (tf-idf), which reflects the

importance of a word to a document in a corpus, is used to determine the spatial locality. The tf-idf
based locality score SLp of the tag wp is determined as follows.

SLp = f mode
p × log

J
|Ap|

, (1)

f mode
p = max

j∈J
f j
p, (2)

Ap = {rj| f
j
p > 0}, (3)

where |Ap| is the number of sub-areas in which wp is used. SLp gets higher when the tag wp is
used frequently only in a limited number of sub-areas. Thus, a set of spatially localized tags Vgeo =

{wp|wp ∈W ∧ SLp ≥ Thl} is extracted as a geospatial concept set.
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Thl determines the maximum number of sub-areas the geospatial tags wp can be used according

to f mode
p . As shown in Figure 2, the maximum number of sub-areas λ f mode

p should be larger as f mode
p

gets higher, so that the tags used in multiple sub-areas can be extracted as long as they are used by
sufficient number of users in one of the sub-areas. Here, by considering f mode

p = θ as the lowest peak
to determine the geospatial concept, we set Thl based on the maximum number of sub-areas λθ when
f mode
p = θ as:

Thl = θ × log(J/λθ). (4)

Setting θ low enables us to extract infrequently posted geospatial concepts as long as its spatial

locality is high. Then, λ f mode
p is determined higher as f mode

p gets higher as:

λ f mode
p =

J

exp Thl
f mode
p

. (5)

Each geospatial concept wp ∈ Vgeo is associated with a set of geographical coordinates
Lp = {ln|wp ∈Wn}, as the locations where wp is captured. Since the images uploaded to Flickr
can be associated with irrelevant tags, Lp can also contain noise. Thus, we apply Mean Shift clustering
algorithm [46] to Lp to find the unknown number of local maximum or modes in the point distribution,
which are potential cluster centers. Since the points associated with each local mode form a cluster,
small clusters can be deleted as noise and the bivariate normal distribution is fitted to the set of points
forming each remaining cluster as shown in Figure 3, to obtain the means and covariance matrices as
the geospatial features of wp.

Figure 2. How the area-based frequency histogram Fp is used to determine if wp represents a geospatial

concept. Intuitively, by using the same threshold Thl , the threshold λ f mode
p which represents the

maximum number of sub-areas for extracting the geospatial concepts gets larger as the peak f mode
p of

the frequency histogram gets higher.

Figure 3. How geospatial features of geospatial concepts are obtained by applying Mean Shift clustering
to Lp when wp = colorado. Cross marks represent the removed ln and blue marks represent the points
ln forming a cluster. The red ellipse represents the 95% confidence interval based on the mean and
covariance matrix of the bivariate normal distribution fitted to the blue marks.
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3.2. Visual Concept Extraction

In order to extract the visual concepts, we examine the visual similarity among the images attached
with each tag as the measure of its visual uniformity. For each tag wp ∈W, a set of images tagged with
wp are collected as Ip = {In|wp ∈Wn}. Since how users capture an image of specific concept can vary
rather largely, the visual similarity among the images in Ip is determined based on if similar objects
are captured in the images. We use Xception [22], a CNN pre-trained on a large collection of ImageNet
images of 1000 categories, to obtain the top-M categories for each image In ∈ Ip. Then, the number of

images which share the most frequent category is obtained as Cp. If Cp
|Ip | ≥ Thv, the visual similarity

among the images in Ip is considered sufficiently high to determine wp as a visual concept. Figure 4
shows an example. In Figure 4a, the most frequent category predicted for Ip was church, and it was
predicted for most of the images in Ip, which makes the concept wp = church a visual concept. On the
other hand, in Figure 4b, even the most frequent category predicted for Ip, which is pier, is predicted
for only a few images in Ip, indicating the visual diversity in Ip. Thus, the concept wp = newyork is
determined as a non-visual concept.

Figure 4. Examples of how the top categories predicted by CNN for each image in Ip are used to
determine if wp represents a visual concept. (a,b) each shows an example for visual concepts and
non-visual concepts. The most frequent category predicted for each concept is shown in red. When M
is set to 10, the 10 most frequent categories for (a) are church, monastery, bell_cote, vault, palace, dome,
castle, altar, barn, and tile_roof, which filter out the bottom right image as irrelevant image.

As a result, Vvis = {wp|wp ∈ W ∧ Cp
|Ip | ≥ Thv} is extracted as a visual concept set. For each

wp ∈ Vvis, the M most frequent categories predicted for Ip are retained as its visual features. While Ip

is expected to contain images irrelevant to wp, they can also be filtered out based on the number of
common categories between the M most frequent categories for wp and the top-M categories predicted
for the image.

3.3. Representative Visual Concept Extraction

The visual geospatial concepts, which are extracted both as geospatial concepts in Step (1) and
as visual concepts in Step (2), should be the visually recognizable fine-grained geospatial concepts.
The simplest way to recognize these concepts would be to train a visual-based classifier by using
their example images. However, due to the long-tail characteristics of Flickr images, only a small
number of example images tend to be collected for these concepts. Based on the assumption that these
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visual geospatial concepts such as churches at different locations are generally visually similar and
are the subordinate concepts of a specific coarse-grained representative visual concept such as church,
which tend to have many example images, we determine such representative visual concepts whose
visual features can be transferred to multiple visual geospatial concepts. The classifiers can be trained
only for a small number of representative visual concepts, and the subordinate visual geospatial
concepts can be discriminated based on their locations.

In order to determine the representative visual concepts for each visual geospatial concept, we can
examine its visual similarity to all other visual concepts; however, as the number of visual concepts
can be very large, it would be unnecessarily costly. Further, the coarse-grained representative concepts
should be not only visually similar, but also semantically related to the visual geospatial concept.
Thus, we confine the search space only to the semantically related visual concepts. Here, when the
images with the tag wp are often tagged also with the tag wq, wp is considered to be semantically
related to wq.

Then, when the images with the tag wp are visually similar to the images with the tag wq, wp is
considered to be visually similar to wq. We examine the visual similarity between wp and wq based on
the common objects in the images Ip or Iq. Thus, the visual similarity between wp and wq is calculated
by the ratio of common categories in their visual features, that is, M most frequent categories.

When wq is assigned to more images than wp, wq can be considered to be a parent concept
of wp, which represents a more generic concept applicable to more images. Thus, for each visual
geospatial concept wp ∈ Vvg, a set of its parent concepts Pp = {wq|wq ∈ Vvis ∧ |Ip ∩ Iq| > 1 ∧ t fq ≥
t fp ∧ sv(wp, wq) ≥ Thsv} is obtained, where t fp represents the number of users of the tag wp, which

is calculated as t fp = ΣJ
j=1 f j

p , and sv(wp, wq) represents the visual similarity between wp and wq.
Then, for each parent concept wq in Pp, its parent concepts are recursively obtained.

Finally, for each visual geospatial concept wp ∈ Vvg, the furthest concept wr which are either
directly or indirectly reachable from wp and visually similar to wp are determined as its representative
visual concepts. By searching not only the visually similar concepts which co-occur with the
visual geospatial concept itself, but also those which co-occur with its parent concepts recursively,
coarse-grained concepts with more example images can be determined as its representative visual
concepts. As a result, a set of visual relations among the geospatial concepts and their representative
visual concepts is extracted as A = {(wp, wr)|wp ∈ Vvg ∧ wr ∈ Rp ∧ sv(wp, wr) ≥ Thsv ∧ ∀wq ∈
Pr, sv(wp, wq) < Thsv}, where Rp is a set of nodes in Vvis which are reachable from wp. A set of
representative visual concepts is then determined as Vrep = {wr|(wp, wr) ∈ A}.

Figure 5 shows an example. Here, batteryspencer and niagarafalls are the visual geospatial concepts.
The M = 10 most frequent categories predicted by CNN for each visual concept are shown with an
example image. The black edges represent the semantically related and visually similar concept pairs
when Thsv = 0.5 and are directed from each child to its parents. For each visual geospatial concept,
the furthest either directly or indirectly reachable and visually similar concepts are determined as its
representative visual concepts, which are indicated by red edges. The four visual concepts—bridge,
beach, water, and sunset are all reachable both from batteryspencer and from niagarafalls. However,
since only bridge is visually similar to batteryspencer (sim(wp, wq) ≥ Thsv), bridge is determined as the
representative visual concept of batteryspencer. On the other hand, all four visual concepts are visually
similar to niagarafalls. Thus, the furthest concept sunset is determined as the representative visual
concept of niagarafalls. The categories in red are the common categories between each pair of visual
geospatial concept and its representative concept.
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Figure 5. Examples of how the representative visual concepts are determined. AP represented by
black lines is a set of edges between each concept and its parent nodes. For each visual geospatial
concept, the furthest either directly or indirectly reachable visually similar concepts, which are to be its
representative visual concepts, are searched by using these edges.

4. Experiments

4.1. Geospatial Concept Graph Construction from Flickr Images

We collected images captured in the United States in 2017 and attached at least one text tag from
Flickr. As a result, 2,206,873 images uploaded by 28,945 users were collected. They were annotated with
22,339,112 text tags in total, among which 455,840 were unique. In order to check the spatial locality
and visual uniformity of each tag, we only focused on the tags used at least by 5 users. As a result,
the remaining 33,496 unique tags were used as a set of all tags W = ∩nWn, from which geospatial and
visual concepts are extracted to construct a geospatial concept graph.

Our proposed method has several parameters—the number of sub-areas J and Thl for extracting
geospatial concepts, Thv for extracting visual concepts, and Thsv for examining the visual similarity
between concepts. Here, we examined how changing the parameter values can affect the performance
of our proposed method.

In order to evaluate the effects of the parameters J and Thl on the geospatial concept extraction,
we have collected place names from a geographical database GeoNames [47] as the examples of
geospatial concepts and stop words [48] as the examples of non-geospatial concepts. As discussed in
Section 3.1, Thl can be determined by setting the maximum number of sub-areas λθ in Equation (4) for
determining a geospatial concept when f mode

p = θ. Since the minimum number of users (t fp) of a tag
wp is 5 as described above, we have set θ = 5 accordingly.

Table 1 shows the numbers of candidate place names and stop words which satisfy f mode
p ≥ θ(= 5)

for different J. When J is set high, the locations of place names, especially the infrequently posted ones,
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can be separated into different sub-areas, making their locality unobservable. Further, dividing the
area too much can make histograms sparse even for stop words; which resulted in their false extraction.
However, setting J too low would increase f mode

p for any word, which also resulted in the false extraction
of stop words. λθ should be also set higher to extract more place names, but setting it too high increased
the false extraction of stop words. According to the results in Table 1, the best parameters were J = 16
and λθ = 5, which extracted the largest number of place names while extracting the fewest number of
stop words. Figure 6 shows how the United Stated was divided when J = 16.

Table 1. Numbers of extracted place names and stop words for different parameters J and θ.

] of Sub-Areas J

8 16 32 64 128 256

] of candidate place names 7312 6710 6236 5859 5528 5229

] of candidate stop words 148 118 86 69 53 38

4 ] of extracted place names 4687 4529 4443 4380 4313 4215
] of extracted stop words 2 1 1 2 3 2

5 ] of extracted place names 4935 4671 4545 4477 4388 4270
] of extracted stop words 3 1 1 3 3 2

λθ 6 ] of extracted place names 5237 4790 4616 4536 4435 4322

] of extracted stop words 11 2 2 3 3 3

7 ] of extracted place names 5561 4915 4710 4604 4499 4357
] of extracted stop words 33 2 2 3 3 4

Figure 6. How the United States was divided into J = 16 sub-areas. The dark circles represent the
geographical coordinates of the 2,206,873 images. The whole area, which is the minimum bounding
box containing all coordinates, is divided so that each sub-area has the same number of images.

By setting J = 16 and λθ = 5, 7950 geospatial concepts were extracted from the 33,496 unique
tags used in the United States in 2017. Figure 7 shows the number of users who used the extracted
tags, where the tags are sorted in the descending order of the number of users. The frequency of
the geospatial concepts in the Flickr images follows a long-tail distribution where only 3% of the
geospatial concepts were used by more than 100 users. The geospatial concepts used by fewer than
25 users accounted for approximately 85% of geospatial concepts. 3299 of the extracted concepts
were not in GeoNames, including acronyms such as fdny, nicknames such as bigapple, names of sports
teams such as sanjosesharks, names of transportation systems such as c408m, names of iconic persons
such as jerrygarcia, names of iconic locations such as fullhouse, names of events such as comiccon,
local animals such as elephantseal, local plants such as beavertailcactus, local activities such as icefishing,
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and characteristics of areas such as belowsealevel. The bivariate normal distributions fitted to the
geographical coordinates for these geospatial concepts are shown as the ellipses in Figure 8. Geospatial
concepts indicating multiple locations were extracted such as comiccon. Their geospatial features are
obtained as the means and covariance matrices of the distributions.

Figure 7. Number of users for extracted geospatial concepts wp, where wp is ranked in the descending
order of the number of users. Examples of the geospatial concepts used by more than 100 users
are mostly names of states, big cities, or popular places such as manhattan, centralpark, chinatown,
and hollywood.

Figure 8. Examples of extracted geospatial concepts which are not in GeoNames and their locations
(means and covariance matrices) obtained as the geospatial features.

Further, in order to evaluate the effects of the parameters Thv to examine the uniformity of visual
appearances of concepts, we have collected classes from ImageNet [25] as the examples of visual
concepts and English adjectives as the examples of non-visual concepts, both of which are tagged to
Flickr images. Figure 9 shows the distributions of the ratios of the images attached with most frequent
category Cp

|Ip | for each type of concepts when M = 10. Accordingly, we set Thv = 0.5. The ratio is over
Thv = 0.5 for 70% of ImageNet classes, while the ratio is under Thv = 0.5 for 85% of adjectives.

By setting Thv = 0.5, 16,620 visual concepts were extracted from the 33,496 unique tags used in
the United States in 2017. 4617 out of the 7950 extracted geospatial concepts were also visual concepts,
which are considered as visually recognizable fine-grained concepts. The distribution of the number of
users for these visual geospatial concepts were similar to Figure 7, and less than 2% of them were used
by more than 100 users.
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Figure 9. Ratio of images with most frequently predicted category for each concept.

Semantically related concept pairs are extracted based on their co-occurrence frequencies.
We focus on the pairs of tags which were used together at least by 2 users by considering
their credibility. In order to examine the effects of the parameters Thsv to examine the visual
similarity between concepts, we have collected visually similar and semantically related concept
pairs from GeoNames. Place names in GeoNames have feature codes which represent their place
categories. As the examples of visual concepts, we have selected 4 place categories—‘MT’(mountain),
‘AIRP’(airport), ‘CH’(church), and ‘BDG’(bridge). Place names with these feature codes, which are
also among the extracted visual concepts, are paired up with their corresponding tags—mountain,
airports, church, and bridge. These pairs are used as the examples of visually similar concept pairs.
On the other hand, for each of the tags corresponding to the place categories, we randomly paired it
up with the extracted visual concepts and used them as the examples of visually dissimilar concept
pairs. Figure 10 shows the distributions of visual similarities among the visually similar or dissimilar
concept pairs. Setting Thsv = 0.5 would reject 90% of visually dissimilar concept pairs, while keeping
about 70% of visually similar ones.

Figure 10. Distributions of visual similarities for each type of concept pairs

By setting Thsv = 0.5, for the 3812 out of the 4617 visual geospatial concepts, 426 representative
visual concepts were selected from the 16,620 visual concepts. Figures 11–13 show the examples of the
selected representative visual concepts and the visual geospatial concepts they represent. These figures
also show an example image selected for each concept after filtering out the noisy images. The images
surrounded by red rectangles represent the representative visual concepts. Some visual geospatial
concepts can have multiple representative visual concepts as shown in Figure 12 and even visual
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geospatial concepts can be the representative visual concepts of other visual geospatial concepts as
shown in Figure 13.

Figure 11. Examples of visual geospatial concepts represented by a visual concept baseball. The edges
among the visual geospatial concepts and baseball are omitted for visual clarity.

Figure 12. Examples of visual geospatial concepts represented by a visual concept seagull. They can be
represented by multiple visually similar visual concepts. Only the edges among the visual geospatial
concepts and visual concepts other than seagull are presented for visual clarity.
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Figure 13. Examples of visual geospatial concepts represented by a visual concept stairs. The visual
geospatial concepts themselves can also represent other visual geospatial concepts. The visual
concept stairs represent the visual geospatial concepts shown in the middle layer: lorettochapel,
chicagoculturalcenter, grandcentralstation, grandcentral, ohny, and oculus. oculus represents the visual
geospatial concepts in the bottom layer. Only the edges among oculus and other visual geospatial
concepts are presented for visual clarity.

4.2. Evaluation by Geo-Aware Image Recognition

Although we have described the constructed geospatial concept graph with some examples, it is
difficult to directly evaluate its quality. Thus, we evaluate its quality based on the performance
of geo-aware image recognition. Here, we set the goal as, given an image Ix captured at the
location lx = (latx, lonx), to automatically obtain a list of its relevant visual geospatial concept tags
Wx = (wp|wp ∈ Vvg).

There can be many ways to use the constructed graph for geo-aware image recognition; however,
we take a simple approach. When given an image Ix captured at the location lx, the probability of
assigning the visual geospatial concept wp as its tag can be written as:

P(wp|Ix, lx) =
P(Ix, lx|wp)P(wp)

P(Ix, lx)
. (6)

Assuming that the image and location are conditionally independent given the visual geospatial
concept, and each concept tag wp is equally assignable, we obtain:

P(wp|Ix, lx) ∝ P(Ix|wp)P(lx|wp). (7)

Since 426 representative visual concepts wr ∈ Vrep are expected to represent the 4617 visual
geospatial concepts wp ∈ Vvg, we use P(Ix|wr) instead of P(Ix|wp) as:

P(wp|Ix, lx) ∝ maxwr∈Rp P(Ix|wr)P(lx|wp). (8)
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Thus, we only need to calculate P(Ix|wr) for the 426 representative visual concepts wr ∈ Vrep.
We determine P(Ix|wr), the probability of observing Ix as the image of wr, based on the similarity of
the visual features between Ix and wr. For the image Ix, the top-M categories is predicted by Xception,
and the similarity between Ix and the visual concept wr is obtained as the ratio of common categories
between the top-M categories for Ix and the M most frequent categories predicted for wr.

On the other hand, P(lx|wp), the probability of observing lx as the location of the geospatial
concept wp, can be determined based on the closeness of lx to the geospatial features of wp.
More concretely, given a normal distribution with the mean and covariance matrix which were
determined as the geospatial features of wp, the deviation of lx from the mean is calculated and the
probability of observing the points outside the deviation is obtained as P(lx|wp), so that P(lx|wp) is
closer to 1 or 0 when lx is closer to or farther from the mean, respectively. Practically, P(lx|wp) needs
to be calculated only for wp, which is the subordinate concept of wr such that P(Ix|wr) > 0.

We separately collected Flickr images captured in 2016 in the United States, each of which
was attached with at least one of the visual geospatial concept tags wp ∈ Vvg, as a set of test
images. After removing images taken by the same users on the same days, which are often
near-duplicate images, we obtained 71,258 test images in total. Although the tags which were
actually attached to these images can be considered as the ground truth of the image recognition,
these tags are not exhaustive. Thus, for each test image Ix captured at lx, we ranked all wp for which
P(wp|Ix, lx) >= 0.001 in the order of P(wp|Ix, lx). Then, the results are evaluated with the recall rate,
which is the ratio of the number of images correctly recognized as wp to the number of images to
which wp was actually attached, and the ranks of wp. In order to properly evaluate the recall rate,
we targeted the 3585 out of the 4617 visual geospatial concepts wp in the constructed graph, each of
which was attached to at least 5 test images and examined whether the test images can be correctly
recognized as the corresponding concepts.

Figure 14a shows the distribution of the recall rates for the 3585 visual geospatial concepts.
The recall rates were over 50% for 71% of the visual geospatial concepts. Figure 14b shows the
cumulative distribution of median ranks of the corresponding tags wp for the correctly recognized
images. For 74% of the concepts, the corresponding tags were ranked within the top 20 out of all the
3585 candidate tags.

Figure 15 shows examples of the visual geosptial concepts with high recall rates. For diverse
types of visual geospatial concepts, the test images attached with corresponding tags were correctly
recognized despite their visual diversity. Further, Figure 16 shows examples of visual geospatial
concepts with the recall rates of less than 50%. The leftmost images are the examples of correctly
recognized images, and images on the right are the examples of unrecognized images. The images
surrounded in red and green lines were determined dissimilar to the corresponding visual geospatial
concepts based on visual and geospatial features, respectively. As can be seen, many of these incorrectly
recognized images seem to be actually irrelevant to the corresponding geospatial concepts. Even when
their visual appearances are similar as the images in the green lines, they can capture different concepts
at locations which largely differ from where the corresponding geospatial concepts were observed in
2017. These results also indicate the existence of noise in the manually attached tags in Flickr and our
geo-aware image recognition using the constructed graph was actually able to filter out such images
with irrelevant tags.

On the other hand, since Flickr images captured in a single year are not sufficient to construct a
complete graph, our method failed to recognize some correct test images or falsely recognized some
incorrect test images. For example, although there are multiple waterfalls called bridal veil falls in
the United States, most images tagged with bridalveilfalls were captured in Yosemite National Park in
California in 2017. The 2 test images for bridalveilfalls on the right in Figure 16 correspond to Niagara
Falls in New York, which is also called bridal veil falls, and they were not correctly recognized since the
constructed graph did not contain its locations as the geospatial features of bridalveilfalls. Especially for
geospatial concepts which can be observed in rather wide areas such as animals or transportation
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systems such as trains and airplanes, the images captured in a single year were not sufficient to extract
complete geospatial features. While representative visual concepts can complement the visual features
for their subordinate fine-grained geospatial concepts, the geospatial features need to be complemented
from other information sources.

In addition, geospatial concepts such as names of towns whose actual visual appearances are
diverse can be falsely extracted since visually similar images happened to be captured in 2017. Further,
the noise images can hinder the extraction of proper visual features. The visual uniformity of such
cases was relatively low and the images captured in 2016 were often visually dissimilar to the images
captured in 2017. This can be seen in the relations between the visual uniformity and the recall rate as
shown in Figure 17. The recall rates degraded for visually less uniform geospatial concepts especially
when the visual uniformity was less than 0.6. Thus, the constructed graph can be considered as a base
graph, whose missing or incorrect information can further be corrected.

Although there is still a space for improvement, the constructed geospatial concept graph
was able to realize the geo-aware fine-grained image recognition as shown in Figures 18 and 19.
By comparing the top 10 tags provided by our method with the Flickr tags, these figures show
different fine-grained concepts were successfully recognized for the visually similar images captured at
different locations. Further, visually dissimilar images captured at similar locations were also properly
recognized. For example, the 3rd image in Figure 18 can also be recognized as westerntigerswallowtail or
chestnutbackedchickadee, which were recognized for other images in Figure 19, based only on its captured
location. However, based on the visual features, it was properly recognized as yerbabuenaisland or
baybridge. The recognized geospatial concepts which are different from the Flickr tags can also be
considered to be related to the test images, which also indicates the correctness of the information in
the constructed geospatial concept graph.

(a) (b)

Figure 14. The image recognition results when the recognition targets were the 3585 visual geospatial
concepts wp which was actually attached to at least 5 test images. (a) Cumulative distribution of recall
rates. (b) Cumulative distribution of median ranks.
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Figure 15. Examples of geospatial concepts whose test images were all correctly recognized.

Figure 16. Examples of geospatial concepts whose test images were only partly correctly recognized.
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Figure 17. Relations between visual uniformity Cp

|Ip | and recall of geo-aware image recognition.

Figure 18. Examples of image recognition results for visually similar test images captured at
different locations.
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Figure 19. Examples of image recognition results for visually similar test images captured at
different locations.

5. Conclusions

The objective of this work is to increase the diversity of fine-grained geospatial concepts to which
geo-aware fine-grained image recognition can be applied. Our assumption is that the images posted to
image sharing services such as Flickr can be used to automatically provide the prior information about
any type of fine-grained geospatial concepts that people would be interested in, as long as they are
captured at specific locations by several people. Additionally, the problems with the Flickr images that
most of the extracted fine-grained geospatial concepts would have only a limited number of example
images to learn their visual features are expected to be solved by finding their representative visual
concepts with more example images.
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In order to achieve this objective, we proposed a method for automatically constructing a
geospatial concept graph, which has the extracted prior knowledge in a structured way. The proposed
method firstly extracts the fine-grained geospatial concepts by examining the spatial locality and visual
uniformity of the posted images with each tag, and then extracts their representative visual concepts
by examining the tag co-occurrence and the visual similarity among the extracted concepts.

The experimental results show that, from the 33,496 unique tags which were used at least by 5
users in a year in the United States in Flickr, our proposed method extracted 4617 visual geospatial
concepts as the fine-grained geospatial concepts. Further, for the 3812 of these fine-grained concepts,
426 representative coarse-grained concepts were extracted, indicating the diversity of the domains
of the extracted fine-grained geospatial concepts such as transportation systems (e.g., airplane, train,
bus), living things (e.g., reptile, amphibian, butterfly, duck, eagle, tang fish, flower), architectures
(e.g., bridge, castle, church, concert hall, raceway, sign, statue), landscapes (e.g., beach, mountain,
river, trail), and sports teams (e.g., baseball).

The extracted prior information was used for the geo-aware image recognition for the test images
captured in the United Stated in another year. The results have verified that the effectiveness of the
proposed method in extracting the necessary information to be used for geo-aware fine-grained image
recognition from Flickr images by recognizing more than 70% of the extracted fine-grained geospatial
concepts with the recall rate of over 50%. Both the automatically extracted geospatial features and
visual features transferred from the representative visual concepts were useful for discriminating
closely-located visually dissimilar fine-grained geospatial concepts or distantly-located visually similar
fine-grained geospatial concepts.

However, the bias or noise in the Flickr images can result in the insufficient information for the
extracted concepts or the extraction of false information. Further, the diversity of the fine-grained
geospatial concepts depend on the interest of Flickr users. For example, users do not often upload
images of local food or product to Flickr. Thus, for practical applications which accurately recognizes
much more diverse types of fine-grained geospatial concepts, we need to leverage more information
sources not only Flickr images posted in a longer duration of time but also images posted to other
image sharing or social networking services.

Although rather a simple approach was used for the geo-aware fine-grained image recognition to
evaluate the quality of the constructed graph, the visual and geospatial feature-based recognizers/classifiers
can be trained more properly with the collected images. Especially, the constructed geospatial concept
graph can also be refined in the training process according to the recognition results so that the recognition
accuracy would be improved. Devising such approaches would also be our future work.
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