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Abstract: The primary objective of vectorial road network matching is to identify homonymous roads
from two different data sources. Previous methods usually focus on matching road networks with the
same coordinate system but rarely with different or unknown coordinate systems, which may lead to
nontrivial and nonsystematic deviations (e.g., rotation angle) between homonymous objects. To fill
this gap, this study proposes a novel hierarchical road network matching method based on Delaunay
triangulation (DTRM). First, the entire urban road network is divided into three levels (L1, L2, L3) by
using the principle of stroke. Then, the triangular meshes are constructed from L2, and the minimum
matching unit (MMU) in the triangular mesh is used instead of the traditional “node-arc” unit to
measure the similarity for the matching of L2. Lastly, a hierarchical matching solution integrating the
probabilistic relaxation method and MMU similarity is yielded to identify the matching relationships of
the three-level road network. Experiments conducted in Wuhan, China, and Auckland, New Zealand,
show that the MMU similarity metrics can effectively calculate the similarity value with different
rotation angles, and DTRM has higher precision than the benchmark probability-relaxation-matching
method (PRM) and can correctly identify the most matching-relationships with an average accuracy
of 89.63%. This study provides a matching framework for road networks with different or even
unknown coordinate systems and contributes to the integration and updating of urban road networks.

Keywords: road network matching; nonsystematic bias; Delaunay triangulation; hierarchical; road
integration and updating

1. Introduction

Geospatial data matching that connects different data sets and makes them interoperable has a
wide range of applications in the spatial analysis due to the need to utilize information from different
data sources [1]. On the one hand, large amounts of various geospatial data can be easily obtained
from federal, state, and local governments or private companies. On the other hand, identifying
corresponding objects is an essential step in change detection and continuous incremental updating.
Thus, new features can easily be detected and heterogeneous data sets can be integrated into an
enriched product by improving positional or semantic accuracies [2].

Vectorial road networks are digital representations of road maps. The main task of matching
road networks is building the corresponding relationships of road-object pairs that represent the same
segment of a real-world road in heterogeneous road maps [3,4]. It is an important prerequisite for road
network integration, change detection, and data updating. The demand for matching road networks
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has surged because of the timely and cost-effective updating of road network data and its broad
downstream applications (e.g., vehicle navigation products) [5].

Numerous algorithms have been proposed to solve the matching problem for road networks [5–9].
The core of the matching road networks is evaluating the similarity of two corresponding nodes or
road features. Similarity quantifies the similar degree of two features and provides the basis for the
identification of the matching relationship of homonymous objects [3]. The similarity metric varies in
terms of the matching unit. In earlier studies, the matching unit is represented by the limited local
context around nodes or road segments (i.e., first-order neighbors). The distance-based similarities
(e.g., Hausdorff distance and Fréchet distance) of these matching units are mainly considered in these
approaches [6–10]. Meanwhile, several researchers have attempted to integrate multiple factors (e.g.,
length, orientation, sinuosity, and the number of topological connections) to optimize metrics [4,11–14].
These studies have greatly improved the accuracy of road network matching.

However, most existing matching algorithms for road networks concentrate on matching networks
with different levels of detail (LOD) or identifying homonymous roads with the same coordinate
system [11,15,16]. Little attention is paid to matching algorithms for different or unknown coordinate
systems to the authors’ knowledge [5,17–19]. Due to various technological processes of map production,
large deviations (e.g., offset and rotation) may occur for homonymous road segments by different
producers using different coordinate systems; this phenomenon is also known as nonsystematic bias.
The following are the works for matching road networks with different coordinate systems.

Chen et al. [19] proposed a point pattern matching algorithm under geographical constraints
(Geo-PPM) to locate matched points between two road network datasets in unknown systems at
the point level by considering the road connectivity, road direction, and global distribution of road
intersections and finding the transformation between two layouts of candidate point sets. Luan et al. [20]
extracted the urban road skeleton as a global structure and used the junction cluster as a local structure.
Then the maximum common subgraph algorithm was utilized to establish the most likely matching
relationship among nodes, and an affine transformation was established to eliminate the influences
of different coordinate systems. Siriba et al. [17] presented an algorithm that is a modification of the
generalized Hausdorff distance registration measure, which entails an iterative ranking process that
consists of a set of qualitative statistical quantifications to evaluate the correspondence between two
datasets (pixel and object). However, the result depends largely on the initial parameters of rotation
and scaling. Yang et al. [5] proposed a pattern-based matching method, which extracts the local
network around each node as the basic matching unit and measures the similarity between matching
units according to the minimum road edit distance. It depends on the threshold setting to generate the
basic matching unit in the form of node-arc structure. These studies paid considerable attention to the
structural information of the road network and began to shift from local elements to larger-scale units
(e.g., junction/segment clusters) to eliminate the influences of different coordinate systems. The term
“node-arc” structure is used in this study to refer to a structure that is constructed by extending a
certain number of arcs (nodes) with one node as the center.

When the coordinate system of the source dataset substantially differs from that of the target
dataset, the node-arc structure will also be considerably different. When matching such datasets,
existing methods are subject to the following limitations: (1) An appropriate buffer distance threshold
for selecting the expected candidate in the target dataset is difficult to set because candidates may have
a large nonsystematic offset with their homonymous road segments. The influence of the rotation
offset on the determination of the buffer radius threshold cannot be fully considered. (2) The accuracy
of the similarity metrics among homonymous road segments may decline greatly when the rotation
offset occurs. In previous studies, the similarities among “node-arc” structures based on distance were
easily affected by the nonsystematic offset. The structures were discrete in spatial distribution and
involved two types of heterogeneous elements (i.e., node and arc). The use of these heterogeneous
elements is insufficient to express the spatial connection relationship among roads, which may affect
the structural similarity.
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To address the aforementioned limitations, this study seeks to provide a hierarchical road-matching
method based on Delaunay triangular mesh to solve the nonsystematic bias of road network matching
in different coordinate systems and overcome the limitation of the node-arc structure. The structural
significance entailed in the road network is in line with the triangular mesh structural expression.
Regardless of scale, the triangular mesh can always effectively depict the structure of the road network
at different levels and have the characteristics of rotation invariance.

The major original contributions of this study include the following:

(1) This paper highlights the importance of the hierarchical semantics of urban road networks
and develops a hierarchical matching framework for road networks. The framework fuses the
probability relaxation method and the spatial adjacency relationship among hierarchical structures
to achieve matching in the hierarchical context by using a layer-by-layer control strategy;

(2) This paper proposes a novel algorithm based on a “node-area” structure instead of a “node-arc”
structure to suppress the rotation offset in the matching of the nonskeletal network level. The road
network of the nonskeletal level is converted into triangular meshes constrained by natural nodes
and segments. The minimum matching unit (MMU) in the triangular meshes is used as the basic
calculation unit. Depending on the characteristic of rotation invariance of a triangle, the similarity
among MMUs drives the nonskeletal road network matching to overcome the rotation angle
problem. The matching relationship among the vertices of triangle meshes is identified using the
global probability relaxation method. This study provides a new way to minimize the effect of
rotation offset in road network matching due to nontrivial angular deflection.

The remainder of this paper is organized as follows. Section 2 elaborates the proposed method
for synthesizing the hierarchical matching strategy and similarity matching based on the MMU.
Section 3 describes the experiments conducted using three different real datasets, analyzes the results,
and discusses factors that may affect the performance of the proposed method. Section 4 concludes
this study.

2. Method

2.1. Methodological Framework

As shown in Figure 1, the proposed framework synthesizes the hierarchical matching strategy
and MMU similarity matching; it is a four-step process. First, the framework divides the entire urban
road network (Ω) into three levels: the skeleton roads (L1: Υ), the frame roads of subregions (L2: Φ),
and the remaining part of the subregion roads excluding the frame roads (L3: χ = Ω − Υ − Φ). Then,
L2 roads are converted into triangular meshes constrained by road nodes and segments by using
constrained Delaunay triangulation (CDT). Subsequently, the similarity of MMU in the meshes is
calculated to identify the matching relationship of L2. Lastly, a hierarchical strategy is applied to
identify the matching relationship of the three levels of the road network, especially by using the
matched relationship in L2 to derive the relationship of the element pairs in L3. Characterizing the
geometric and topological properties of roads is crucial for matching processes [21]. In this study,
the MMU in the triangular meshes is introduced and interpreted as the node-area structure to tackle
the problem of nonsystematic bias generated by different coordinate systems. Meanwhile, to consider
different scales, the MMU similarity is embedded into the hierarchical matching framework, which
then drives the matching applied at the nonskeletal level.

The following subsections provide detailed descriptions in accordance with the four steps listed
in this framework.
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Figure 1. Hierarchical matching framework for road networks by using constrained Delaunay
triangulation (CDT).

2.2. Hierarchical Generation of Road Network

The hierarchical generation process for road network consists of three steps. First, by simulating
the human visual cognitive mechanism, the skeleton of the urban road network is extracted using
the principle of stroke [22]. Here, stroke is defined as the natural functional units of a network [23].
It is constructed by aggregating road segments in accordance with different properties, such as street
names or the angle among neighboring road segments, which is known as the principle of stroke.
The longest k strokes are selected as L1. The value of k is determined by a proportion of 10% and how
the proportion is determined is discussed in Section 3.7.
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The roads with the node connectivity of 1 are selected as nonskeletal roads (L3). Let NS be
the number of strokes, LS be the length of a stroke, and T be the threshold of stroke length. ∆NS,
the difference between the number of strokes in the source and target datasets whose length is greater
than T, is defined as

∆NS = (NSOT −NSDT), T ∈ ST (1)

where NSOT denotes the number of strokes with a length greater than T in the source dataset, NSDT
denotes the number of strokes with a length greater than T in the target dataset, and ST is a collection
of all road lengths in the source and target datasets. The minimum threshold of the stroke length is
represented as C and formulated as

C = min(T), ∆NS = 0‖∆NS′ = 0 (2)

The strokes whose lengths are less than C are also classified as L3, whereas the remaining roads
are classified as L2. The difference between the number of strokes with a length greater than C in the
source and target datasets should be 0, or the derivative of the difference should be 0. Therefore, the
numbers of strokes obtained from L2 in the source and target datasets are similar. This condition is a
prerequisite for matching.

As shown in Figure 2, according to the principle of hierarchical generation, an example of a road
network is first divided into subregions which form L1. L1 represents the skeleton of the road network.
Then, for the upper-right subregion in L1, the road network of L2 and L3 generated from the source
road network and the target road network are illustrated, respectively. The difference between the
source road network and the target road network is subtle for L1, moderate for L2, and obvious for L3.

ISPRS Int. J. Geo-Inf. 2020, 7, x FOR PEER REVIEW  6 of 31 

 

 

Figure 2. An example of hierarchical generation of a road network. 

2.3. Delaunay Triangulation Construction Constrained by Road Nodes and Segments 

In this subsection, L2 that is composed of nodes and road segments is converted into a 

triangular mesh. As shown in Figure 3a, the upper-left corner shows the node-arc data to be 

triangulated, including the six road nodes of A, B, C, D, E, and F, and a road segment AB. In the 

absence of segment AB, the triangulation is constructed as shown in Figure 3b. In this study, the 

triangulation needs to be performed under the constraints of nodes and segments, as shown in 

Figure 3c. 

   

(a) (b) (c) 

Figure 2. An example of hierarchical generation of a road network.



ISPRS Int. J. Geo-Inf. 2020, 9, 509 6 of 31

2.3. Delaunay Triangulation Construction Constrained by Road Nodes and Segments

In this subsection, L2 that is composed of nodes and road segments is converted into a triangular
mesh. As shown in Figure 3a, the upper-left corner shows the node-arc data to be triangulated,
including the six road nodes of A, B, C, D, E, and F, and a road segment AB. In the absence of segment
AB, the triangulation is constructed as shown in Figure 3b. In this study, the triangulation needs to be
performed under the constraints of nodes and segments, as shown in Figure 3c.
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Figure 3. Delaunay triangulation constrained by nodes and segments. (a) Input nodes and segments,
(b) triangulation with nodes without segment AB, and (c) CDT with nodes and segment AB.

When many concave roads exist in the boundary of the street block, as depicted in Figure 4a,
the generated triangular mesh may have some narrow and elongated triangles, as shown in Figure 4b.
In Figure 5a, some nodes inside the boundary have a triangular mesh on only one side because the
boundary serves as an external constraint. This biased mesh exerts a great influence on the subsequent
matching process. To mitigate the boundary effect, the triangular meshes are optimized as follows:

(1) The convex hull (M) of all nodes in the frame roads of the source and target datasets is calculated.
(2) The convex hull M is extended using a given distance threshold to obtain a new convex hull N

that is parallel to M.
(3) The nodes of all line segments on the convex hull N and the nodes and segments of the frame

roads in the road network dataset are triangulated together.

The optimized triangulations by applying the above steps are illustrated in Figure 5b. Hereafter,
the mesh structure for road network matching is constructed.
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Figure 5. Boundary triangulation optimization. (a) Triangular mesh on only one side of the border and
(b) optimized triangulation results. The solid line represents the original triangulation result, and the
dotted line is the triangulation result after adding the convex hull points.

2.4. Similarity Metrics Based on MMU

In this subsection, an MMU is constructed as the node-area structure. The similarity among
MMUs depends on the similarity between basic triangle pairs. The triangular structure is continuous
in space, and its similarity is unaffected by the rotation angle. It can efficiently characterize the spatial
structure of the road network.

The MMU is defined as a set of triangles with the same vertices and is formulated as

MMU = {CP, TS} (3)

where CP represents the center node of the MMU. Let M be a mesh model, M = {V, E, T}, where V is a
set of vertices, E is a set of edges, and T is a set of triangles. A triangle t, t = {vi, ei; i = 0, 1, 2}, comprises
three vertices and three edges. An edge ei, ei = {vp, vq, Ti}, consists of endpoints vp and vq and the set of
triangles Ti that is bounded by it. A vertex vi, vi = {x, y, Ei, Ti}, is denoted with its coordinates and the
edges Ei and triangles Ti that contain it. TS represents the collection of triangles Ti originated from CP,
which is formulated as

TS = {TI, CP ∈ TI and i = 1, 2, . . . , n} (4)

where each triangle Ti has its central node CP, and these n triangles are stored in a clockwise arrangement.
For each triangle T, we first store the central node CP and then its two vertices in a clockwise order;
it is represented as

T = {CP, P1, P2} (5)

Figure 6 shows an MMU, in which the set of triangles {a, b, c, d, e} centered at point P are
surrounded by points A, B, C, D, and E.

TSMP represents the set of MMUs generated using all nodes in the MMU with P as the center
node and is defined as Formula (6). SP represents the set of all points of MMUP.

TSMP = {MMUi, Pi ∈ SP and i = 1, 2, . . . , n} (6)

The similarity between MMUP and MMUO is calculated as

SimOP =
1
n

∑n

i=1
max

n∑
j=1

Simi j, Ti ∈ TSO, T j ∈ TSP (7)
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For triangle Ti (∆ABC) in TSO and triangle Tj (∆DEF) in TSP, vertices A and D, vertices B and E,
and vertices C and F correspond to each other. The similarity between the two angles ∠A (set to a) and
∠D (set to x) is

Ia = cos3
(
π
2
(1− d(x))

)
(8)

where d(x) = e−
1

2b2 (x−b)2

, b = aP/3, and P is generally set to 50%. For triangles Ti and Tj, their similarity
Simi j is calculated as follows:

Simi j =
3
√

Ia ∗ Ib ∗ Ic (9)

Let P be the node in the source dataset and O be the candidate that matches P in the target dataset,
then the similarity between MMUP and MMUO is calculated via the following five steps:

(1) MMUP with P as the center node and TSMO with O as the center node are prepared.
(2) MMUP centering on P is moved to O to obtain a new MMU, namely, MMUP′ .
(3) The distance between all nodes in MMUP′ and TSMO is calculated to form a distance matrix.

We use the distance matrix to select the nodes in TSMO, in which the sum of the distance between
all the nodes in MMUP′ and them is the smallest, which is called CPSO. The selected node cannot
be repeated.

(4) The MMU is reconstructed with O as the center node and CPSO as the surrounding nodes, which
is called MMUO′ .

(5) The similarity between all triangles in MMUP′ and MMUO′ is calculated to obtain a triangle
similarity matrix. In this triangle similarity matrix, a diagonal line of the matrix with the
largest sum of similarity values is chosen. The similarity between MMUP and MMUO, namely
SimOP, is represented by the sum of the similarity values divided by the number of triangles.
The correspondence between the nodes of the two MMUs is also obtained.
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Figure 7 shows an example of TSMP and TSMO, in which the red lines represent MMUP and
MMUO, respectively. After moving point P to point O, MMUP also moves with P. The distance matrix
of all nodes in MMUP and all nodes in TSMO is calculated, and a set of nodes with the smallest sum of
distances from all nodes in MMUP is obtained.
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As shown in Figure 7, five pairs of nodes (A, S), (B, T), (C, M), (D, U), and (E, R) are obtained.
With O as the center node, the surrounding nodes (S, T, M, N, R) are used to rebuild the MMU, as shown
in Figure 8. Then, the similarity between all triangles in MMUP and MMUO′ is calculated to acquire a
triangle similarity matrix, as shown in Table 1. The sum of similarity values on all diagonals in the
similarity matrix is calculated to generate the largest one. We characterize the average similarity of the
MMU by using the sum of diagonal similarities of the matrix. For example, the sum of similarity of the
diagonal line (a-v, b-z, c-y, d-x, e-w) is calculated as 4.12, then the similarity between the two MMUs of
O and P is 4.12/5 = 0.824.
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Table 1. Similarity matrix between all triangles in MMUP and MMUO′ .

Similarity z y x w v

a 0.61 0.78 0.83 0.72 0.92

b 0.76 0.84 0.80 0.47 0.63

c 0.78 0.86 0.79 0.83 0.76

d 0.71 0.45 0.81 0.43 0.79

e 0.91 0.62 0.75 0.78 0.22

Based on the similarity among MMUs, the candidates matched to each MMU can be determined.
Figure 9 shows that after the previous calculations, the correspondence between each node, that is,
the correspondence between (A, S), (B, T), (C, M), (D, N), and (E, R), and the similarity between their
MMUs can be obtained. Therefore, the similarity between the neighboring MMUs of O and P is utilized
to optimize the similarity of O and P and obtain a similarity calculation result that is globally optimal.
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Probability relaxation iteration is performed on the MMU similarity. In each iteration, the matching
probability of MMUO and MMUP needs to be adjusted using the matching probability (i.e., similarity)
of the triangle pairs of its subordinates. The similarity between the pairs of triangles <i,j> in the MMUs
in the t-th iteration Simij can be updated using the weighted sum of the probability of this iteration and
the average matching probability of the triangle pairs under it. Thereby, the similarity between O and
P is updated as

Simt+1
OP =

1
2
∗

Simt
OP +

1
n

(i, j)∈S∑
i, j

Simt
i j

 (10)

where n is the number of triangle pairs in the two MMUs, in which the value is an integer; the larger
the value is, the faster the convergence will be. Variables i and j correspond to the sequence numbers
in a clockwise order of the triangles in MMUO and MMUP, respectively. The above probability matrix
iterates until convergence. The pair with the highest matching probability is the final matching pair.
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The stop conditions of the iteration are twofold: (1) The number of iterations reaches the specified
threshold (usually 20); (2) The difference of the current similarity value and the last iteration similarity
value is less than the specified threshold (usually 0.05). During the iterative process, the similarity of
correct matches will decrease slowly, whereas the similarity of error matches will decrease rapidly.
A clear gap exists in the similarity between correctly and wrongly matched ones, then the final matching
relationship among MMUs is determined using the optimized similarity.

Figure 10 shows a certain rotation offset between two MMUs with O and P as the central nodes.
To handle the matching tasks with the rotation angle, the following processing should be performed:

(1) The similarity of all triangle pairs in the two MMUs is calculated to obtain a similarity matrix M.
(2) The two largest similarity values on each diagonal of the similarity matrix, Mi j,
(3) Mk

i j, are selected, and the sum of the two values, which is denoted as Simi j, is calculated.

(4) The largest similarity values Simi j, which indicate the similarity values on the i-th diagonal, are
selected as the best indicator for characterizing the matching relationships between the triangles
in the two MMUs.

(5) The maximum similarity value Mi j on the i-th diagonal is chosen, and the deflection angle δ of the
two triangles is calculated in accordance with the correspondence between the triangle pair <i,j>.
Then, the MMU centered at P is rotated using the angle δ to generate a new MMU, as shown in
Figure 11. Lastly, the similarities between the two MMUs are calculated.
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2.5. Identification of the Matching Relationship by Using the Hierarchical Matching Strategy

The spatial relationship of neighboring roads is relatively stable during stratification. The road
structure that constitutes the urban skeleton can be used as a reliable hierarchical matching context for
the local matching units. The matching relationships are identified from high level to low level.

First, the matching relationship of L1 is identified. The common part of the skeletons is constructed
to determine certain matches of L1.

Second, the matching relationship of L2 is identified. Let Va {ai, i∈{1,2,3, . . . ,m}} and Vb {bi, i∈{1,2,3,
. . . ,n}} be the node sets of L2 in the source and target datasets. Va has m nodes. Vb has n nodes.
ai represents the i-th node in Va, and bi represents the i-th node in Vb (bi, i∈{1,2,3, . . . ,n}). On the basis
of the MMU similarity metrics in Sections 2.2–2.4, the steps for matching L2 are as follows:

(1) The convex hull M of all nodes in Va and Vb is calculated and extended using a certain distance
(here, the distance value is set to 90 m) to obtain a new convex hull N parallel to M.

(2) The nodes on the edge of the convex hull N, all the nodes in Va and Vb, and all the road segments
are used as constraints to generate two triangulations, expressed as Sa and Sb.

(3) A circular buffer with point ai as the center and a certain radius is set, and all the nodes in the
buffer area of Vb are regarded as candidate matching nodes of ai and recorded as Mi.

(4) The method mentioned in Section 2.4 is used to calculate the MMU similarity of all nodes with
nodes ai and Mi sequentially, and the probability relaxation method is used to obtain a globally
optimal similarity result.

(5) Steps 3 and 4 are performed for all nodes in Va to determine all matches in L2.

Third, the matching relationship of L3 is identified. L3 is usually an extension of L2; hence, the
connections between L2 and L3 are used as the context to derive the matching of L3 on the basis of the
matching of L2. Let Li be the i-th road of the source dataset in L2 and Lj be the j-th road of the target
dataset in L2. The steps for matching L3 are as follows:
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(1) Each Li has two endpoints, Vi1 and Vi2. The connected road in L3 is denoted as CLi with two
endpoints CVi1, CVi2, and CVi1 is on Li. Similarly, each Lj has two endpoints, Vj1 and Vj2.

(2) In accordance with the matching results of L2, if the matching pairs of (Vi1, Vj1) and (Vi2, Vj2) are
obtained, then the matching relationship between (Li, Lj) can be determined. The road connected
to Lj is denoted as CLj (j = 1,2, 3,...,k). CVj1, CVj2 are the two endpoints of Lj, and CVj1 is on Lj.

(3) If CLi and CLj meet the following two conditions: 1) CLi and CLj are on the same side of Li and Lj,
respectively; 2) The relative position of CVi1 in Li is closest to the relative position of CVj1 in Lj,
and the difference should not be greater than 20%, then CVi1 matches CVj1.

(4) If CVi2 and CVj2 are not connected to other roads, then CVi2 matches CVj2, and the matched
nodes are placed into the same road layer.

(5) Steps 1–4 are repeated until no new matches exist.

As illustrated in Figure 12, road AB is from L2 of the source dataset, and road QW is from L2 of
the target dataset. GF, CD, and EH are from L3 of the source dataset, and TR is from L3 of the target
dataset. Given that (A, Q) and (B, W) are known matching nodes, AB matches QW. Three roads GF,
EH, and CD are connected to road AB, where nodes F, H, and D are on road AB. Road TR is connected
to road QW, including R. The relative positions of points F, H, and D on road AB are 25%, 30%, and
76%, respectively; and R is located at 28% of road QW. Roads GF and CD are located on the left side of
road AB, road EH is located on the right side of road AB, and road TR is located on the left side of road
QW. GF and TR satisfy the two conditions in step 3. Therefore, F matches R. In accordance with step 4,
G matches T for G and T are not connected to other roads.
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3. Implementation and Experiments

3.1. Experimental Area and Data

The proposed method is implemented using the C++ programming language. Experiments are
conducted on a computer equipped with an NVIDIA GeForce GTX 960 GPU and an Intel(R) Pentium(R)
D 3.00GHz with 3.5 GB RAM. The software-development environment is composed of Visual Studio
2010 and MapGIS 10 (Zondy, Wuhan, Hubei, China).

To evaluate the effectiveness and performance of our method, three pairs of road networks are
utilized. Areas 1 and 2 are from Wuhan, China and Area 3 belongs to Auckland, New Zealand.
Each road network pair comes from different data producers. The source map represents the road
network to be matched, and the target map represents the road network that is used to match the
source map.

First, the selection of experimental data takes into account the influence of scale. The source and
target maps of Area 1 have the same scales, whereas the maps for Area 2 and Area 3 have different
scales. The three areas are illustrated in Figures 13–15 in a way of spatial overlay. Figure 13 shows
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the selected partial road network of Wuhan with the same scale, in which the difference between the
source and target data is small. Figures 14 and 15 show the urban road data of Wuhan or Auckland
with different scales. The source and target datasets are consistent in the global structure; in local areas,
the target dataset has smaller roads. That is, a large portion of 1:0 relationships exist, and the differences
in these data may cause a remarkable difference in the basic matching unit-MMU and certain challenges
to the matching algorithm. The information on road nodes, road segments, and strokes in the three
experimental areas are shown in Table 2.
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Table 2. Three pairs of road networks used for experiments.

No. Number of Road Segments Number of Nodes Number of Strokes

Area1_Src 107 68 31
Area1_Des 109 69 32
Area2_Src 715 431 148
Area2_Des 2083 1486 463
Area3_Src 608 386 134
Area3_Des 2805 1574 764

Second, street patterns are also considered when choosing experimental data. The patterns of
urban streets are the result of many interacting phenomena over time, such as geography, natural
setting, and socio-economic transformation. In this process, several typical street patterns are gradually
formed: grid-like (planned) street networks, irregular (self-evolved) street networks, and hybrid street
networks (planned and self-evolved structures coexist) [24,25]. Hierarchical partitioning should be
conducted in the three experimental areas by using our proposed method. For Area 1, hierarchical
partitioning is skipped and the matching calculation is directly performed because of its small size.
Area 1 is numbered as R1. Area 2 is divided into four subregions, numbered R2, R3, R4, and R5.
Area 3 is divided into three subregions, numbered R6, R7, and R8. The eight subregions are shown
in Figure 16. R1, R2, R3, and R4 belong to irregular (self-evolved) street networks; R5 and R7 are
mainly grid-like (planned) street networks; R6 and R8 are mostly hybrid street networks. The eight
subregions cover three typical patterns of urban streets; therefore, the effectiveness of our proposed
model is examined with these eight subregions.
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3.2. Model Evaluation Indices

Three evaluation indices are introduced to evaluate the matching results of the models
quantitatively. They are precision (P), recall (R), and F1-score (F1).

Precision represents the matching accuracy in object matching. It is defined as the percentage of
correctly matched pairs concerning the total number of matched pairs and represented as

P =
TP

TP + FP
(11)

where TP (true positive) stands for the number of road pairs that are correctly matched, and FP (false
positive) stands for the number of road pairs that are incorrectly matched. The closer the P-value is to
1, the more accurate the matching features identified by the algorithm.
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Recall is the percentage of correctly matched pairs concerning the number of real matching pairs
and is represented as

R =
TP

TP + FN
(12)

where FN (false negative) stands for the number of actually corresponding pairs in two data sets that
are not detected.

F1-score combines precision and recall to provide a single metric to show the real success of our
model in comparison with PRM and is expressed as follows:

F1 = 2 ∗
P ∗R
P + R

(13)

The effectiveness of the proposed algorithm is evaluated by comparing it with a benchmark.
In recent years, the probability–relaxation–matching (PRM) algorithm has been employed in road
network matching studies [2,7,12–14]. Thus, as one of the representative algorithms, the matching
method (henceforth PRM) proposed by [7] is adopted as the benchmark and implemented under
the same experimental environment in this study. In the following experiments, for convenience,
our model is called DTRM. The ending condition for the iteration of PRM is set on the basis of the
experience value (0.0005) [26].

3.3. Evaluation of Algorithm Performance

We evaluate the algorithm performance with the three experimental areas (Areas 1–3). Specifically,
our proposed algorithm is used to match the eight subregions and compare the result with the
manually identified matching relationship to evaluate the algorithm precision. Tables 3–5 present the
statistical results.

Table 3. Comparison results of Delaunay triangulation (DTRM) and (probability–relaxation–matching)
PRM in Area 1.

No
DTRM PRM

P R F1 P R F1

R1 98.68% 98.68% 98.68% 97.33% 97.33% 97.33%

Table 4. Comparison results of DTRM and PRM in Area 2.

No
DTRM PRM

P R F1 P R F1

R2 85.71% 90.91% 88.23% 82.86% 87.88% 85.30%

R3 91.67% 94.83% 93.22% 90.00% 93.13% 91.54%

R4 92.55% 94.56% 93.54% 91.49% 93.48% 92.47%

R5 92.25% 95.20% 93.70% 93.02% 96.00% 94.49%

Table 5. Comparison results of DTRM and PRM in Area 3.

No
DTRM PRM

P R F1 P R F1

R6 86.09% 88.39% 87.22% 84.35% 86.61% 85.47%

R7 84.4% 87.62% 85.98% 86.24% 89.52% 87.85%

R8 85.71% 88.07% 86.87% 80.36% 85.74% 82.96%
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Figure 17 delineates the F1-score of DTRM and the benchmark PRM with different road networks.
The number on the horizontal axis corresponds to the eight subregions (from R1 to R8). The F1-score
of DTRM is greater than 85%, and more than half of the F1-score is greater than 93%, peaking at 98.68%
for R1.

ISPRS Int. J. Geo-Inf. 2020, 7, x FOR PEER REVIEW  16 of 31 

 

Table 5. Comparison results of DTRM and PRM in Area 3. 

No 
DTRM PRM 

P R F1 P R F1 

R6 86.09% 88.39% 87.22% 84.35% 86.61% 85.47% 

R7 84.4% 87.62% 85.98% 86.24% 89.52% 87.85% 

R8 85.71% 88.07% 86.87% 80.36% 85.74% 82.96% 

Figure 17 delineates the F1-score of DTRM and the benchmark PRM with different road 

networks. The number on the horizontal axis corresponds to the eight subregions (from R1 to R8). 

The F1-score of DTRM is greater than 85%, and more than half of the F1-score is greater than 93%, 

peaking at 98.68% for R1. 

 

Figure 17. F1-score of DTRM and PRM in the eight areas (areas 1–8). 

As listed in Table 3, the F1-score of DTRM for Area 1 (R1) reaches 98.68%, which shows that 

DTRM performs well in small-scale road data at the same scale and can accurately obtain the 

matching results. In Table 4, the F1-score of DTRM for Area 2 (partial roads in Wuhan) is above 93%, 

(except for R2 which is slightly lower than 88.23%). Compared with PRM, the F1-score of the three 

subregions of R2, R3, and R4 is higher than that of PRM, and the F1-score of R5 is slightly lower 

than that of PRM. In Table 5, the F1-score of DTRM is approximately 86% in the three subregions of 

Area 3 (Auckland). It indicates that the performance of DTRM in the three subregions is almost the 

same, without much fluctuation. By contrast, the performance of PRM in the three subregions is 

inconsistent. The F1-score in R8 is only 82.96%, which is much lower than that of DTRM. 

Overall, the F1-score of DTRM varies from region to region, mainly following the same trend 

as the benchmark. The majority of subregions (75%) have higher F1-scores when using DTRM 

compared with the situation when using PRM. Hence, the performance of DTRM has been 

improved to a certain extent. 

Figure 18 shows the difference between the F1-scores of DTRM and PRM. In the eight 

experimental subregions, the average F1-score difference between DTRM and PRM is 1.25 (the 

maximum value is 3.91% and the minimum value is 1.07%). The F1-score difference of six of these 

subregions is positive, with an average value of 2.11. The F1-score difference between the two 

subregions (R5 and R7) is negative. For the subregions with negative values, the absolute values are 

less than 0.02, which is in an acceptable error range. Figure A2d and Figure A3b show that the error 

matches (red lines) are mainly distributed in the non-grid area of narrow areas. The reason for the 

precision decrease of the two cases could be explained as follows: For such narrow areas, the 

matching relationship established in L1 is limited. In the complex hybrid road matching, there are 

Figure 17. F1-score of DTRM and PRM in the eight areas (areas 1–8).

As listed in Table 3, the F1-score of DTRM for Area 1 (R1) reaches 98.68%, which shows that
DTRM performs well in small-scale road data at the same scale and can accurately obtain the matching
results. In Table 4, the F1-score of DTRM for Area 2 (partial roads in Wuhan) is above 93%, (except for
R2 which is slightly lower than 88.23%). Compared with PRM, the F1-score of the three subregions of
R2, R3, and R4 is higher than that of PRM, and the F1-score of R5 is slightly lower than that of PRM.
In Table 5, the F1-score of DTRM is approximately 86% in the three subregions of Area 3 (Auckland).
It indicates that the performance of DTRM in the three subregions is almost the same, without much
fluctuation. By contrast, the performance of PRM in the three subregions is inconsistent. The F1-score
in R8 is only 82.96%, which is much lower than that of DTRM.

Overall, the F1-score of DTRM varies from region to region, mainly following the same trend as the
benchmark. The majority of subregions (75%) have higher F1-scores when using DTRM compared with
the situation when using PRM. Hence, the performance of DTRM has been improved to a certain extent.

Figure 18 shows the difference between the F1-scores of DTRM and PRM. In the eight experimental
subregions, the average F1-score difference between DTRM and PRM is 1.25 (the maximum value is
3.91% and the minimum value is 1.07%). The F1-score difference of six of these subregions is positive,
with an average value of 2.11. The F1-score difference between the two subregions (R5 and R7) is
negative. For the subregions with negative values, the absolute values are less than 0.02, which is in
an acceptable error range. Figures A2d and A3b show that the error matches (red lines) are mainly
distributed in the non-grid area of narrow areas. The reason for the precision decrease of the two
cases could be explained as follows: For such narrow areas, the matching relationship established in
L1 is limited. In the complex hybrid road matching, there are gaps between the pattern parameters;
while the hybrid street pattern needs to be handled at the boundary between different street patterns.
Such operation may affect the accuracy of matching and is one of the limitations of the proposed
method in this study. During this type of operation, the trade-off between the upper level matched
relationship (i.e., L2) and the similarity of this layer (i.e., L3) needs to be further studied.
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Figure 18. F1-score difference between DTRM and PRM in eight experimental subregions.

On the whole, when faced with different patterns of road networks, DTRM can achieve better
performance than PRM and correctly identify the most matching relationships (89.63% on average).
Figures A1–A3 show the matching results of the eight subregions for Areas 1–3, respectively, where the
orange line indicates the correctly matched nodes, and the red line indicates the incorrectly matched
nodes (Appendix A).

3.4. Rotation Test on MMU

To verify the correctness and effectiveness of our proposed algorithm, the robustness of the
MMU represented by a node-area structure in the face of rotation offset should be examined first.
The experimental subregion R4 is selected to conduct the rotation test in this subsection. The similarity
measures of the MMU (node-area unit) in our proposed method and the node-line unit in PRM are
compared under different rotation offsets.

First, DR is defined as the degree of difference between the source element and the target matched
element and that between the source element and a nonmatched candidate matching set, as shown in
Formula (14). The greater DR is, the better the similarity indicator based on the MMU unit will be,
and the easier it is to identify the correct matching relationship.

DR =
1
n

n∑
i=1

(simr − simoi) (14)

where simr represents the similarity value between the source node and its correctly matched node,
simoi represents the similarity value between the source node and the i-th candidate node, and n
represents the number of candidates with the largest n matching similarity values to the source node
(except for the correctly matched node).

Ten pairs of nodes in the region R3 (the location distribution is shown in Figure 19) are selected,
and the difference in DR between DRTM and PRM without rotation is calculated.

Figure 20 shows the comparison curve of DR between DRTM and PRM by using the 10 pairs of
nodes. The average level of DTRM is significantly higher than that of PRM. The average DR value of
DTRM is 0.64, whereas that of PRM is 0.48. This result shows that the similarity values of the MMU are
higher than those of PRM. This condition is conducive to the identification of correct pairs of elements
with the same name.
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Subsequently, the DR values of the 10 pairs of elements are compared between DTRM and PRM
under different rotation angles. The statistical results are shown in Figures 21 and 22.

Figure 21 demonstrates that when the rotation angle is 0◦, which means that no rotation occurs,
the DR of PRM is approximately 0.5. That is, the similarity value between the node to be matched
and the correctly matched one greatly differs from the similarity value between the feature to be
matched and the nonmatched candidate, which is beneficial to obtaining correct matches. When the
rotation angle is 15◦, the DR is approximately 0.1. The similarity between the node to be matched and
the correctly matched node is not as obvious as the similarity between the node to be matched and
the nonmatched nodes. As the rotation angle increases (45◦–180◦), the DR value reaches only 0.01,
and some negative values exist. This result shows that after a certain rotation, the similarity value
between the node to be matched and the correct matching node is considerably low compared with the
similarity value between the node to be matched and the nonmatched node, and PRM has been unable
to obtain a correct match.

As shown in Figure 22, the DR values of the 10 pairs of elements are above 0.5 regardless of
the rotation angle, and the DR values of some element pairs are above 0.7 and 0.8. This shows that
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when using our proposed DTRM algorithm, compared with the similarity value of the node to be
matched, the similarity value of the node matched with the correctly matched node always maintains
a significant difference under different rotation angles. It shows that DTRM can identify the correct
matching pairs efficiently from the perspective of the similarity measurement based on the MMU
unit and has strong robustness. Furthermore, it indicates that the MMU and its similarity metrics can
effectively calculate the similarity value under different rotation angles and overcome the limitation of
the node-arc structure.
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To further understand the changes of the similarity values in terms of the basic matching unit
DTRM and PRM with different rotation angles, the first pair of nodes and six nodes with the highest
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similarity values in the candidate matching set are selected. The results of PRM and DTRM are shown
in Figures 23 and 24. The horizontal axis represents the index of nodes in the candidate set, the vertical
axis represents the similarity value of the node to be matched with the node in the candidate set,
and Node 3 is the node that correctly matches.
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As can be seen from Figure 23, when the road network does not have a rotational offset (the
rotation angle is 0◦), PRM correctly matches the node with the highest similarity value after the
probability relaxation iteration. Nonetheless, the similarity value on Node 3 differs from those on other
nodes greatly. When the road network rotates slightly (the rotation angle is 15◦), although the similarity
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value on Node 3 is still the highest, the difference between Node 3 and other nodes is inconsiderable.
When the rotation angle continues to increase, PRM can no longer correctly obtain the correct matching
nodes, and the difference between Node 3 and other nodes tends to be gentle. This shows that in the
PRM method when facing road network data with rotational offset, the similarity measure among
basic matching units becomes invalid.

In Figure 24, the six curves are almost the same with different rotation angles. The similarity
value calculated on the basis of the MMU on Node 3 is the highest, and a significant difference exists
between Node 3 and other candidate nodes. This result demonstrates that the MMU of the node-area
structure constructed using our proposed algorithm and the similarity metric of the MMU is effective.

3.5. Rotation Test on the Road Network

In this subsection, we verify the validity and correctness of the DTRM proposed in this paper
under the rotation condition based on the road network by comparing it with PRM. We perform angle
rotations (e.g., 15◦, 30◦, 45◦, 90◦, and 180◦) by using the experimental subregion of R4. The obtained
results are shown in Figure 25. When the rotation angle is inconsiderably large (below 15◦), PRM can
still obtain a good matching result. As the rotation angle increases, the result of PRM drops sharply.
At 90◦, the precision and recall are less than 5%. This result is consistent with the result of the previous
similarity measure function. DTRM can show good performance with different rotation degrees.
The precision and recall decrease only slightly when the rotation angle increases, but they are still
approximately 90%. Thus, DTRM performs well when matching data with different rotation angles.
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The matching result of subregion R3 with a rotation angle of 30◦ is selected to conduct further
analysis. Figure 26 shows the mismatches of DTRM. The number of mismatches is increased only
by one compared with the number of mismatches with no rotation (Figure A1 in the Appendix A).
This shows that DTRM can robustly handle the road network matching with rotation offset.

Figure 27 shows the error matches of PRM for subregion R4 with a rotation angle of 30◦. It can be
found that the nodes that are incorrectly matched using PRM are concentrated near the boundary of
the road network. The similarity measurement function of PRM depends on the spatial distance and
topological connections of the element pairs. When the spatial distance of the elements with the same
name deviates greatly due to the rotation offset, it is difficult for PRM to obtain the correct result.
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3.6. Sensitivity Analysis of the Buffer Threshold

The Euclidean distance between features with the same name also changes with the rotation.
To retrieve potential matching candidates more accurately, the buffer size needs to be increased
appropriately. In this section, the sensitivity of the buffer threshold is examined by gradually increasing
the buffer size as the rotation angle increases. Then the precision and recall of the two methods are
calculated to reveal the impact of the buffer size on the experimental results.

As can be seen from Figure 28, for different rotation angles (e.g., 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦),
when the buffer radius is relatively small (i.e., 200 m), the precision and recall of the algorithm are
relatively low. This may be when the buffer is excessively small; the elements with the same name in
the target dataset are not in the buffer, resulting in a low matching rate. However, when the buffer
size reaches a certain value and continues to increase, regardless of using DTRM or PRM, no evident
fluctuation in accuracy and recall rates exists. This shows that the two algorithms are insensitive to the
buffer size and have good robustness.
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Further, the effect of buffer size on the matching performance of PRM and DTRM under different
rotation angles is compared. The precision of PRM decreases significantly as the rotation angle increases.
For the same rotation angle, the precision improves slightly as the buffer distance increases, but it
still does not reach the precision of PRM with no rotation angle. As the rotation angle increases,
the precision of DTRM slowly decreases, while still maintaining a high level (i.e., approximately 80%).
As shown in Figure 28c, at a certain angle of 45◦, when the buffer radius increases slightly, the precision
of DTRM gradually rises to a relatively stable level. The rotation angle generally exerts different effects
on the two matching methods. DTRM shows good resistance to the rotation angle. When the rotation
angle increases, the influence of the rotation angle on the precision can be effectively suppressed by
appropriately increasing the buffer radius. Due to the rotation angle, using a fixed buffer radius may
miss some candidate matching pairs and the buffer radius for selecting candidate matching pairs
should be increased. A properly increased buffer radius can effectively alleviate this problem. On the
contrary, an excessively enlarged buffer radius may introduce incorrect matching pairs that are similar
in structure and reduce the matching precision.

3.7. Impact of the Hierarchical Classification Threshold

As generating a hierarchical road network is a starting point of the proposed method, it is
necessary to confirm the rationality of the stratification. Thus, this subsection explains how the
stratification threshold is selected. In previous studies, head/tail breaks were used to stratify different
levels of the road network for there are more small things than large things in living structures [22].
The stratification threshold was set to different values in accordance with the downstream application
requirements, such as cartographic generalization, traffic flow predicting, and so on. In this study,
the proportion of strokes selected in L1 is crucial in the hierarchical generation process. In accordance
with an appropriate proportion, k is determined and the longest k strokes are selected as L1. Then the
hierarchy of road networks could be stratified according to the steps in Section 2.2.

To determine a proper proportion for L1, Dr and HitRate are used to evaluate the different
distribution of the target matched strokes and candidate strokes under different proportions. Dr is



ISPRS Int. J. Geo-Inf. 2020, 9, 509 24 of 31

defined as the degree of difference in similarity between a source stroke and its matched stroke and that
between the source stroke and a non-matched candidate stroke, which is represented by Formula (15).

Dr =
Max−V

Max
(15)

where Max is the similarity between the matched stroke and its source stroke, which is denoted as
reference value; V is the similarity between the non-matched candidate stroke and its source stroke.
The larger the Dr, the more obvious the difference between the matched stroke and the non-matched
one is, and the higher the matching accuracy is. In other words, a proper proportion should keep the
value of Dr as large as possible.

HitRate is defined as the ratio of the candidate strokes that fall in the range of a specified Dr
value to all candidate strokes under the specified conditions, which is represented in Formula (16).
There are three conditions in Formula (16). Conb denotes the condition of a buffer size; Conp denotes
the condition of a proportion of the longest strokes for L1; Condr denotes the condition of a specified Dr
value. M represents the number of candidate strokes that satisfy the conditions of both Conb and Conp.
N represents the number of candidate strokes that satisfy the conditions of Conb, Conp, and Condr.

HitRate =
N[Conp∩Conb∩Condr]

M[Conp∩Conb]
(16)

Area 2 is taken as the test area. The buffer size in Conb is set to 50 m and 300 m. The proportion
in Conp for L1 is set to 5%, 10%, 15%, 20%, 25%, and 30%, respectively. The distribution relationship
between HitRate and Dr is illustrated in Figure 29. For example, B50_P5 represents the scenario of two
combined conditions (the buffer size of Conb is 50 m and the proportion of Conp is 5%). When Conb is set
to 50 m and the values of Conp are 5% or 10%, the mean value of HitRate reaches 0.92 when Dr is in the
range of (0.5–1]; indicating above 90% of the candidate strokes have obvious geometrical differences
with the target matched stroke. The HitRate value approaches 0 in the Dr range of 0–0.5, indicating
there are very few candidate strokes that are very similar to the target matched stroke. In other words,
the difference rate between the target matched strokes and the candidate strokes is significant when the
proportions are 5% and 10%, which is beneficial to obtain correct matching results. When the values of
Conp are larger than 10%, the HitRate value decreases in the Dr range of 0.5–1 and increases in the Dr
range of 0–0.5. When Conb is set to 300 m, the distribution trend is similar to that when Conb is set to
50 m, indicating that the buffer size has little influence on HitRate. Therefore, 10% is suggested as the
selection proportion of the first level L1 to ensure the robustness and accuracy of the matching.
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4. Conclusions

This study has established a novel methodology for hierarchical road network matching based
on Delaunay triangulation (DTRM) and a new problem formulation to conquer the problem of
road network matching with nonsystematic bias in different coordinate systems. In accordance
with the human visual hierarchy and regionalized cognitive mechanism, the entire road network is
divided into three levels. The upstream matched relationship provides a stable contextual reference
for the matching analysis of downstream road entities, thereby improving the matching accuracy.
In particular, in such a road network matching task, a new MMU is designed instead of the traditional
“node-arc” unit. On the basis of the rotation-invariant characteristics of triangles, the similarity metrics
based on MMU help solve the problem of the rotation angle of nonskeletal road network matching.
Compared with the traditional matching methods based on local features, DTRM is not limited to
the specific quantization of road geometry and topological properties and always maintains better
global hierarchical features throughout the matching process. This study opens up a new avenue for
hierarchical road network-matching methods along different tracks.

Experiments are conducted using real datasets of Wuhan, China and Auckland, New Zealand to
verify the efficacy of our approach (DTRM). We compare our proposed method with the PRM method.
The results are summarized as follows: (1) When faced with different patterns of the road network
(e.g., sparse or dense and grid or radial), DTRM can achieve higher precision than the benchmark
PRM and correctly identify the most matching relationships (89.63% on average). (2) In terms of DR
indicators, the average DR value of DTRM is significantly higher than that of PRM. In the case of
rotation, the similarity metrics based on MMU have better discriminating power than the traditional
index in PRM and are more conducive to the identification of correct pairs of elements with the same
name. The results also show that the structure of MMU and its corresponding similarity metric can
effectively overcome the rotation problem and have strong robustness. (3) Comparison of P and R
indices of DRTM and PRM shows that PRM can obtain good matching when the rotation angle is
inconsiderably large (below 15◦). As the rotation angle increases, the P and R values of PRM drop
sharply. By contrast, the accuracy and recall of DTRM decrease only slightly, although both remain at
approximately 90%. DTRM can effectively solve the problem of road matching with different rotation
angles, considering that the similarity index of MMU is insensitive to increased rotation angle.

The model developed in this study is suitable for the integration and update of urban road
networks and their applications in navigation systems. The methodology also has the potential to
be applied to other urban sectors for infrastructure applications with sector-oriented modifications,
such as public management [27], urban planning [28,29] and transport modeling [30].

In future work, several issues need to be studied in depth. First, at the junction of irregular and
regular areas, the robustness based on MMU structure matching needs further consideration. Second,
the time cost is noticed less than the accuracy of the road network matching methods. The performance
issue becomes increasingly prominent as the volume of matching data increases. Third, introducing
a learning method based on basic matching pairs is an interesting topic to solve the road network
matching problem.
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Figure A2. Matching results of DTRM for the four subregions of Area 2 (R2, R3, R4, and R5).
(a) Matching result of R2, (b) matching result of R3, (c) matching result of R4, and (d) matching result
of R5.
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Figure A2. Matching results of DTRM for the four subregions of Area 2 (R2, R3, R4, and R5).
(a) Matching result of R2, (b) matching result of R3, (c) matching result of R4, and (d) matching result
of R5.
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