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Abstract: Landslides are one of the most detrimental geological disasters that intimidate human lives
along with severe damages to infrastructures and they mostly occur in the mountainous regions
across the globe. Landslide susceptibility mapping (LSM) serves as a key step in assessing potential
areas that are prone to landslides and could have an impact on decreasing the possible damages.
The application of the fuzzy best-worst multi-criteria decision-making (FBWM) method was applied
for LSM in Austria. Further, the role of employing a few numbers of pairwise comparisons on LSM
was investigated by comparing the FBWM and Fuzzy Analytical Hierarchical Process (FAHP). For this
study, a wide range of data was sourced from the Geological Survey of Austria, the Austrian Land
Information System, Humanitarian OpenStreetMap Team, and remotely sensed data were collected.
We used nine conditioning factors that were based on the previous studies and geomorphological
characteristics of Austria, such as elevation, slope, slope aspect, lithology, rainfall, land cover, distance
to drainage, distance to roads, and distance to faults. Based on the evaluation of experts, the slope
conditioning factor was chosen as the best criterion (highest impact on LSM) and the distance to
roads was considered as the worst criterion (lowest impact on LSM). LSM was generated for the
region based on the best and worst criterion. The findings show the robustness of FBWM in landslide
susceptibility mapping. Additionally, using fewer pairwise comparisons revealed that the FBWM can
obtain higher accuracy as compared to FAHP. The finding of this research can help authorities and
decision-makers to provide effective strategies and plans for landslide prevention and mitigation at
the national level.

Keywords: spatial decision support system; landslide; FAHP; FBWM; natural hazards; eastern
Alps; Austria

1. Introduction

In recent years, natural hazards have occurred quite frequently [1]. Landslides, which threaten
human life and property, are considered as one of the most detrimental geological disasters
that frequently occur in the mountainous area [2,3]. Landslides are defined as the downslope
mass-displacement of earth, debris, and rock, because of gravity impact [4,5]. It has proven that
landslides have an important role in the environmental, social, economic, and cultural sustainability
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of human beings [6]. Landslides occur in different sizes and shapes and are triggered by diverse
factors such as earthquakes, rainfall, volcanic eruptions, and slope erosion [7]. It is predicted that the
occurrence of landslides will increase in the future because of various factors, such as infrastructure
development, population growth, and mistreatment of natural resources [1,8]. Landslides can be
considered as a natural phenomenon that is often triggered by the impact of human undertakings [9].
The scientific community has significantly seen an upturn in the novel approaches being considered for
the assessment of landslides due to the alarming increase of landslides across the globe [10]. It is vital
to study the region’s susceptibility to landslides to understand the impact of various factors influencing
the occurrences of landslides. Landslide susceptibility mapping (LSM) is the quantification of the
likelihood of incidences of landslides depending on the impact of the various conditioning factors in
the given region [11]. The LSM is pivotal in managing the landslides and there are diverse approaches
used for deriving landslide susceptibility maps [7,12]. LSM mainly wishes to measure, map, and
eventually comprehend the spatial distribution of the occurrences of landslides in the future [13].
There has been very little research on landslide susceptibility done at the national scale, rather focusing
more on the regional scale [14].The LSM can help authorities and decision makers to plan effective
management strategies for landslide prevention and mitigation [15,16].

Geographic information systems (GIS) have been proven to be a robust tool for studying various
natural hazards, including landslides, such as preparation of inventory data, landslide susceptibility
mapping, and landslide detection [17–19]. Remote sensing (RS) have also contributed to augmented
assistance in mitigating and planning of natural hazards [20]. Multi-criteria decision making (MCDM)
is a broadly accepted approach that has been applied in a wide range of issues in diverse fields,
which also includes studies on LSM. The integration of GIS and the MCDM approach allows for
converting spatial as well as non-spatial data into meaningful information. Analytical hierarchical
process (AHP) assessment is a multi-criteria expert-based approach that is widely used in susceptibility
mapping [21,22]. However, the AHP approach has some gaps and limitations, such as ignoring the
interrelations among the different causes at different levels, low performance in the case of 5 × 5 or
larger Pairwise Comparisons, and the eigenvector optimality problem [23]. Some of the limitations and
inabilities of the application of the AHP in the spatial decision support systems are described by [24–28].
The Fuzzy set theory, mimicking human judgment, has been designed to reduce inconsistency and
uncertainty in decisions as well as overcoming the limitations of AHP [29]. In this regard, several
fuzzy-based methods have been introduced and implemented in different fields in recent years; the
successful application of the Fuzzy Analytical hierarchical process (FAHP) method in LSM can be
an example.

The best-worst multi-criteria decision-making method (BWM) is one of the latest MCDM models
created by Rezaei in 2015 [30]. It seeks to overcome the inconsistency derived from pairwise comparisons
by minimizing the pairwise comparisons as well as obtaining the weights of criteria and alternatives
with respect to different criteria [31]. Even though the BWM uses a 1–9 scale to perform the pairwise
comparisons, like AHP, it only executes the preference of the best and the worst criteria over all
the other criteria that are completely different from AHP. Because the secondary comparisons are
not executed in this method, it is much more comfortable, more precise, and has lesser redundancy.
However, expert knowledge and judgment, which usually hold some drawbacks, such as ambiguity
and uncertainty into the model, play an important role in the BWM method. Therefore, employing a
fuzzy set theory, which may be more in line with real-world situations and can achieve better results, is
considered an efficient solution. However, expert knowledge and judgment, which usually hold some
drawbacks, such as ambiguity and uncertainty into the model, play an important role in the BWM
method [27]. Therefore, employing a fuzzy set theory, which might be more in line with real-world
situations and can achieve better results, is considered to be an efficient solution [23].

In an alpine and mountainous country, like Austria, mass movements or landslides are a prevalent
natural hazard [32]. Several studies were carried out assessing land susceptibility map at national
scales worldwide, mostly focusing on fewer conditioning factors and statistical approaches [9,33–37].
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For example, while applying seven factors and hybrid methods, Suh and others (2011) generated a
national-scale assessment of landslide susceptibility of rock-cut slopes along expressways in Korea [35].
Trigila and others (2013) used different models (logistic regression, discriminant analysis, and Bayesian
tree random forest) to produce an LSM in Italy [34]. In 2011, an LSM for Romania was obtained using
seven main factors and landslide susceptibility index by Balteanu and others. In the case of Austria,
there are two studies that have been carried out for entire Austria [38,39]; however, there remain
some challenges in terms of susceptibility mapping and the approaches used [40]. This paper aims to
investigate the application of fuzzy best-worst multi-criteria decision-making (FBWM) for generating
an LSM at a national scale that has not yet been carried out to date, to our best knowledge. This study
is quite relevant to the present scenario, where there have been heavy landslides in Austria causing
several mortalities and major economic losses. This study also investigates the role of employing a few
numbers of pairwise comparisons on LSM by comparing FBWM and FAHP.

2. Material

2.1. Overview of the Study Area

Austria, covering an area of 83,879 km2 and lying between longitudes 9◦ and 18◦ E and latitudes
46◦ and 49◦ N, is a landlocked country of nearly nine million citizens in Central Europe (see Figure 1).
Landslides often occur in the country because of its geomorphological setting. River flooding,
soil erosion debris flows/mountain torrents, avalanches, and landslides are introduced as the most
life-threatening geological disasters in Austria by Hamann (2007) [41]. In Austria, the elevation varies
between 110 m and 3800 m, and only 32% of the country is below 500 m. Besides, the Northern
Limestone Alps, Central Eastern Alps, and the Southern Limestone Alps are mostly located in the
country. Those mountainous parts are prone to rock falls, colossal mass movement, and landslides,
causing a loss of lives and damage to infrastructure. The mean annual rainfall per year varies depending
on the regions in Austria; it ranges between 400 mm and 600 mm in eastern regions that are flat or hilly,
while this amount exceeds 2000 mm in alpine regions.

Figure 1. The study area.
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2.2. Data

2.2.1. Landslide Inventory Data

The mapping of actual landslides in the study area is vital in describing the relationship between
condition factors and landslide distribution [42]. The inventory for landslides in Austria was provided
by the Geological Survey of Austria. There have been substantial occurrences of landslides in Austria,
the inventory data from Geological Survey of Austria does not include all of the landslides and has
limitations regarding completeness and up-to-datedness. The data obtained from GBA for landslides is
the inventory data used for validating and comparing the performance of FBWM and FAHP. There are
about 6309 landslide point inventory data available from GBA for Austria as of March 2019, which
mainly comprises of rockfalls/rockslides (25%), complex movements (6%), and landslides (69%).
More information can be found at GBA (www.geologie.ac.at).

2.2.2. Landslide Conditioning Factors

Meanwhile, there are no globally accepted predefined criteria for choosing condition factors, the
conditioning factors should ideally be quantifiable, non-uniform, operative, and non-redundant [43].
For this study, we used nine conditioning factors that were based on the previous literature, expert
feedback, and geomorphological characteristics of Austria, such as slope, elevation, slope aspect,
distance to drainage, distance to roads, distance to faults, lithology, land cover, and rainfall (Table 1).
The freely available 10 m resolution digital elevation model (DEM) was downloaded from the Austrian
open data portal (www.data.gv.at). The slope and aspect were derived from the DEM data. The lithology
and distance to fault data were obtained from the Geological Survey of Austria. The land cover
data was downloaded from the Land Information System Austria. The drainage and road networks
were downloaded from the humanitarian open street map network. Rainfall data for Austria was
obtained from the ÖKS15—Klimaszenarien für Österreich. All of the data were converted to 10 m
resolution for consistency and for the further processing of the data. This was carried out using
Environmental Systems Research Institute (ESRI) ArcGIS platform to generate the conditioning factors
of LSM in Austria.

Table 1. A summary of the literature review of the importance of landslide conditioning factors.

No Factors Impacts References

1 Elevation
The elevation is a critical factor in landslide occurrence due to the

huge variability in climate and weather conditions at different
elevations that can lead variances in vegetation and soil.

Mahdadi et al. 2018 [44];
Conoscenti et al. 2016 [45]

2 Slope The slope angle has a great impact on landslide events; a larger
slope angle is more susceptible to failure. Ghorbanzadeh et al. 2019 [46,47]

3 Slope aspect The slope aspect, which often controls the amount of water in the
hillsides and slopes, influences the slope steadiness.

Shahabi et al., 2014;
Pourghasemi et al., 2018 [8,48]

4 Distance to
drainage/rivers

It has proven that closer areas to drainage have more soil erosion
and as a result higher risk of landslides. Besides, higher wet

conditions affect the stability and the underground flow.

Haris et al., 2014 [49];
Paraskevas and Ioanna [50]

5 Distance to roads Roads often cut the slope, affect slope stability, and change the
surface morphology. Yan et al. 2018 [51]

6 Distance to faults
Since earthquakes have critical roles in cracking of stones that, in

turn, cause instability, active faults can be considered as an effective
issue in landslides.

Chen et al., 2017 [18]

7 Lithology
Landslides occurrence is under the influence of lithology units

because they determine permeability, strength, and susceptibility
to failure.

Yalcin et al. 2007 [52];
Segoni et al. 2020 [53]

8 Land cover The spatial distribution of land cover types affects the propensity of
landslide occurrence. Meneses et al. 2019 [54]

9 Rainfall

Annual rainfall has introduced as the main triggering factor for
landslides occurring in Austria. Rainfall amount, varying by

topographical characteristics and weather conditions, can
trigger landslides.

Bui DT et al. 2013 [55]

www.geologie.ac.at
www.data.gv.at
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3. Methods

The methodology of present research contains three stages, as follows: (1) Deterring the criteria
affecting LSM and submitting them to experts for initial ranking and identifying the best criterion and
the worst criterion (see Section 2.2.2). (2) Implementing the FBWM and FAHP to generate LSM. (3)
Validation FBWM and FAHP using the Receiver operating characteristic curve (ROC) and area under
the curve (AUC). (4) Comparison of generated landslide susceptibility maps.

3.1. Fuzzy Best–Worst Method

The Best–Worst Method (BWM) was suggested by Rezaei [30], where he demonstrated that the
MCDM problems might be resolved by pairwise comparisons having a very low number [56]. In the
proposed method, the user selects the most important criterion and the least important criterion from
all of the criterions available and the best or the most important criterion is then compared with all
other criteria and assigned a number in the range between 1 to 9, where 1 represents that the criterion
is as important as the best or most important criterion, and 9 represents that the best criterion is nine
times more important than the worst criterion [57]. Likewise, the comparison is done for the least or
the worst important criterion, with all the other criteria. These numbers or values are then used for an
optimization process [58]. The objective of this optimization process is to gain the maximum degree
of consistency via minimizing the maximum difference between the best-criterion-to-any-criterion
comparison value and the ratio of the weights of the best criterion and that criterion. It also targets
minimizing the maximum difference between the any-criterion-to-worst-criterion comparison value
and the ratio of the weights of that particular criterion and the worst criterion. This optimization is
done by some more value constraints, such as the maximum possible value of the sum of the weights.

Generating LSM in Austria, we applied FBWM that contains six main steps in order to determine
the weights of the criteria, as follows:

Phase 1. Generate the decision criteria system. As the values of decision criteria have an impact on
the performances of different alternatives, generating the decision criteria system, which involves a set
of decision criteria, is considered a vital step for realistically performing the assessment on alternatives.

Phase 2. Defining the best criterion (the most important) and the worst criterion (the least
important). In this step, based on experts’ opinions, the best criterion and the worst criterion should
be identified.

Phase 3. Determining the fuzzy preference of the best criterion against all other criteria. In this
section, applying the linguistic terms of experts that are listed in Table 2, the fuzzy preference of the
best criterion against all the other criteria can be identified. Subsequently, based on the transformation
rules that are shown in Table 1, the acquired fuzzy preferences are transformed to TFNs. The achieved
fuzzy best criterion -to-others vector is:

ÃB = (̃aB1, ãB2, . . . , ãBn) (1)

where ÃB symbolizes the fuzzy best criterion -to-others vector and ãBj symbolizes the fuzzy preference
of the most important criterion cB over criterion j, j = 1, 2, ···, n.

Table 2. Transformation instructions of linguistic variables of experts.

Linguistic Terms Membership Function

Equally importance (EI) (1, 1, 1)
Weakly important (WI) (2/3, 1, 3/2)

Fairly Important (FI) (3/2, 2, 5/2)
Very important (VI) (5/2, 3, 7/2)

Absolutely important (AI) (7/2, 4, 9/2)
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Phase 4. Determining the fuzzy preference of the worst criterion against all other criteria. In this
step, imitating the previous step, the fuzzy preference of the worst criterion against all the other criteria
is identified. The achieved fuzzy worst criterion-to-others vector is:

ÃW = (̃a1W , ã2W , . . . , ãnW) (2)

where ÃW symbolizes the fuzzy worst criterion-to-others vector and ãiW symbolizes the fuzzy
preference of the least important criterion i over criterion cW , i = 1, 2, ···, n.

Phase 5. Defining the ideal fuzzy weights. The ideal fuzzy weights for each criterion(
W̃∗1, W̃∗2, . . . , W∗n

)
can be reached when for each fuzzy pair w̃B/w̃ j = ãBj and w̃ j/w̃W = ã jW . To

obtain these conditions, the maximum absolute gaps
∣∣∣∣∣ w̃ j

w̃W
− ã jW

∣∣∣∣∣ and
∣∣∣∣∣ w̃B

w̃ j
− ãBj

∣∣∣∣∣ for all j should be

minimized (see Equation (3)). Transforming the crisp value of fuzzy weight w̃ is another section that
should be done in this phase; in this study, the graded mean integration representation was used to
this end (see Equation (4)).

min ξ̃∗ s.t.



∣∣∣∣∣∣∣ (lwB ,mw
B ,uw

B )(
lwj ,mw

j ,uw
j

) − (
lBj, mBj, uBj

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)∣∣∣∣∣∣∣
(
lwj ,mw

j ,uw
j

)
(lwW ,mw

W ,uw
W)
−

(
l jW , m jW , u jW

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)

n∑
j=1

R
(
w̃ j

)
= 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(3)

R(̃ai)
=

li + 4mi + ui
6

(4)

Phase 6. Analyzing the consistency ratio (CR). CR is considered to be a vital indicator to assess
the consistency ratio of pairwise comparisons. A fuzzy comparison can be counted as fully consistent
when ãBj × ã jW = ãBW , where ãBW , ã jW , and ãBj are the fuzzy preference of the best criterion against
the worst criterion, the fuzzy preference of the best criterion against the criterion j, and the fuzzy
preference of the criterion j against the worst criterion, respectively. In general, the CR can be calculated
for FBWM, as follows:

ξ̃2
− (1 + 2uBW)ξ̃+

(
u2

BW − uBW
)
= 0 (5)

where ξ =
(
lξ, mξ, uξ

)
, ãBW = (lBW , mBW , uBW).

The maximum possible ξ can be reached, which is implemented as the consistency index (CI) for
fuzzy BWM, by solving Equation (5) for dissimilar uBW . When considering different linguistic terms of
expert’s opinions, the obtained CI for FBWM is listed in Table 3.

Table 3. Consistency index for fuzzy BWM.

Linguistic Terms EI WI FI VI AI

ãBW (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2)
CI 3 3.8 5.29 6.69 8.04

3.2. Fuzzy Analytical Hierarchical Process (FAHP)

Fuzzy analytical hierarchical process has been widely used in recent years in order to deal
with uncertainty and fuzziness in the multi criteria decision making. The approach of FAHP entails
utilization of scientific approach where the weights are derived through fuzzy pair wise comparisons
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matrices [59]. There are various approaches of FAHP used by researchers for diverse applications
transportation [60]. A novel approach of synthetic extent standards for handling FAHP through
pairwise comparison was proposed [61]. For this study, a method for synthesized multi-index analysis
using FAHP analysis to define index weight was used. An eight-step procedure describing FAHP is
provided in Figure 2, whilst a detailed description of the methodology is presented in Figure 3.

Figure 2. The triangular fuzzy set.

Figure 3. The proposed methodology for Fuzzy Analytical hierarchical process (FAHP).

By using the fuzzy sets theory, it is possible to consider more than one susceptible class while using
the concept of partial membership. Based on this perspective, the spatial variability was analyzed
using the fuzzy membership functions. The practice of fuzzy sets theory in landslide assessment has
been considered to improve the resulting susceptibility mapping. Consequently, all of the landslide
initiating factors were harmonized in range of 0 (low susceptible) to 1 (high susceptible).
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A fuzzy number T̃ on R to be a triangular fuzzy number if its membership function
µT̃(y) : R→ [0, 1] is equal to the following formula (6):

µT̃(y) =


y−1
m−1 , k ≤ y ≤ m
u−y
u−m , m ≤ y ≤ u
0, otherwise

(6)

From formula (1), k and u mean the lower and upper bounds of the fuzzy number Ã and m is the
modal value for Ã. The triangular fuzzy number can be denoted by T̃ = (k, m, u). The operational
laws of triangular fuzzy number T̃ 1 = (k1, m1, u1) and T̃ 2 = (k2, m2, u2) are displayed as following
Equations (7)–(11). Addition of the fuzzy number ⊕

T̃ 1 ⊕ T̃ 2 = (k1 + k2, m1 + m2, u1 + u2) (7)

A triangular fuzzy set was utilized for transforming the linguistic variables to the quantitative
values for this study, as shown n Figure 2.

Multiplication of the fuzzy number ⊗

T 1 ⊗ T̃ 2 = (k1k2, m1m2, u1u2) for k1, k2 > 0; m1, m2 > 0; u1u2 > 0 (8)

Subtraction of the fuzzy number �

T̃ 1 � T̃ 2 = (k1 − u2, m1−, m2, u1 − k2) (9)

Division of a fuzzy number ∅

T̃ 1 ∅T̃ 2 =

(
k1

u2
,

m1

, m2
,

u1

l2

)
for k1, k2 > 0; m1, m2 > 0; u1u2 > 0 (10)

Reciprocal of the fuzzy number

T̃ −1 =

(
1
u1

,
1

m1
,

1
k1

)
for k1, k2 > 0; m1, m2 > 0; u1u2 > 0 (11)

For this study, we used the triangular fuzzy numbers scale which is a computational technique
was used. Table 4 shows the triangular fuzzy numbers scale [62].

Table 4. This shows the relationship between the quantitative values and the linguistic variables.

Fuzzy Number Linguistic Variables Triangular Fuzzy Numbers

9 Perfect (8, 9, 10)
8 Absolute (7, 8, 9)
7 Very good (6, 7, 8)
6 Fairly good (5, 6, 7)
5 Good (4, 5, 6)
4 Preferable (3, 4, 5)
3 Not bad (2, 3, 4)
2 Weak advantage (1, 2, 3)
1 Equal (1, 1, 1)

The engaged pairwise comparison matrices are crafted based on the hierarchical structure.
Pairwise comparisons are crafted by assigning linguistic terms to equate which criteria are the more
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important than the other with respect to the main one, as T the bigger matrix (6× 6) in the study, as
presented below in Equation (12):

T̃ =



1 ã12 ã13

ã21 1 ã23

ã31 ã32 1

ã14 ã15 ã16

ã24 ã25 ã26

ã34 ã35 ã36

ã41 ã42 ã43

ã51 ã52 ã53

ã61 ã62 ã63

1 ã45 ã46

ã54 1 ã56

ã64 ã65 1


=



1 ã12 ã13

1/ã12 1 ã23

1/ã13 1/ã23 1

ã14 ã15 ã16

ã24 ã25 ã26

ã34 ã35 ã36

1/ã14 1/ã24 1/ã34

1/ã15 1/ã25 1/ã35

1/ã16 1/ã26 1/ã36

1 ã45 ã46

1/ã45 1 ã56

1/ã46 1/ã56 1


(12)

where

ãi j =

{
9̃−1, 8̃−1, 7̃−1, 6̃−1, 5̃−1, 4̃−1, 3̃−1, 2̃−1, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1, i , j
1 i = j

where a i j is fuzzy comparison value of dimension i to criterion j.
The fuzzy geometric mean was used for aggregating the fuzzy weights as shown in

Equations (13)–(14).
r̃i = (̃ai1 ⊗ ãi2 ⊗ ãi3 ⊗ ãi4 ⊗ ãi5 ⊗ ãi6)

1/n (13)

w̃i = r̃i [̃r1 ⊕ r̃2 ⊕ r̃3 ⊕ r̃4 ⊕ r̃5 ⊕ r̃6]
−1 (14)

r̃i is a geometric mean of fuzzy comparison value of criterion i to each criterion and w̃i is the fuzzy
weight of the ith criterion that can be designated by a triangular fuzzy number, w̃i = (kwi, mwi, uwi).
The kwi, mwi and uwi stand for the lower, middle, and upper values of the fuzzy weight of the
ith dimension.

3.3. Receiver Operating Characteristics (ROC)

Validation is a key aspect of any analysis that enables insights into the accuracy of the models
used for the study [5,63]. The relationship between the inventory data and the resulting LSM is very
important for predicting the effectiveness of the model. The accuracy of the model indicates whether
the model has correctly predicted the areas susceptible to landslides.

The receiver operating characteristics (ROC) curve was used for validating the resulting landslide
susceptibility maps while using the validation data. The ROC approach allows for a comparison
between the true positive rate and the false positive rate in the resulting landslide susceptibility
maps [64,65]. ROC curves were calculated for all landslide susceptibility maps. Pixels that are correctly
identified (high susceptibility) and thus match the landslide reference data are the true positive rates,
while the incorrectly labeled pixels are the FPRs. ROC curves are generated by plotting the true positive
rates versus the false positive rates. The area under the curve (AUC) is the degree that specifies the
accuracy of the resulting landslide susceptibility maps. The AUC indicates the probability that more
pixels were correctly labeled than incorrectly labeled. Greater AUC values indicate a higher accuracy
and lower AUC values indicate lower accuracy of the susceptibility map. If the AUC values are close
to unity, then this indicates a significant susceptibility map. A value of 0.5 shows an insignificant map,
because it means that the map was generated by coincidence [66].

4. Results and Discussion

4.1. FBWM

The FBWM was used for generating the LSM for Austria. By taking experts evaluations into
account, the slope criterion was chosen as the best criterion (highest impact on LSM), and the distance
to roads was considered to be the worst criterion (lowest impact on LSM). Subsequently, the preference
of the best and the worst criteria against all the other criteria were executed, and the global and the
local values of all criteria and consistency index were obtained as indicated in Table 5. The global
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values of the criteria were acquired by multiplying the weight of the clusters by the weight of the
sub-criteria. The global weight of criteria can be used for the assessment of the alternatives in the
multi-criteria model [67].

Table 5. Fuzzy best-worst multi-criteria decision-making (FBWM) model results.

Criteria/Clusters Local Weight Global Weight Local Rank Global Rank CR

Slope (%) 0.36 1 0.041

0–10 0.041 0.01476 5 20
10–20 0.079 0.02844 4 10
20–30 0.187 0.06732 3 4
30–40 0.25 0.09 2 2
40 < 0.443 0.15948 1 1

Distance to fault (m) 0.15 2 0.075

0-1500 0.53 0.0795 1 3
1500–3000 0.26 0.039 2 7
3000–4500 0.14 0.021 3 15

450 < 0.07 0.0105 4 24

Precipitation (mm) 0.13 3 0.005

950–1725 0.061 0.00793 4 30
1725–2500 0.173 0.02249 3 14
2500–3275 0.32 0.0416 2 6
3275–4050 0.446 0.05798 1 5

Land cover 0.085 4 0.053

Forest 0.061 0.005185 7 39
Shrub land 0.072 0.00612 6 36
Grass land 0.143 0.012155 3 22
Agriculture 0.098 0.00833 4 28

Barren 0.359 0.030515 1 8
Water body 0.175 0.014875 2 19
Snow cover 0.092 0.00782 5 31

Lithology 0.082 5 0.004

Glacier 0.035 0.00287 6 41
Fluvial calcareous 0.072 0.005904 5 37

Fluvial non-calcareous 0.082 0.006724 4 34
Slate/Phyllite 0.127 0.010414 3 25

Quartzite 0.33 0.02706 2 11
Gneiss 0.354 0.029028 1 9

Aspect 0.076 6 0.051

Flat 0.11 0.00836 5 27
North 0.301 0.022876 1 13
East 0.255 0.01938 2 17
West 0.193 0.014668 3 21
South 0.141 0.010716 4 23

Elevation (m) 0.045 7 0.023

< 1000 0.16 0.0072 3 33
1000–3000 0.54 0.0243 1 12
3000–4500 0.17 0.00765 2 32

4500 < 0.13 0.00585 4 38
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Table 5. Cont.

Criteria/Clusters Local Weight Global Weight Local Rank Global Rank CR

Distance to drainage (m) 0.038 8 0.034

< 200 0.43 0.01634 1 18
200–400 0.21 0.00798 2 29
400–600 0.165 0.00627 3 35
600–800 0.123 0.004674 4 40
800 < m 0.072 0.002736 5 42

Distance to roads (m) 0.034 9 0.025

0–150 0.61 0.02074 1 16
150–300 0.27 0.00918 2 26
300–450 0.075 0.00255 3 43

450 < 0.045 0.00153 4 44

The resulting susceptibility maps for landslide susceptibility were classified into five classes using
natural breaks classification method. This is a widely used common method for the classification of the
susceptibility maps from five classes of “Very High”,” High”, “Moderate”, “Low”, and “Very Low” [8].
This classification distributes the values into groups that contain an equal number of values. This
is better than the other classifications where some classes might have a limited or excessive number
of values.

The obtained LSM for Austria using FBWM illustrates that nearly 64.7% of the all landslide
inventory points (4083 out of 6309) are in very high risk, 19.2 % (1212 out of 6309) in high risk, 9.9%
(624 out of 6309) in moderate risk, 4.4% (277 out of 6309) in low risk, and 1.8% (113 out of 6309) in very
low-risk areas, as illustrated in Figure 4.

Figure 4. Land susceptibility map for Austria using the FBWM model.
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4.2. FAHP

The FAHP approach demonstrates, as shown in Table 6, that the slope criterion with 0.30 had the
highest impact on landslide occurrences in Austria. The last class (>40%) of slope criterion showed
the highest weight of about 0.126 on the LSM for Austria; in contrast, the last class of distance to
roads (>600m) criterion with 0.000128 had the lowest impact in this regard. In some more detail, the
fourth class of precipitation criterion (3275–4050 mm) weighting 0.49, the first class of distance to fault
criterion (0–2000 m) weighting 0.59, the fifth class of land cover class (Barren) weighting 0.348, the
second class of aspect criterion (North) weighting 0.295, Gneiss units of lithology criterion weighting
0.348, the second class of elevation criterion (1000–3000 m) weighting 0.48, the first class of distance to
drainage criterion (<200 m) weighting 0.37, and finally, the first class of distance to roads criterion
(0–200 m) weighting 0.57 obtained the highest rate in their groups.

The obtained LSM for Austria using FAHP illustrated that nearly 63.1% of the all landslide
inventory points (3981 out of 6309) are in very high risk, 14.9 % (940 out of 6309) in high risk, 11.9%
(750 out of 6309) in moderate risk, 6.6% (420 out of 6309) in low risk, and 3.5% (218 out of 6309) in very
low-risk areas, as illustrated in Figure 5.

Figure 5. Land susceptibility map for Austria using FAHP model.

4.3. Assessment and Comparison of the Models

In the past years, several MCDM approaches have been proposed by several researchers. MCDM
consists of two phases; acquisition of criteria weights and criteria values and another is an aggregation
of information and ranking [58]. However, due to the complexity and the uncertainty of the objectives
and the fuzziness of human thinking, the employment of fuzzy information to reflect the decision
might be a better approach [68]. AHP and BWM are both MCDM approaches that are based on human
qualitative expertise or judgment that can sometimes be vague and lead to ambiguity and intangibility
that leads to information being uncertain or vague. Therefore, fuzzy logic employed to AHP and BWM
can negate this ambiguity and have information that is in line with actual situations and can obtain
convincing ranking results. For this study, we wanted to compare two fuzzy approaches of FAHP and
FBWM from the MCDM approach for landslide susceptibility mapping at a national scale for Austria.
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Table 6. FAHP model results.

Criteria/Clusters Local Weight Global Weight Local Rank Rank CR

Slope (%) 0.3 1 0.052

0–10 0.017 0.0051 5
10–20 0.091 0.0273 4
20–30 0.182 0.0546 3
30–40 0.29 0.087 2
>40 0.42 0.126 1

Precipitation (mm) 0.25 2 0.011

950–1725 0.049 0.01225 4
1725–2500 0.181 0.04525 3
2500–3275 0.28 0.07 2
3275–4050 0.49 0.1225 1

Distance to fault (m) 0.108 3 0.021

0–2000 0.59 0.06372 1
2000–4000 0.29 0.03132 2
4000–6000 0.065 0.00702 3

>6000 0.055 0.00594 4

Land cover 0.102 4 0.055

Forest 0.066 0.006732 7
Shrub land 0.078 0.007956 6
Grass land 0.145 0.01479 3
Agriculture 0.10 0.0102 4

Barren 0.348 0.035496 1
Water body 0.169 0.017238 2
Snow cover 0.094 0.009588 5

Aspect 0.079 5 0.052

Flat 0.103 0.008137 5
North 0.295 0.023305 1
East 0.261 0.020619 2
West 0.189 0.014931 3
South 0.152 0.012008 4

Lithology 0.06 6 0.006

Glacier 0.010 0.0006 6
Fluvial calcareous 0.089 0.00534 5

Fluvial non-calcareous 0.092 0.00552 4
Slate/Phyllite 0.132 0.00792 3

Quartzite 0.329 0.01974 2
Gneiss 0.348 0.02088 1

Elevation (m) 0.052 7 0.025

< 1000 0.18 0.00936 3
1000–3000 0.48 0.02496 1
3000–4500 0.21 0.01092 2

>4500 0.13 0.00676 4

Distance to drainage (m) 0.041 8 0.038

< 200 0.37 0.01517 1
200–400 0.26 0.01066 2
400–600 0.148 0.006068 3
600–800 0.12 0.00492 4
>800 m 0.102 0.004182 5

Distance to roads (m) 0.008 9 0.082

0–200 0.57 0.00456 1
200–400 0.31 0.00248 2
400–600 0.104 0.000832 3

>600 0.016 0.000128 4
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In the two resulting susceptibility maps that were derived from both FAHP and FBWM, it shows
that the slope conditioning factor was the most important factor for landslide susceptibility in Austria
and distance to roads is the least important conditioning factor in both FBWM and FAHP. The ROC
accuracy assessment was applied to find the accuracy between the models that were applied for LSM in
Austria. The ROC curve method and the AUC were applied using 6309 landslide points to evaluate the
performance of FAHP and FBWM approaches. The prediction rate and success rate are two main steps
in model evaluation by AUC. FBWM showed a better result than FAHP in both SR and PR (Figure 6);
the AUC of the SR for the FAHP and FBWM models was 0.90, and 0.93, respectively, and the AUC of
the PR for the FAHP and FBWM models was 0.84 and 0.89, respectively. The AUC amount of 0.89
for FBWM shows 89% prediction accuracy of the model. Although the models obtained reasonable
prediction accuracies evaluating by the AUC, FBWM with 0.89 had higher accuracy than FAHP. In
general, the FBWM model showed a better result in identifying the prone areas of the landslides
in Austria. This success can be summarized in two main topics, as follows: (1) FBWM, which is a
vector-based technique, needs fewer pairwise comparisons when compared to the matrix-based FAHP
method. (2) The final weights derived from FBWM showed high CR, whereas, in most cases, the
MCDM methods cannot obtain high CR.

Figure 6. Success Rate (SR) and Prediction Rate (PR) curves for the FAHP and FBWM models. (a). SR-
area under the curve (SR-AUC) for the FAHP; (b). SR-AUC for FBWM; (c). PR-AUC for the FAHP; and,
(d). PR-AUC for FBWM.
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When comparing the findings of the present work with literature, it revealed that both FAHP and
FBWM models showed better results than the first generated LSM in Austria by Lima and others [39];
adopting statistical techniques with three different predicator sets, they achieved acceptable prediction
performances that ranged from 0.76 to 0.82, which were lower than the obtained result in this work.
Focusing on an object-based weighting approach and improving the results using Dempster Shafer
theory, [38] study has generated a national scale LSM for entire Austria; the conducted model showed
a better performance than FAHP and an equal trend with the FBWM model.

4.4. Comparison of Landslide Susceptibility Maps

In this study, susceptibility values that were obtained using the two methods have been
quantitatively compared on each pixel to determine the systematic spatial pattern of the differences
between obtained LSMs following the methodology proposed by Xiao and others (2020) (Xiao et al.,
2020). In some more detail, the proposed method is an attempt to illustrate that the classical process of
comparison among landslide susceptibility models can be extended and enhanced with substantial
geomorphological aspects by focusing the comparison on the values of generated LSMs and exploring
the geomorphological reasons of the differences encountered. Implementing the comparison model,
first, since the FBWM model had a higher AUC, it was selected as the benchmark. Subsequently,
the susceptibility map of FBWM, in a GIS system, was applied to pair with the FAHP approach and
subtract their values as well as define their differences (Figure 7). The values of the comparison maps
were broken at -1 and 1, and divided into three ranks, namely “overestimation”. “approximation”
and “underestimation”. Table 7 illustrates the percentage of each level in the total area. Moreover,
overestimation and underestimation statistics were carried out for each criterion to analyze the main
factors influencing the difference of generated LSMs (Table 8). For each class, “A” was calculated
as the percentage of the total area of each class, “B” as the ratio of the number of underestimated
(overestimated) pixels of each class to the number of total underestimated (overestimated) pixels, and
“B–A” as the difference ratio between the two maps. The class with the greatest grade of imbalance
was identified using the “B-A” value defined for each class (Table 8). The visual inspection is required
to clearly illustrate the relationship between the underestimated/overestimated area and the most
imbalanced classification. The overestimations of slope angle (<10) (Figure 8A) and distance to fault
(3000-4500) (Figure 8B). Underestimations of lithology (Fluvial non-calcareous) (Figure 9A) and aspect
(North) (Figure 9B).

Table 7. Classification of comparison maps.

Comparison Value Classification Percentage

FBWM-FAHP −0.17–0.2
Underestimation −0.17–(−0.1) 8.97
Approximation −0.1–0.1 90.84
Overestimation 0.1–0.2 0.19

Table 8. Statistics on underestimation pixels and overestimation pixels of FBWM-FAHP.

Figure Class A (%) Underestimation
FBWM-FAHP (%) B-A (%) Overestimation

FBWM-FAHP (%) B-A (%)

Slope (%)

0–10 27.3 23.1 −4.2 98.25 70.95
10–20 30.8 33.1 2.3 0 −30.8
20–30 20.3 18.4 −1.9 0.25 −20.05
30–40 13.2 8.3 −4.9 1.08 −12.12
40 < 8.4 17.1 8.7 0.42 −7.98

Precipitation (mm)

950–1725 68.3 34.03 −34.27 38.9 −29.4
1725–2500 28.2 43.57 15.37 35.2 7
2500–3275 2.1 12.6 10.5 9.2 7.1
3275–4050 1.4 9.8 8.4 16.7 15.3
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Table 8. Cont.

Figure Class A (%) Underestimation
FBWM-FAHP (%) B-A (%) Overestimation

FBWM-FAHP (%) B-A (%)

Elevation (m)

<1000 69.5 52.3 −17.2 49.2 −20.3
1000–3000 27.8 41.6 13.8 40.7 12.9
3000–4500 2.3 3.2 0.9 5.9 3.6

4500 < 0.4 2.9 2.5 4.2 3.8

Land cover

Forest 19.2 21.3 2.1 20.1 0.9
Shrub land 15.2 20.2 5 18.5 3.3
Grass land 27.1 29.8 2.7 30.3 3.2
Agriculture 22.3 2.3 −20 12.7 −9.6

Barren 10.6 21.3 10.7 10.2 −0.4
Water body 5.6 2.6 −3 4.5 −1.1
Snow cover 4.5 2.5 −2 3.7 −0.8

Lithology

Glacier 31.4 0.2 −31.2 57.5 26.1
Fluvial calcareous 38.1 0.9 −37.2 33.8 −4.3

Fluvial non-calcareous 9.1 96.6 87.5 4.2 −4.9
Slate/Phyllite 7.2 0.4 −6.8 1.5 −5.7

Quartzite 8.7 1.1 −7.6 1.6 −7.1
Gneiss 5.5 0.8 −4.7 1.4 −4.1

Distance to drainage (m)

<200 27.2 38.3 11.1 25.3 −1.9
200–400 12.3 21.9 9.6 17.5 5.2
400–600 7.2 4.3 −2.9 4.8 −2.4
600–800 5.2 10.6 5.4 12.5 7.3

800 < 48.1 24.9 −23.2 39.9 −8.2

Aspect

Flat 1.2 0.2 -1 4.5 3.3
North 18.1 98.2 80.1 30.1 0.9
East 27.3 0.8 26.5 31.2 3.9
West 24.2 0.5 −23.7 21.3 −2.9
South 29.2 0.3 −28.9 12.9 −5.2

Distance to fault (m)

0–1500 47.2 45.6 −1.6 1.1 −46.1
1500–3000 14.5 24.2 9.7 0.2 −14.3
3000–4500 10.2 5.3 −4.9 98.1 87.9

4500 < 28.1 24.9 −3.2 0.6 −27.5

Distance to roads (m)

0–150 31.3 33.1 1.8 35.2 3.9
150-300 6.3 3.2 −3.1 4.1 −2.2
300–450 4.2 1.4 −2.8 2.3 −1.9

450< 58.2 62.3 4.1 58.4 0.2

Figure 7. Comparison of FBWM-FAHP.
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Figure 8. Spatial location of overestimations, in relationship with the imbalanced classes.

Figure 9. Spatial location of underestimations, in relationship with the imbalanced classes.

5. Conclusions

The mapping of landslide susceptible areas is for identifying areas that are prone or susceptible to
future occurrences of landslides. LSM is a crucial step in the analysis of risk assessments of landslides.
So far, there are very few detailed studies on landslide susceptibility mapping at a national scale in
Austria. FAHP was developed for solving hierarchical problems in handling the uncertainty and
vagueness that are involved in the pairwise comparison process, whereas the FBWM is an extension of
classical set theory that can solve the practical problems in an uncertain environment. By comparing
the approaches along with the susceptibility maps, we can concur the by the accuracy of the models
regarding the suitable approach for national level landslide susceptibility mapping. For this study, we
produced LSM for entire Austria based on FBWM, which is a novel approach for landslide susceptibility
and also compared the results with the FAHP approach. The results clearly show that the accuracy
of the FBWM approach is higher than the FAHP approach in both success rate and prediction rate
curves. The AUC of the SR for the FAHP was 90% when compared to higher SR for the FBWM at 93%.
Whereas, the AUC of PR for FAHP was 84% as compared to 89% for fuzzy BWM. The FBWM is a
vector-based technique that needs lesser pairwise comparisons when compared to the matrix based
FAHP approach. Another advantage of FBWM is that the final weights derived show higher CR when
compared to MCDM approaches that do not get higher CRs.

For this study, we used the landslide inventory that was obtained from the Geological Survey of
Austria that might not be yet complete and for future studies, we would like to carry out assessments
with a more comprehensive landslide inventory dataset, ideally as polygons rather than points.
A complementary study could be carried out based on the polygon-based landslide inventory dataset
to check and compare the accuracy of the methodology and the effect of the input inventory data.
This study can be further investigated with other methodologies, like machine learning and deep
learning, to observe the impact of various approaches on the inventory data as well as checking
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the robustness of methods for this region. The resulting susceptibility map at the national scale for
Austria can help planners and policymakers to better manage and plan risk mitigation measures.
The resulting LSM maps can be quite useful to allocate adequate resources in regions that are more
impacted by landslides.
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