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Abstract: In this paper, we present an implementation of a research data management system that
features structured data storage for spatio-temporal experimental data (environmental perception and
navigation in the framework of autonomous driving), including metadata management and interfaces
for visualization and parallel processing. The demands of the research environment, the design of
the system, the organization of the data storage, and computational hardware as well as structures
and processes related to data collection, preparation, annotation, and storage are described in detail.
We provide examples for the handling of datasets, explaining the required data preparation steps for
data storage as well as benefits when using the data in the context of scientific tasks.

Keywords: spatio-temporal data infrastructure; data management; spatial database; internet GIS;
metadata

1. Introduction

There is a growing awareness in the research community of the importance of FAIR principles in
data handling [1]: data should be free, accessible, interoperable, and reusable. Requirements of complex
research projects can go even further: often, such projects involve rich experiments and extensive
data collections with diverse, interdependent sensors. Thus, they require a complex infrastructure to
monitor data collection, store, and provide a structured and intuitive access to the data. In order to go
one step beyond the mere data storage and access, it is beneficial to link the data along the spatial and
temporal component. To this end, all data are geo-referenced, already allowing generic processing and
analysis capabilities towards integration and data fusion. Only in this way, the data acquired with
considerable amounts of time and money can be exploited in the intended way, allowing usage beyond
their original purpose.

An example for such a complex research project is a research training group (RTG) funded by
the German Science Foundation, entitled “Integrity and collaboration in dynamic sensor networks”
(GRK2159). This RTG investigates concepts for ensuring the integrity of collaborative systems in
dynamic sensor networks in the context of autonomous driving and environmental perception [2].
The exploitation of different—collaborating—sensors, in conjunction with new and advanced concepts
of describing the integrity of measurements is considered an important key to ultimately allow a
safe interplay of autonomous systems and human beings. The project relies on the assumption that
the collaboration of diverse sensors and sensor systems leads to an improvement of the navigation
and the sensing of the environment by an autonomous system. The project relies on large-scale
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collaborative experiments, where a large range of sensor data is acquired by several multisensory
systems to develop algorithms and test them thoroughly in a real environment. The range of sensors
used in these measurement campaigns include 3D laser scanning (LiDAR) systems recording dense 3D
point clouds of the environment, stereo cameras for imaging and photogrammetric 3D reconstruction,
as well as GNSS/IMU systems for localization. In order to generate a realistic representation of
the dynamic situation at the time of data capture, the data have to be integrated in a holistic data
management system. This system then allows for conducting seamless experiments with arbitrary
sensor combinations based on the stored data.

Such a diversity of data and demands, however, leads to organizational requirements concerning
storage and documentation of the data (see also [3]). The main research question of this paper is how
to structure the interdependent data obtained during these large-scale experiments so that researchers
with different backgrounds can find, inspect, and analyze the data regarding different complex research
questions. At the same time, the established uniform storage and documentation schema should
be easily transformable into the target formats of data publication platforms to support re-use by
other researchers.

In this contribution, we report on our realization of a data management system for large,
heterogeneous spatio-temporal datasets that suit our requirements: Sensor data are stored in a
structured, well-documented, and interoperable way. Structured metadata are associated with each
dataset, supporting the automation of finding and filtering tasks. Data storage hardware is connected
to computational hardware that supports big data analysis tasks using suitable data access interfaces.
The proposed structure is general enough to serve as a sample for similar projects.

The remainder of the paper is structured as follows: Section 2 gives an overview over the research
project, followed in Section 3 by an overview over related work and the state-of-the-art in (research)
data management in general, specifically for the domain of geo-spatial data. Section 4 contains
implementation details for the concepts, as well as backend and frontend components of the data
storage system. In Section 5, the complete workflow from data ingestion to data usage is described with
some examples, before concluding with a summary and ideas for future developments in Section 6.

2. Overview of the Research Project and Its Requirements Concerning Data Management

Research topics include collaborative localization for vehicles as well as the recognition and
mapping of static and dynamic objects in the surrounding road space, with a major focus on integrity
of the resulting system, i.e., the potential of the system to know its own limitations and to warn the
user in time when predefined quality thresholds are transgressed [4]. In the past 30 years, different
algorithms have been developed for monitoring integrity of GPS-based navigation starting from
aviation, and step-by-step being transferred and adopted to car navigation [5]. However, many open
issues persist [6], and novel concepts for integrity description should be exploited, e.g., in the form
of quality measures such as upper bounds on the measurement errors by interval mathematics [7,8],
and can be achieved, e.g., by collaboration between multiple sensors [9].

Most research topics are centered around observations from many sensors attached to multiple
vehicles that are integrated with each other to improve the overall system quality. For example,
point clouds are used to build dynamic reference maps that can subsequently be applied to improve
self-localization [10]; 3D information from laser scanning and cameras can be integrated for robust
object recognition [11]. Other research topics deal with collaboration across several vehicles to combine
multiple observations from different points of view into a common perception of the environment [12].
Observing a pedestrian from multiple vehicles at the same time improves classification quality as well
as its localization and 3D reconstruction [13].

The RTG hosts nine PhD candidates at a time in 3-year periods over a maximum funding period
of nine years, leading to nearly 30 PhD researchers funded by the program. One of the pillars of
the RTG is the continuous collection of experimental data, leading to a large pool of spatio-temporal
datasets that can be integrated in arbitrary ways, this way supporting a rich variety of different research
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questions. While research topics of the first phase focus on temporally aligned data from a single
experiment, later stages of research will be able to perform analyses across datasets collected over
several years. Consequently, the sound storage and documentation of the data are mandatory for
successful research. It allows the researchers to investigate complex dependencies of objects in the
recorded data retroactively—similar to a real-time experiment. In this way, data gathered with different
systems and platforms can be analyzed in an integrated way, allowing complex virtual experiments
based on real data, thus, the research environment is called “Central Experimentation Facility”.

2.1. Experiments and Data

In order to collect data supporting the heterogeneous research topics, collaborative large-scale
experiments (see Figure 1) are conducted in regular intervals, emulating the capabilities of automotive
sensors of upcoming car generations by equipping real cars with multi-sensor platforms that collect large
quantities of data about the environment. As the communication and online-processing capabilities
are not in the focus of the project, one of the main goals is to provide a realistic environment in
which simulations with real data can be conducted. The range of sensors used in these measurement
campaigns include LiDAR systems recording dense 3D point clouds of the environment, stereo cameras
for imaging and photogrammetric 3D reconstruction, as well as GNSS/IMU systems for localization.
In addition, existing information from maps and 3D building models is also included in the system,
which is considered as an additional sensor—a kind of memory of the past states of the environment.

As in any multi-sensor system, sensor data are obtained in each sensor’s coordinate frame.
A calibration of all relative positions and orientations between sensors is performed for each experiment
to allow a transformation of all measurements into a common frame. This makes a transformation
of all sensor data into a global coordinate frame possible, using measurements of the on-board
localization sensors to establish a relation between measurements and spatial objects with known
global coordinates or between multiple vehicles. This may include vehicle-to-vehicle measurements,
vehicle-to-infrastructure measurements, or direct absolute measurement of the geographic location
(e.g., with GNSS).

In addition to sensors for localization, information about static and dynamic objects in the
environment are continuously recorded: this includes both static objects such as the road surface and
buildings as well as dynamic objects such as other vehicles and pedestrians on the road.
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Figure 1. (left) Photograph of a typical situation during our experiments: in the first Meet and Greet
scenario, all three cars meet at a junction. (right) Sensors are attached to moving sensor platforms
(vehicles), i.e., sets of sensors are spatially bound to a common frame, which itself is moving through a
global frame.

Due to the large number of sensors involved and the high spatial and temporal resolution of
measurements, these experiments produce large volumes of raw data. During the first large-scale
experiment, three vehicles equipped with multi-sensor platforms recorded data for about two hours.
During this time, the data collected by three stereo-camera pairs, two laser scanner systems, and ten
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GNSS/IMU systems amounted to a data acquisition rate of up to 1 GB/sec of raw sensor data.
This resulted in a dataset of about 5 TB after decompressing and initial post-processing, before further
processing in the context of the individual research projects.

2.2. Challenges and Goals

The diversity and interrelation of the sensors, having different resolutions in space and time with
measurements from different domains (point observations/areal observations), observations of static
and dynamic elements of the environment, and quality (high and low precision sensors), lead to highly
complex datasets. Experiments yield large numbers of separate data logs with sensor-specific data
formats across multiple sensor platforms. The unprocessed experimental data represents raw sensor
measurements, and it is not yet aligned to be consistent with other observations. This means that
geo-referencing may not be optimal and might even be a goal in its own, as most sensor measurements
cannot be geo-referenced directly. Instead, a transformation between multiple coordinate systems
(applying transformation parameters obtained by sensor-to-sensor calibration) is applied, which ends
up at the global positioning sensors with measurements in a global frame. Furthermore, sensor
measurements are related to points on the surface of objects (static objects or dynamic objects),
whose identification (through segmentation and classification) is part of the research but not part of
the measurement.

Thus, sensor data undergoes a gradual transformation process from raw sensor measurements
(primary data) through different representations (processed data) with an increasing degree of
refinement up to semantic object information (see Figure 2). For dynamic objects, the assignment of a
location in space is only applicable for the time instant of the measurement, thus temporal information
needs to be stored as well. This way, data encompasses both raw data and enriched data, where
“enriched” relates to different aspects, e.g., a transformation to a global coordinate system or an
annotation with (light) semantics.
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Even though our datasets are mostly used by researchers within the RTG, we face challenges
related to research data management on a larger scale: while the participating institutes work in related
domains and on a common overarching topic, they have established different ways to represent their
data and results that are not immediately compatible with each other. These different communities of
domain experts work together in the context of the RTG and must find a common basis in order to
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share their data and results, in order to avoid introducing additional steps related to understanding
and transforming each other’s data representations for each individual data analysis task. In addition,
since the RTG is organized in three consecutive cohorts of researchers working on a common dataset,
the possibilities to communicate about data personally are limited between members of different
cohorts. In these cases, good documentation of the data and its properties are crucial.

On this account, the FAIR data principles can be used to define requirements for the internal
research data management. The FAIR data principles demand that research data should be findable
and accessible, as well as interoperable and re-usable. This implies the necessity of a structured data
storage with automatic search mechanisms on rich metadata (metadata requirements F2, R1.2-3, as
well as the infrastructural requirement F4 in [1]). In order to make the complex datasets (including all
versions and representations) findable for researchers, search mechanisms have to be provided that
allow inspecting the data using spatio-temporal queries on both the data and the associated meta-data,
close to the concept data cube [14], or more specifically the space-time cube [15]. Since access to the
data is granted to RTG researchers on a file system level, principles A1 and A2 do not apply here.
The remaining challenges that the proposed research data management infrastructure tries to solve are
related to FAIR data principles I1-3 (interoperability of data representations). Considering these FAIR
principles already on the level of internal data storage makes future publications of parts of the data
easier. As principles F1, F3, and R1.1 do not directly apply to internally used data, they must be taken
into account during the data publication process. This includes the assignment of globally unique
identifiers (e.g., in the form of DOIs) and appropriate data usage licenses.

The goal of the research projects is to analyze and further interpret the data. These analysis
processes must be applicable to the large datasets; thus, the system is linked to computational hardware
for parallel processing. Analysis techniques employed in our research are closely related to the specific
types of sensors. Images are processed using image processing algorithms, using, e.g., OpenCV [16]
or object recognition using Deep Learning (e.g., TensorFlow [17]), LiDAR data require point-cloud
algorithms (e.g., Point Cloud Library [18]). GNSS and IMU data can be coupled for robust trajectory
determination. These techniques, among many others, combined with geodetic modeling of the
measurement process as well as filtering of measurements from multiple sensors, generate datasets of
high complexity (high-dimensional time series data across multiple sensors). Using, e.g., occupancy
grids, maps are constructed containing both static features (e.g., geometry of roads and buildings),
as well as spatio-temporal information, e.g., in the form of heat-maps containing information about the
probability of certain classes of dynamic objects appearing at specific locations in the environment.
To this end, individual objects are identified through segmentation and classification of images as
well as point clouds. Derived datasets produced by the analyses of these individual research projects
are stored in addition to the raw sensor data. This allows more complex analyses in the domain of
(real-time) positioning, making use of higher-level knowledge. Examples for derived datasets include
corrected versions of datasets (e.g., aligned point clouds), object segmentations, or 3D vehicle models.

On the computational side, the quantity and complexity of data required for individual analysis
steps at a time is large, leading to high requirements regarding data transmission and computation in
terms of bandwidth and computational power. Therefore, it is essential, that the (large) datasets can
be processed with adequate hard- and software, so elements of parallelization are also included in
the framework.

Ultimately, the goal is to allow for software reuse by developing and providing software
elements [19], which are suitable to be used as a kind of construction kit for collaborative integrity.
Software modules will be developed which can be plugged to conventional analysis processes to
enhance their capabilities by allowing to quantify integrity. This aspect, however, is beyond the scope
of this paper.
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3. Related Work

Increasing digitization and novel sensor development and deployment results in more information
about our environment and thus potentially leads to more insights into previously unknown
interrelations. However, the difficulties in dealing with ever-increasing amounts of data, triggered
by the growing number and performance of sensors, which are finding their way into all areas of
everyday life, have become an important topic in research in recent years. The vast amount of datasets
available for research increasingly requires technical infrastructures for adequately storing the data so
that they can be easily found, accessed, integrated, and analyzed.

To facilitate better scientific data publication practice, the domain-independent, high-level FAIR
principles (findability, accessibility, interoperability, and reusability) were proposed [1]. These principles
require—among others—that the properties of the datasets are stored together with the data in a
standardized way that is comprehensible for the machine, and that the data themselves are stored
in interoperable data formats. To this end, standards were developed to annotate datasets with
metadata (“data about data”). The Resource Description Framework (RDF) developed by the W3C [20]
is an XML-based language to encode metadata in a structured, machine-readable way. In terms of
useful properties, there have been proposals like the Dublin Core set of metadata items to add details
about content, intellectual property, and instantiation of the data [21,22]. In addition, domain-specific
standards were established within the different research communities, for example [23,24] for geospatial
datasets. An overview over further general and domain-specific standards is available at the website
of the Research Data Alliance or on metadata catalog websites [25,26].

Practical applications of the FAIR principles have been developed within individual domains of
research, focusing on domain-specific requirements. Typical FAIR applications in the geo-data domain
(see [27,28] for an overview) are related to geodata infrastructures (GDI, see [29]): encoding of geo-data
into interoperable formats and re-using existing data transformation modules (Web Services) in a
decentralized way, allowing geographical data from different sources to be integrated in a common
spatial reference frame, using typical geo-information (GIS) operations that are widely applicable to
different types of spatial data. These web services can cover data transformation, data integration, or
data analysis tasks of varying complexity as well as visualizations of geographic data. Standardization
organizations such as the Open Geospatial Consortium (OGC) [30] promote standards for better
interoperability, including data formats and interface specifications. For raw sensor data accessible
directly through the web, the OGC Sensor Observation Service [31] is a web service standard that
defines languages for both sensor self-description (Sensor Model Language [32]) and encoding of
sensor measurements (Observation and Measurements [33]).

However, the most common way to make data accessible currently is to publish datasets
in public or institutional research data repositories (an overview of data repositories is provided
by meta-repositories such as [34]), that support different subsets of data and metadata standards.
In addition, data catalog services, e.g., [35] by OSGeo [36], MIT Geodata Repository [37], Pangaea [38],
and Harvard Geospatial Library [39], provide direct access to individual, usually domain-specific
datasets. So-called metadata harvesting [40] is used to transform between different standards and to
integrate all the different standards utilized by repositories and publishing researchers.

4. Proposed Data Storage Solution—System Overview

Storing data in a structured and secure way is a central aspect of data management. The proposed
data management system was designed to reflects the size and organizational structure of the project.
The goal was to store and make easily accessible raw data as well as derived data, in addition to data
documentation in the form of metadata, for a large range of sensors and data types (including LiDAR
point clouds, images, as well as GNSS/IMU time-series data). Concerning data inspection, the typical
way to query data is via the semantic information (e.g., “give me all data obtained with a specific type
of sensor”). Besides this, a natural way to inspect and query spatial data is the spatial domain, i.e.,
coordinates or bounding boxes (e.g., “show me all images taken at junction X”). In addition, temporal
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information can be used to search or narrow down a query (e.g., “give me all trajectories which were
acquired between 10 a.m. and 1 p.m. between 1 November 2018 and 23 March 2019”).

In this section, the key components of the data storage system are described. As in the RTG project
the experiments form a central element, the storage of the data is organized along those conducted
experiments, which gives its logical structure. A main element is a visual interface, which allows for
easy visualization and inspection of the available data.

The datasets are stored persistently on a single central file server (see Section 4.1). Data are stored
in a hierarchical way that reflects the structure of the large-scale experiments (see Section 4.2). A single
metadata file is added into each dataset folder (see Section 4.3), where one dataset corresponds to a
single set of continuous measurement of a single sensor (i.e., from start to end of recording). As this
structure does not support a structured search by custom criteria, a fully automated data crawler (see
Section 4.4) is used to browse the current structure of the data folders and represents all datasets with
their temporal, spatial, and other metadata in a spatial database. This way, a separation between
the logical view on the data (represented as data array) and the physical (hierarchical) storage can
be achieved.

In addition to giving direct access to the research data files, the file server acts as host to a graphical
web interface (see Section 4.5) that allows project members to visually inspect and compare all datasets
in a dynamic, interactive web-map and supports data queries on the spatial metadata database. In order
to run computationally expensive computations, the RTG operates a Hadoop (Big Data parallelization
framework for large structured datasets, see [41]) cluster consisting of six nodes as well as a GPU server
with eight GPUs, mainly used to support the training of networks in the context of Deep Learning (see
Section 4.6). Figure 3 gives an overview over the system components and the associated activities for
all phases of research data handling in the RTG.
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processes associated with different roles within the research training group (RTG). Raw, unstructured
sensor data and its metadata are uploaded to the server by the individual researchers. The transformation
into unified data formats and the import of data and metadata into the structured data storage are
organized by the data manager.
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4.1. IT Infrastructure

The RTG operates a central file server in collaboration (server housing and network management
services) with Leibniz University’s Department for IT services (LUIS). Data are stored physically on
hard drives in a RAID-6 group, currently with a total net capacity of about 60 TB.

The file server acts as single point of access for several project-wide services: file shares are set up
to provide access to all datasets for all RTG members on different client operating systems (mainly
Win/Linux based). Individual home folders and shared folders for organizational units are realized in
the same way, differing in ownership and access rights for different users and user groups.

Computational servers (Hadoop cluster and GPU server) are physically located next to the file
server. All servers are connected in an internal 10 Gbit LAN (using Link aggregation to achieve a
bandwidth of up to 20 Gbit) to support fast file transfer between the file server and the other cluster
nodes, while communication with this cluster from outside is limited to 1 Gbit (for infrastructural
reasons). The file server acts as gateway to access the computation clusters (that are otherwise
not directly accessible) for uploading and executing the program code as well as giving access to
computation results on those machines.

Authorization for all services is managed over an Active Directory (AD), in which users and
roles with different access rights are be managed. Login attempts to any of the server’s interfaces
(Hadoop Gateway console, web interface, Samba file shares) are delegated to and processed by the AD
server. In addition, firewall rules are set up to only allow connections from certain IP ranges related to
organizational units within the project, limited to a certain set of ports related to the supported services.
Communication is limited to secure/encrypted protocols in all cases, namely SSL/TLS, SSH, HTTPS,
and LDAPS.

4.2. Physical Data Storage

On the file system level, each dataset consists of one or multiple files, in some cases with an
internal folder structure, depending on sensor type and data format. Each dataset is stored in a
separate folder together with the metadata file (see Section 4.3). The granularity of a dataset is chosen
depending on the structure of the corresponding experiment such that no further decomposition of the
data is possible with respect to the goals of the experiment. For example, a single drive with defined
start and end points might constitute an experiment; all datasets gathered along this way will also
exist as separate segments corresponding to that drive.

Around those dataset folders on the bottom of the folder hierarchy, a folder structure was created
that is suitable for manual browsing by the researchers, mostly driven by the organizational structure of
the experiment. Currently, the top-most folder level corresponds to different measurement campaigns,
the next level separates mobile platforms/vehicles, the third level separates sensors, and so on. On the
bottom levels, different representations of the data are stored, including the original raw data (which
are always kept to prevent loss of data during conversion steps) and converted interoperable formats
for different purposes (see Section 5.1).

Through the use of the metadata crawler (see Section 4.4), a re-organization of the folder structure
is possible at any time without affecting the automatic search, as long as the dataset folders on the
bottom level of the folder hierarchy are kept intact.

4.3. Metadata

The term metadata refers to information about datasets. This includes information that cannot
be inferred from the data in any way, i.e., information that needs to be explicitly associated with the
dataset at the time of data storage. In addition, metadata can also be used to store information that is
implicitly contained in the data and can be retrieved with some effort, for example to make explicit
information that would otherwise require costly computations to access [42]. For our datasets, a subset
of the Dublin Core features [21] was adopted in addition to some custom domain-specific metadata
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reflecting relations between the data and the experimental setup. This includes nominal and categorical
attributes such as ownership/authorship of datasets (equivalent to creator/publisher in Dublin Core) as
well as encoding/file format details (format). A generic text field (description) is used to store textual
descriptions for future users, containing details about the experiment context or the calibration process.

In addition, domain-specific metadata fields were added to store associations between experiments
and sensor platforms or information about sensor types and sensor device IDs. Two metadata fields
are used to represent derived spatial and temporal information as a basis for spatio-temporal indexing
of the datasets, inspired by the date and coverage metadata fields of the Dublin Core. The temporal
interval in which the dataset was obtained (using experiment-wide synchronized, high-accuracy
GPS timestamps) is explicitly stored, allowing temporal filtering of datasets. For some sensors,
these timestamps are explicitly stored in the data, from which they are retrieved once and then stored
as part of the metadata. For sensors that do not explicitly store timestamps, the time interval from other
sensors on the same platform recording simultaneously (during data logging) was used. The same
principle was applied to the location of sensor observations: localization information from GNSS/IMU
systems present on all sensor platforms was transferred and associated with the datasets recorded
on the same platform, again to support filtering/searching of datasets by spatial criteria. To this end,
minimum bounding rectangles of the GNNS trajectories are stored with each of the datasets, as a more
fine-grained spatial resolution (through temporal association of sensor observations with individual
GNSS positions) would require further decomposition of the datasets into individual observations.
Both of these fields contain only rough values to support spatio-temporal filtering; precise values
during analyses need to be directly obtained from the data, depending on the specifics of the analysis.

A template for the metadata file, containing all mandatory metadata fields, is added to each
dataset folder in the process of creating the folder structure after an experiment. This template includes
comments that define semantics and allowed values (where appropriate) for each metadata field.
This metadata file is then filled out by the researchers responsible for each dataset. Automatic checking
of the validity of the XML (e.g., against a predefined grammar) is not performed yet but is certainly a
feature to consider in the future.

4.4. Spatial Database

In order to allow for a scalable storage and multi-user access, the data are automatically imported
into a spatial database (specifically [43]), where all metadata of the datasets are directly accessible
for complex queries. It makes use of a script that traverses recursively the full folder structure
specifically looking for the presence of a metadata file that denotes datasets. Based on the contents of
the metadata file, the script generates database entries for each dataset, including the current storage
location of each dataset on the file server. In the process, syntactical errors in the metadata files can
be detected. During the database import, datasets are not decomposed further (e.g., into individual
measurements), as this would introduce a number of additional challenges: observations are linked
to specific measurement processes, introducing measurement errors and interdependencies between
multiple sensors during the same experiment, which are themselves a key part of our research.

The database allows SQL queries on arbitrary data properties and their relations (e.g., spatial
queries) and simple temporal queries as well as queries on all nominal and categorical metadata that
are included in the metadata XML files. This search interface supports use cases such as retrieving
all datasets collected at a specific time (e.g., within the same experiment), data observed at the same
location (across multiple experiments), or datasets generated by the same sensor (independently of
time and location), similar to the operations defined in a data cube [14].

4.5. Web Interface and WebGIS

The file server hosts a website that allows visual inspection of the data and offers filtering and
visualization functionalities to the users. The central element of this web interface is a web map
that displays preprocessed visualizations for all spatial datasets on top of a general map (e.g., from
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OSM or mapping agencies), allowing inspection, selection, and comparison of possibly relevant
data. In addition to explicitly adding layers related to specific datasets to the map, datasets can be
filtered—spatio-temporally or semantically—by adding SQL filter statements into a text field.

Previews of datasets are available as raster tiles and/or as vector data, depending on the type of
data at hand. They can be processed and visualized quickly and contain all the necessary information
for data selection and visualization (see Figure 4). For dense, spatially distributed data such as
point clouds, 2D raster representations (projections to x-y-plane) are preprocessed with multiple
LODs/resolutions to support different zoom levels of the web map (i.e., higher levels of detail are
revealed when zooming further in without running into trouble on low zoom levels with large to
high-resolution tiles). The scripts to produce a full image pyramid of tiles for multiple zoom levels
are available, which can customize rendering specifics, i.e., the mapping of the data to pixel colors
depending on arbitrary data properties, depending on the required analysis (see Figure 5). This way,
each dataset may be associated with multiple, different visualizations.
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Figure 5. Additional functions of the web interface: (left:) bounding boxes (from the metadata based
on global navigation satellite system (GNSS) sensors on the same sensor platform) shown in addition
to the trajectories/point clouds. In this example, the point cloud renderer shows all points and local
point density; (right:) trajectory of vehicle, colored by a single feature (speed).

In order to avoid mixing data and preview data, preview files (i.e., tile sets or vector data files) are
placed in a separate folder as part of the web interface files. This folder mirrors the folder structure
of the original data to maintain the relation with the corresponding datasets. Previews can be also
be generated in a distributed way directly on the Hadoop cluster using a parallelized version of the
visualization script. Resulting preview files can be imported into the web map directly from the
Hadoop distributed file system (HDFS) of the Hadoop cluster using the WebHDFS REST-API.

In addition to data visualization, the Web interface also allows the inspection of the full datasets
through a browser: the data storage folders can be searched manually and datasets can be inspected
(if data types are supported directly by the browser, e.g., image data) and downloaded using the https
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protocol. For convenience, there is also an interface for browsing the contents of the Hadoop cluster
file system (HDFS). For point clouds, a WebGL-based point cloud viewer was integrated. Furthermore,
it provides interfaces to the metadata database, to inspect the contents of the metadata database and to
execute SQL queries on it.

4.6. Hadoop Cluster/GPU Cluster

In order to provide computational capacity for big-data computation tasks, a single GPU server
including eight GPUs and a Hadoop cluster consisting of six servers (nodes), are hosted physically
right next to the file server to allow a high-bandwidth data connection for fast data transfer. The file
server acts as a gateway to upload and run jobs.

The Hadoop cluster runs the latest version of Cloudera distribution including Apache Hadoop
(CDH [41]), with installations of distributed services related to the Hadoop ecosystem, including
HDFS/YARN, Spark/Spark2, HBase/Hive/Zookeeper. The file server is configured to be an edge node of
the cluster configured as gateway for all supported services (HDFS/YARN/Spark, etc.), so that data can
be uploaded directly from the file server to the Hadoop distributed file system (HDFS) of the cluster,
e.g., to distribute and execute applications. This way, these console-based interfaces are available from
the console of the file server. In addition, users have read-only access to the graphical management
interface of the Cloudera Manager residing on the Hadoop master node of the cluster to supervise
cluster status, resource allocation, and application progress.

In the case of the GPU cluster, the file server runs a separate virtual machine hosting DC/OS [44],
a distributed operation system based on the Apache Mesos distributed systems kernel. It manages the
GPU cluster resources in a single graphical interface, allowing deployment of distributed applications,
including resource allocation/management for multiple concurrent users. This graphical interface
is available for cluster users under a separate IP and URL in a browser. Computation results from
both clusters are immediately accessible: the GPU cluster writes back results directly to the file server,
while the Hadoop cluster stores results in the HDFS, which can be accessed like a normal file system
from the file server console.

5. Data Management

This section describes the processes developed for preparing experimental data for data storage
in Section 5.1, followed by examples for these preprocessing steps in Section 5.2 and examples for the
benefits the system provides when working with stored data in Section 5.3.

5.1. Data Preparation and Post-Processing

In the context of physical data storage, processes to maintain consistency and integrity within
and across all datasets were established. As a safeguard against errors in any post-processing or
transformation processes, all datasets are redundantly stored in their original format. However,
depending on the sensor and the available data formats, this might result in proprietary data formats
that are only accessible using sensor specific soft- or hardware, making them impractical within a
large-scale project across organizational research units. In addition, internally used spatial reference
systems and/or representation of time measurements might differ across sensors.

Thus, all datasets are transformed into open interoperable formats with unified spatial reference
systems (specifically ETRS89/UTM zone 32N, since this is the output format of multiple sensor
systems used in our experiments) and time representation (Unix time, since data logging and time
synchronization in our experiments use the Robot Operating System (ROS [45]) on Linux machines)
that allow both interoperability as well as compatibility of spatial/temporal measurements between
all datasets. Specifically, stereo image sequences are stored as separate sequences of PNG images for
each camera, with a separate ASCII table including a mapping between image IDs and timestamps;
ASCII PLY format is used for point cloud data, RINEX format for GNSS data, most other types of
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sensor output are stored in CSV format. The transformations into those formats are performed by
scripts developed for each type of raw sensor output format.

After successful data transformation metadata are collected and/or computed from the data and
manually added to the metadata document (one for each version of each dataset). The metadata
document is then placed into the folder of the dataset (see Section 4.3). The folder structure for
experiment is built manually, following a fixed order of subdivision (see Section 4.2); all dataset folders
are then placed on the bottom level of this folder hierarchy. The top-level of the folder hierarchy for
the experiment contains documentation related to the experiment, planning documents, and details
about the sensor platforms (including calibration information: sensor-to-sensor and sensor-to-vehicle).
Calibration data for individual sensors are placed in the respective sensor folders (some levels above
individual dataset level).

Once the folder structure is established and all metadata files are complete, a crawler script is
executed which transfers the current state of the folder hierarchy of the file server into the metadata
database (see Section 4.4). The database links the current storage locations of the individual datasets
with their respective metadata, allowing a server-wide search for these registered datasets by keywords
and values from metadata fields.

As a last step of the data preparation, preview versions for each dataset (e.g., raster tiles to use as
overlay on a web map or a down-sampled vector-representation) are produced using the previously
described sensor type-specific scripts. Preview files are placed in a folder accessible by the web interface
from where they are automatically integrated into the web map (see Section 4.5).

5.2. Data Ingestion Example

In the following section, the practical implications of the steps from Section 5.1 are illustrated by
taking a closer look at the data produced by the multi-sensor configuration of a car used in one of our
experiments, highlighting some challenges encountered in the process. Technical details irrelevant in
the context of the process are omitted.

The car is equipped with a RIEGL VMX-250 Mobile Mapping System (MMS), including two
RIEGL VQ-250 2D Laser Scanners, four cameras (used for point cloud coloring), a GNSS/IMU, and a
computer with proprietary software logs the measurements from these sensors. Output of the sensor
is a complex project folder using proprietary file formats, requiring proprietary software to extract
various sensor outputs, including solutions for the GNSS trajectory and (colored) point clouds, either in
sensor coordinates or in world coordinates. In addition, a pair of stereo cameras was attached to
the front of the car roof and a separate GNSS/IMU system, as the MMS does not give access to the
raw GNSS data, unfortunately. Data from the stereo camera and from the GNSS/IMU system are
logged using ROS nodes on a Linux system; in the process, GPS timestamps from the GNSS sensor are
associated with the stereo images. The MMS logs to a different computer, using GPS timestamps as
well. However, both GNSS systems use different spatial reference systems.

The different sensors on the car produce the following raw data formats: a large folder with a
complex internal structure for the MMS data and so-called ROS bags logged by ROS, which contain
timestamped messages (organized in so-called ROS topics) from the recording. These raw (or first)
logs of the data are stored on the file server. As these formats are not directly useable by all researchers,
they are transformed into interoperable formats (lossless binary standard formats for image data and
well-defined ASCII text formats for GNSS and LiDAR data). For the MMS projects, the proprietary
MMS software is used to derive the required data (e.g., an ASCII representation of the GNSS trajectory
and the colored, full-resolution point cloud in world coordinates). For the ROS bags, the messages are
exported as a single ASCII text file for the GNSS/IMU system (using sensor-specific formatting) and a
folder with stereo image pairs (PNG format) with associated GPS timestamps in an ASCII text file.

In addition, a post-processing step is performed for all of the exported versions of the data,
during which timestamps and spatial coordinates of all sensor data are transformed into the common
representations, using format-specific scripts to automatize the transformation. This later allows our
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researchers to work with the prepared datasets without having to deal with coordinate and timestamp
transformations themselves. Having unified timestamps and spatial coordinate reference systems
makes it easily possible to export the data automatically into other formats.

For each dataset, including different versions or formats of the same dataset, a metadata XML file
is created as a copy of a predefined XML template. It contains metadata fields identified as useful in
the context of our research, including sensorType, sensorName, dataFormat, sensorID, experimentID,
sensorPlatformID, timeInterval, spatialBoundaries, owner as well as a free-text description field for
further unstructured details/comments. Some of these fields are required for certain functionalities; for
example, these fields are contained in the metadata database and are thus available in SQL queries on
the metadata. Arbitrary additional fields can be defined when filling the metadata; these are, however,
not used by any automated processes. Metadata files are edited by the “owners” of the respective
sensors, i.e., in most cases, the researchers who contributed the sensor hardware and software to the
sensor platform. To reduce the risk of entry errors, predefined lists of expected values are defined
in the metadata XML template for some metadata fields, e.g., the metadata field sensorType may
only have values such as STEREO_CAMERA, LASER_SCANNER, GNSS, etc. Data-format-specific
scripts assist in calculating the time interval and spatial boundaries for all datasets, as these values are
integral part of the metadata, as they support (approximate) spatio-temporal queries in the metadata
database. For sensors without self-localization capabilities (e.g., stereo cameras), the spatial boundaries
of the data from one of the GNSS sensors on the same sensor platform are used. Of course, there
is some redundancy among metadata files, as the same original dataset might be stored in multiple
export formats.

Once all datasets have been transformed into their final formats, a folder structure is created on
the server that supports manual search. To this end, relations between datasets resulting from the
experiment design are reflected in the folder hierarchy, following a structure as follows:

EXPERIMENT_ID > SENSOR_PLATFORM_ID > SENSOR_TYPE > SENSOR_ID >

DATA_FORMAT > datasets
For the specific sensor platform from the example this would result in the folder structure shown

in Table 1.
Bold folder names designate structuring folders by categories. Italic folder names are

the bottom-level folders containing the actual datasets as well as the individual metadata files.
Underlined folder names have calibration data required for integrating and interpreting the respective
datasets. Some of the bold folder names mirror metadata attributes, making explicit data properties on
the file system level to support manual search processes. The folder names are assigned manually
and are neither strictly enforced nor used by automated search processes. In fact, since the metadata
files are part of the corresponding dataset folder, folders above in the hierarchy can be re-structured
arbitrarily without impeding automatic search capabilities.

At this point, a crawler script is manually executed, which traverses the file server folder hierarchy.
Whenever a metadata XML file is encountered, its contents (values of predefined fields) as well as its
location (which is always a dataset folder) are stored in the spatial database. For the example data,
the database now contains seven entries: one for the raw ROS bags, one for the raw MMS data, the two
MMS exports, the stereo camera dataset and the two GNSS datasets.

As a final step after storing the data, preview versions for each dataset are prepared that can then
be displayed in the web map of the web interface; if a dataset is available in multiple formats, only a
single preview is produced. For the point clouds, raster images (tiles) are created by rendering code
with customizable resolution and visualization. These tiles are later displayed directly on top of the
web map’s base map (see Figure 4). For the MMS and GNSS trajectories, vector representations are
more suitable. To this end, heavily sub-sampled versions of the original trajectories are produced,
which are later displayed as polylines on top of the web map (see Figure 5, right). There is currently
no preview functionality for stereo camera images. The preview files are kept in a separate folder
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structure, mirroring the data folder structure to avoid mixing data and their representation, while
making the relation between the original data and the preview data explicit.

Table 1. Possible folder structure for data obtained with the sensor platform described in Section 5.2.

EXPERIMENT_1

SENSOR_PLATFORM_1

PLATFORM_CALIBRATION_DATA: includes data from platform calibration, i.e., raw measurements
and obtained transformations between sensors

ROS_BAGS: storage for raw version of data logged by the ROS computer (includes data from stereo
camera and GNSS/IMU system) as ROS bags; useable to re-create the sensor data traffic during
recording

MMS

FULL_PROJECT: proprietary MMS storage format can be used by proprietary software to export
various types of MMS-related data; this is considered the raw data for the MMS; metadata XML
file

EXPORTED_POINT_CLOUD: point cloud data in various formats, e.g., colored point cloud with
absolute coordinates separated into uniform spatial grid cells to reduce file size, full
(down-sampled) point cloud; metadata XML file

EXPORTED_TRAJECTORY: export from MMS-internal GNSS as ASCII text file; metadata XML file

STEREO_CAMERA

STEREO_CAMERA_1

CAMERA_CALIBRATION_DATA: data from camera calibration, i.e., raw images and
obtained (intrinsic) camera parameters

IMAGE_DATA: includes pairs of left/right images and an ASCII table that maps timestamps to
image IDs; metadata XML file

GNSS/IMU

GNSS/IMU_1

PROPRIETARY_FORMAT: original sensor-dependent format, in some cases, only useable
using sensor-specific proprietary software; metadata XML file

EXPORTED_FORMAT: export to accessible, interoperable ASCII format after export from the
proprietary format using proprietary software; metadata XML file

5.3. Data Usage Examples

This section briefly describes real data integration tasks that make use of multiple datasets from a
single experiment using the sensor setup described in Section 4.2, illustrating how the data management
system supports the preparation and execution of the necessary steps.

Example 1:
Assume that a researcher wants to detect traffic signs in a point cloud around a junction. This could

simply be solved by checking the color of the 3D points and applying a semantic segmentation. As the
point clouds do not contain color values, the color of the 3D points must be obtained from image data
first, which is also available in the system. The projection of 3D LiDAR points into 2D images to retrieve
the correct color values requires a series of transformations between multiple global or sensor-centric
coordinate systems based on the LiDAR point cloud in absolute coordinates, the intrinsic camera
parameters (from camera calibration), the absolute pose of the sensor platform from the GNSS-IMU
system as well as the (static) transformation between the GNSS coordinate system and the camera
coordinate system (from sensor-to-sensor calibration). The result of this transformation is a set of 2D
image coordinates corresponding to the 3D points measured by the LiDAR sensor, from which the
color values can be retrieved and assigned to the 3D points.
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The data management system supports the task in a multitude of ways. The data exploration
interface using the metadata database and/or the web map gives the researcher a means to inspect
the data beforehand. Using the visual interface, the researcher can inspect which LiDAR data and
which image data are available at that junction. In addition, the datasets on the file server can be
filtered for data related to the specific car, experiment, and sensors using SQL queries. Furthermore,
spatial and temporal constraints can be added to narrow down the search. This also gives direct
access to the associated metadata and documentation of the experiment. The required calibration data
are available in the folders related to that specific experiment/vehicle combination (sensor-to-sensor
platform calibration) or in the individual sensor folders (sensor calibration), respectively.

Depending on the workflow at hand, the found datasets can then be downloaded to the researcher’s
workstation (using the Samba file shares) or into the HDFS of the Hadoop cluster (using the Hadoop
console interface) for further processing. In the latter case, the (Hadoop-specific) transformational
code needs to be uploaded into the HDFS as well. Results of the transformation can be copied back to
the file server using the same interfaces.

Example 2:
Another example is a researcher who wants to use in his vision-based system for other traffic

participants (cars, pedestrians) as “mobile ground control points”. This requires that the data
management system provides data, including images and poses of other cars and pedestrians, obtained
from analyses in the context of our research topics. To this end, analysis results from individual
research work are uploaded to the fileserver as derived datasets. As all datasets are registered in the
same coordinate system and all the necessary information (position, orientation, calibration of camera)
is available, the task then reduces to selecting the objects that are visible in each image, respectively.

6. Summary and Future Work

In this paper, we presented an implementation of a research data management system that features
structured data storage for spatio-temporal experimental data, including metadata management and
interfaces for visualization and parallel processing. We described in detail the organization of our
storage and computational hardware as well as structures and processes related to data collection,
preparation, and storage and demonstrated the association of data with metadata, resulting in a fully
searchable database. Finally, we gave practical examples for the handling of real datasets, i.e., required
data preparation steps for data storage as well as benefits when using the data in the context of real
scientific tasks.

Our research domain is challenging, as the observation of highly dynamic environments using
dynamic sensor platforms leads to high interdependencies between sensor calibration, self-localization,
sensor measurements, and time synchronization between sensors. This complexity is difficult to handle
with out-of-the-box data storage solutions. With the presented approach, some of the representational
problems related to these challenges could be overcome. Adhering to the FAIR principle, all datasets
are stored as open, interoperable formats. In this context, uniform time and spatial formats are used,
allowing direct integration of all datasets. Calibration data (from sensor platform calibration and
sensor calibration) are explicitly stored in a logical manner relative to the datasets.

While working with the described research data management system, some possible improvements
were identified that we plan to employ in the future. This includes improvements in some of the
standard workflows, such as the editing of metadata, which could use a bulk-editing operator (adding
the same metadata field/values to a number of datasets at the same time, reducing the need for manual
copying and pasting). We also want to support automatic exports of our metadata files into different
metadata standards commonly used by research data repositories (see [25,26]) to support and facilitate
the data publication process.

In terms of additional functionalities, interdependencies between datasets could be modeled
better; this encompasses cross-references (using unique dataset IDs) between datasets via metadata,
realizing versioning of datasets. Each dataset would then refer to the dataset(s) it was created from,
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ideally also with a reference to the code it was created with, i.e., encoding the relation “dataset B
was created from dataset A using transformation software T” in the metadata files. In the same way,
the relation between sensors or sensor platforms and their calibration data can be stored as metadata.

Another next step is to decompose existing datasets and, in terms of data granularity, go from
the level of full experiments to the level of individual observations. For example, instead of storing
full point cloud datasets, individual point observations could be stored. This would allow the spatial
database to create new complex datasets from spatial queries, e.g., returning all the 3D points measured
in a defined spatial area across multiple point clouds. On the database level, this kind of decomposition
does not lead to any new challenges. However, the complexity of such a solution increases greatly, as all
the information about the origins (e.g., properties of and interdependencies within the corresponding
experiment/original point cloud, including quality measures and positional accuracies) of each point
needs to be preserved as part of the output.
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