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Abstract: Spatial data of regional populations are indispensable in studying the impact of human
activities on resource utilization and the ecological environment. Because the differences between
datasets and their spatial distribution are still unclear, this has become a puzzle in data selection
and application. This study is based on four mainstream spatialized population datasets: the History
Database of the Global Environment version 3.2.000 (HYDE), Gridded Population of the World
version 4 (GPWv4), Global Human Settlement Layer (GHSL), and WorldPop. In view of possible
influences of geographical factors, this study analyzes the differences in accuracy of population
estimation by computing relative errors and population spatial distribution consistency in different
regions by comparing datasets pixel by pixel. The results demonstrate the following: (1) Source data,
spatialization methods, and case area features affect the precision of datasets. As the main data source
is statistical data and the spatialization method maintains the population in the administrative region,
the populations of GPWv4 and GHSL are closest to the statistical data value. (2) The application
of remote sensing, mobile communication, and other geospatial data makes the datasets more
accurate in the United Kingdom, with rich information, and the absolute value of relative errors is
less than 4%. In the Tibet Autonomous Region of China, where data are hard to obtain, the four
datasets have larger relative errors. However, the area where the four datasets are completely
consistent is as high as 84.73% in Tibet, while in the UK it is only 66.76%. (3) The areas where the
spatial patterns of the four datasets are completely consistent are mainly distributed in areas with
low population density, or with developed urbanization and concentrated population distribution.
Areas where the datasets have poor consistency are mainly distributed in medium population density
areas with high urbanization levels. Therefore, in such areas, a more careful assessment should be
made during the data application process, and more emphasis should be placed on improving data
accuracy when using spatialization methods.
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1. Introduction

Population growth has placed certain pressures on society, resources, and the ecological environment,
and even affected ecosystem functions [1,2]. The critical role of population data in the study of
social economy, resource utilization, and ecosystem change has been widely recognized [3]. In particular,
population density data can be broadly applied in quantifying the intensity of human activities,
depicting the spatial patterns of eco-environmental quality, simulating the spatial distribution of
pollutant emissions, and evaluating ecological problems brought about by urbanization [4–7], as well
as in other ecological research. With the development of remote sensing technology, population data
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based on administrative units has become a bottleneck restricting the integrated analysis of social and
natural systems [8,9]. The spatialization of population data is based on distribution rules redistributing
the data from the administrative unit scale to a specified grid size, in order to estimate and simulate real
population spatial distribution. The establishment of such distribution rules often takes demographic
data as input, and social and economic data, administrative divisions, transportation, terrain and other
elements as references [10].

At present, spatial population datasets shared at the global and regional scales include Gridded
Population of the World (GPW) [11], Global Human Settlement Layer (GHSL) [12], History Database
of the Global Environment (HYDE) [13–15], WorldPop [16,17], Global Urban Footprint (GUF),
High-Resolution Settlement Layer (HRSL), and so on. These data have been widely used in
disaster assessment and risk management [18–22], land use change modeling [23–26], public health
services [27–29], and ecological environment change [30–34] and socioeconomic analysis [35] as
important references for developing new population spatial datasets [36–38]. Goldewijk et al.
used HYDE [13] to estimate land use change in historical periods. Gleeson et al. used GPWv3
data from 2000 [22] to study the sustainability of groundwater, finding that about 1.7 billion people
lived in areas affected by groundwater pressure, and more than half of the affected population lived in
China and India. Based on the malaria stability index and WorldPop data [19], Kibret et al. measured
the infection rate of Plasmodium falciparum in areas of relevant reservoirs and found that 723 of 1268
dams were located in diseased areas (about 15 million people). Melchiorri et al. used GHSL [24] to
study the evolution of global urbanization from 1990 to 2015 and the current situation, and clarified
the key role of urban areas in the development and mode of global urban development.

The datasets construct spatial population data by various methods, which naturally leads to
different results in the same research with other datasets. For example, when estimating how much of
the population suffers from flood risk in Mexico, Haiti, and 18 other countries, the estimations using
WorldPop and LandScan were 20.79% and 32.67%, respectively, higher than that obtained by HRSL [17].
In order to select the appropriate data, research about the accuracy of comparisons or validations of
datasets is gradually carried out in various case areas. The research results of Bai [39] in China showed
that WorldPop had the highest and GPW the lowest estimation accuracy, but the estimation accuracy
of GPW in plain and basin areas was slightly higher than in other regions. The results of a validation
study [40] on the GHSL datasets in urban and rural areas of the United States showed that the data
were very accurate in areas with a high development level, while in rural areas, the accuracy may be
low due to sparse built-up areas and a lack of reference data. Ye [37], Yang [41] and Sliuzas [42] reached
different conclusions on the accuracy of datasets—Ye thought that the WorldPop dataset permitted low
estimation of urban populations and high estimation of rural populations, and Yang found that there
were more errors in the WorldPop data in areas with high or very low population density. The research
results of Sliuzas showed that GHSL could only describe the main forms of cities, but there were quite
a lot of misclassifications at the pixel level, so the accuracy was not high.

The selection and application of global datasets is a difficult for all kinds of data, and the reliability
requires sufficient verification. However, validating spatial population data is far more difficult than
validating a global land cover dataset, which can be verified by high-resolution remote sensing data,
and a global ecosystem productivity dataset, which can be verified by long-term data collected from
located observations. Therefore, mastering the characteristics of spatial and temporal layout, and the
advantages of each set of data to select that is appropriate to the use of data in the research process,
will better reduce the uncertainty of research. Therefore, we chose four datasets, HYDE, GPWv4,
GHSL and WorldPop, which are widely used and have different spatiotemporal resolution, to conduct a
comparative study in terms of the reliability of the population and the difference of spatial distribution.
In order to reflect the difficulty of collecting demographic data and the influence of population
density distribution on spatial data, we selected the United Kingdom, Argentina, Sri Lanka and
Tibet Autonomous Region of China as the case areas. We analyzed the differences between the
four datasets and the reasons for these differences from the aspects of the data production process,
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estimation deviation [43], consistency of spatial population distribution [44], and population density
level distribution at the administrative unit and pixel scale, so as to provide a reference for the selection
of population datasets in socioeconomic or ecological environment research [41,45].

2. Materials and Methods

2.1. Case Area Selection

In order to evaluate the performance of the population datasets in areas with different
topographical and urban–rural distribution characteristics, and to discover the relationship between
the accuracy of datasets with geographical factors, we selected 4 case areas with different characteristics:
the United Kingdom, with a high population density of 274.7 persons/km2 and an urbanization rate
of 83.4%; Argentina, with a high proportion of urban population of 91.9%; Sri Lanka, with flat terrain
below 200 m; and Tibet Autonomous Region of China, with an altitude higher than 4000 m and
sparse population less than 3 persons/km2 (Table 1). The characteristics of the population distribution
in the UK are as follows: overall population density is high and the urbanization rate is as high
as 83.4%, forming a pattern of outward divergence with the population concentration centers in
Greater London, Manchester, Birmingham, and other counties within the jurisdiction of England,
and Glasgow and Edinburgh within the jurisdiction of Scotland. The overall population density of
Argentina is 16.3 persons/km2, but much of the rural population has poured into the cities due to
the backward progress of economic development, resulting in a large population concentration and
high proportions of urban population in Buenos Aires, Cordoba, Mendoza, and other large cities in
the north, while the population density of small cities in the south is mostly less than 5 persons/km2.
Sri Lanka is relatively flat, with altitude less than 200 m, and most of the terrain is plain; the overall
population density is as high as 345.6 persons/km2. The characteristics of population distribution are
as follows: population density in the west is greater than 500 persons/km2, and in the east is mostly
less than 100 persons/km2; it decreases in all directions, with Colombo and Kandy as the areas with the
highest population concentration; there is also high population distribution density in the ports, such as
Jaffna in the north, with more than 2000 persons/km2. The average altitude of Tibet Autonomous
Region of China is more than 4000 m [45], and the overall population density is less than 3 persons/km2.
The population is predominantly distributed in Lhasa, Xigaze, and several agricultural counties,
while high-altitude areas such as Ali and the north of Naqu are very sparsely populated.

Table 1. Characteristics of each case area.

Case Area Characteristics Proportion of Urban
Population in 2015 Factors Assessed

United Kingdom
High population density,

high proportion of
urbanized population

82.63% 1O The impact of
urbanization rate

Argentina

Low overall population
density, population

concentrated in big cities, a
big gap between urban

and rural areas

91.50% 1O The impact of population
concentration

Sri Lanka Flat terrain, high
population density 18.26% 1O The influence of terrain

flatness

Tibet Autonomous
Region of China

High altitude, large-scale
sparse population,
difficulty of data

acquisition

27.74% 2O
The influence of

high-altitude areas
lacking data

Data sources: 1O From the world bank website, https://data.worldbank.org.cn/. 2O From Tibet Statistical
Yearbook (2016).

https://data.worldbank.org.cn/
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2.2. Data Source

The main data used in this paper include four spatial population datasets from 2015,
administrative division data, and demographic data. The four spatial population datasets are:
(1) popd of History Database of the Global Environment (HYDE), version 3.2.000 [13–15], produced by
PBL Netherlands Environmental Assessment Agency; (2) Population Density of Gridded Population
of the World, version 4 (GPWv4) [11], produced by Center for International Earth Science Information
Network (CIESIN), Columbia University; (3) GHS-POP of Global Human Settlement Layer (GHSL) [12],
produced by the European Commission; and (4) WorldPop Population Counts [16] using unconstrained
top-down methods completed by multiple organizations and institutions. The data of administrative
divisions are derived from the Global Administrative Areas (GADM) version 3.6 produced by the
Center for Spatial Sciences at the University of California and administrative divisions (Due to the
lack of WorldPop data in the southeast part of the Tibet Autonomous Region, data of Longzi County,
Cuona County, and Linzhi city are excluded.) of the Tibet Autonomous Region provided by the Qinghai
Tibet Plateau scientific data center (http://www.tpedatabase.cn). The definition of population density
according to HYDE and GPWv4 data is the number of people per square kilometer, and according to
GHSL and WorldPop it is the number of people in each grid. In order to reduce the impact of data
processing on spatial statistics of datasets and facilitate comparison, this paper unifies the measurement
unit of the four datasets as population per square kilometer without changing their resolution.
The population statistics came from the website of the World Bank and the Statistical Yearbook of the
Tibet Autonomous Region of China from 2015.

There are nearly 20 years between the development of the earliest GPWv4 dataset and the latest
WorldPop data entry. The data sources experienced a transformation from single demographic data to
the integration of digital elevation map (DEM), land cover data and transportation network, then to
remote sensing data, mobile communication and other new data sources (Table 2). The GPWv4 dataset,
with a spatial resolution of 1km, is based on the 2010 official census and estimated population
estimated data, supplemented by administrative boundaries and the United Nation’s World
Population Prospects, 2015 Revision. The data source of HYDE 3.2 is the United Nation’s World
Population Prospects and historical estimations from the literature [46–48], supplemented with data
from the sub-national population statistics of Populstat and other sources. HYDE constructed a
continuous population time series with spatial resolution of 10km for each country’s province or
state [11]. Using remote sensing satellite data and volunteered geographic information, GHSL generates
fine built-up areas and decomposes the GPWv4 produced by CIESIN to generate population distribution
maps with higher spatial resolution (250m) and more detailed spatial expression. There are many input
data for WorldPop, including elevation, slope, land cover, infrastructure, satellite data, and mobile phone
communication data, in addition to the 2010 national census and official population estimation data.
At present, year-on-year time series data with a spatial resolution of 100 m from 2000 to 2020 have
been developed.

In terms of the production method, GPWv4, based on the area weighting method, is the only
dataset of the 4 that is not spatialized by modeling. The production mode is simple and ensures the
accuracy of the total population within the administrative unit. However, the disadvantage is that it is
based on the assumption that humans are evenly distributed in space. The HYDE3.2 dataset generates a
combined weight layer based on soil suitability, road accessibility, distance from water body, night light
and other indicators to spatialize population data. This model is applicable globally, but does not
take into account additional uncertainties in the region. GHSL uses remote sensing satellite data
and volunteered geographic information to generate built-up areas with a spatial resolution of 38 m,
and according to the proportion of built-up area in each grid, decomposes GPW again based on
a linear regression method. The modeling method is simple, considering that the population is
mainly distributed in built-up areas, but ignores administrative boundaries. With the development and
application of machine learning and other algorithms, WorldPop uses a random forest model to quantify
the relationship between model factors such as land cover, satellite data, mobile phone communication

http://www.tpedatabase.cn
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and micro-census so as to generate a weight layer and reallocate census data. Among the four datasets,
the geographic information data source of WorldPop is more sufficient, and its random forest model
is superior to classification and variable importance ranking [49], which presents the development
direction of the spatialization method in the future.

Table 2. Basic information of spatial population datasets.

Dataset GPWv4 HYDE GHSL WorldPop

Resolution 1 km 10 km 250 m, 1 km 100 m

Period 2000, 2005, 2010,
2015, 2020 10000BC–2017AD 1975, 1990, 2000, 2015 2000–2020

Unit People per km2 People per km2 People per grid People per grid
coverage global global global global

Source data and
auxiliary data

2010 official census,
administrative

boundaries, World
Population Prospects,

2015 Revision.

World Population
Prospects, historical

estimation in the
literature [49–51],

sub-national
population statistics

of Populstat and
other sources [16]

GPWv4, remote
sensing satellite data,
volunteer geographic

information

2010 official census,
elevation, slope, land
cover, infrastructure,
satellite data, mobile

phone communication
data

Spatialization
method

According to the
proportion of land
area relative to the
overall area of each
pixel, population is

distributed
proportionally

(evenly distributed)

According to the
weight layer based
on soil suitability,
road accessibility,

slope, distance from
water body, night

light and other
indicators to

spatialize population

According to the
proportion of built-up
area based on remote
sensing image in each

grid, the residential
population data are

allocated to each grid

According to the
weight layer generated

by the prediction
model of random

forest to redistribute
census data

Year of production 1995 2001 2011 October, 2013

Limitations

The assumption that
populations are

evenly distributed in
space is

unreasonable.

The model is globally
applicable, without
considering other
uncertainties in

regions

The administrative
boundary is ignored

Production
organization or

unit

CIESIN, Columbia
University

Netherlands
Environmental

Assessment Agency

European Commission
University of

Southampton and
other organizations

2.3. Analysis Method of Spatial Distribution Consistency

The spatial distribution consistency analysis measured the consistency of population spatial
distribution in the 4 datasets by comparing them pixel by pixel. The process of consistency analysis is as
follows: (1) The units of the 4 datasets are converted and unified into people per km2. (2) According to the
different population density characteristics of each case area (Table 1), population density is reclassified
to 9 levels based on the natural breakpoint method [50,51] (Table 3). (3) Raster calculation is performed
on the 4 datasets after reclassification to obtain the grid data reflecting data consistency. The grid data
include instances where 4 datasets are consistent, 3 datasets are consistent, 2 datasets are consistent,
and each dataset is inconsistent with the others, respectively defined as completely consistent,
highly consistent, lowly consistent, and completely inconsistent [50]. (4) Datasets are compared
pairwise and analyzed to determine whether they are consistent and the proportion of consistency.
(5) Statistical analysis is conducted by zonal statistical tools in Arcgis, which refers to the distribution
of population density levels in 2 types of consistent regions (Figure 1).
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Table 3. Population density classification based on natural breakpoint method.

Case Area
Population Density at Different Levels (People per km2)

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

United
Kingdom ≤1 2–25 26–50 51–100 101–200 201–400 401–500 501–1000 >1000

Argentina ≤1 2–5 6–10 11–25 26–50 51–100 101–200 201–500 >500
Sri Lanka ≤10 11–50 51–100 101–200 201–500 501–1000 1001–2000 2001–3000 >3000

Tibet
Autonomous

Region of
China

≤1 2–5 6–10 11–25 26–50 51–100 101–200 201–500 >500
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Figure 1. Process of consistency analysis.

3. Results

3.1. Accuracy of Population Estimation

Taking the World Bank and Statistical Yearbook data of 2015 as the reference for the total population,
this paper compares the accuracy of the population estimated by four spatial datasets (Table 4). The total
populations of GPWv4 and GHSL are the closest to the statistical data, and the absolute value of relative
error is within 3%. The reason for this may be that GPWv4 is based on the 2010 census data and allocates
the population within each administrative unit so as to keep the population in each unit unchanged,
while GHSL is a refined spatial allocation based on GPWv4. The relative error of WorldPop is negative,
and the absolute value of relative error is the largest in Argentina, Sri Lanka and Tibet, which may be
explained by a small amount of regional data in each case area. Although the data sources of WorldPop
and GPWv4 are based on the 2010 census data, there is a great gap between them in total population.
The relative error of WorldPop in Argentina, Sri Lanka and the Tibet Autonomous Region of China is as
high as 20%, which shows that differences in population density and distribution patterns simulated by
different spatialization methods make the total amount unequal. HYDE shows that the accuracy varies
in different regions. In the UK, the relative error is only −3.71%, and the absolute value in Argentina
and Sri Lanka is less than 10%, while the relative error in the Tibet Autonomous Region is −15.03%.
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Table 4. Total population and estimation deviation of datasets.

WorldBank/Statistical
Yearbook HYDE GPWv4 GHSL WorldPop

United
Kingdom

Total population
(unit: 10,000

persons)
6512.89 6271.11 6503.65 6455.65 6404.95

relative error (%) −3.71% −0.14% −0.88% −1.66%

Argentina

Total population
(unit: 10,000

persons)
4313.20 4095.07 4270.79 4341.77 3337.86

relative error (%) −5.06% −0.98% 0.66% −22.61%

Sri Lanka

Total population
(unit: 10,000

persons)
2097.00 2295.84 2049.89 2046.46 1697.35

relative error (%) 9.48% −2.25% −2.41% −19.06%

Tibet
Autonomous

Region of
China

Total population
(unit: 10,000

persons)
296.07 251.57 302.11 292.66 256.40

relative error (%) −15.03% 2.04% −1.15 −20.62%

The application of remote sensing, mobile phone communication, and other geospatial data will
make the data in areas with abundant information more accurate. In the UK, the absolute value of
the relative error of the four datasets is lower than 4%, and that of GPWv4 and GHSL is less than 1%.
In Argentina, Sri Lanka and the Tibet Autonomous Region of China, the results of GPWv4 and GHSL
are similar. The relative error of GHSL in Argentina, Sri Lanka and the Tibet Autonomous Region of
China is 0.66%, −2.41% and −1.15%, respectively; however, the absolute deviation between HYDE and
WorldPop is between 5% and 25%.

Compared with the other three regions, the relative error of the Tibet Autonomous Region in
China is generally larger, especially with HYDE using the literature’s historical data and WorldPop
using multi-source geographic information data such as communication data. The accuracy of the
estimation of the Tibet Autonomous Region is far lower than that of other regions, with a deviation
of about 20%. There may be two reasons for this: in terms of massive sparsely populated areas at
high altitude, the scale of population statistics is not precise enough [8], and/or it is difficult to obtain
new auxiliary data such as household survey and mobile phone communication data, which makes
the error of the spatial population dataset larger.

3.2. Consistency Analysis of Population Spatial Distribution

Contrary to the population accuracy, due to the lack of geographical information data, the spatial
distribution characteristics of the four datasets are basically the same and the datasets are the
most consistent in the Tibet Autonomous Region of China (Figure 2). Thus, the proportion of
completely/highly consistent regions is as high as 97.01%. In the UK, the proportion of completely/highly
consistent regions is the lowest, at only 66.75% (Table 5). The proportion of completely/highly
consistent regions is slightly higher in Argentina than in Sri Lanka, at 82.06% and 81.80%, respectively
(Table 5), although Sri Lanka’s urbanization rate is lower (the proportion of urban population in
2015 was 18.3%), and Argentina’s urbanization rate is high (91.5% in 2015). However, Sri Lanka’s
population differentiation is more complicated, and the overall population density is higher compared
to Argentina, which indicates that the spatial distribution pattern of datasets is quite different in areas
with high population density and complex variation.
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Table 5. Statistics of spatial distribution consistency of four sets of data.

Completely
Consistent Highly Consistent Lowly Consistent Cmpletely

Inconsistent

United Kingdom 34.59% 32.16% 32.30% 0.95%
Argentina 61.92% 20.14% 17.70% 0.24%
Sri Lanka 33.76% 48.04% 18.03% 0.16%

Tibet Autonomous
Region of China 84.73% 12.28% 2.97% 0.02%

Pairwise comparison and analysis of the data show that the highest consistency exists between
WorldPop and other data, which may be related to its abundant data sources and auxiliary data and
reasonable redistribution rules. In the UK and Argentina, the consistency between WorldPop and GHSL
is the highest, and is 5–15% higher than that between WorldPop and GPWv4. In Sri Lanka and the Tibet
Autonomous Region of China, the consistency between WorldPop and GPWv4 is the highest, and the
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consistency between WorldPop and GHSL is 4–30% lower than that between WorldPop and GPWv4.
This indicates that the portrayal of characteristics of population distribution varies depending on the
spatialization methods in different case areas, and GHSL, which is integrated with built-up areas
extracted from remote sensing, is more advantageous in areas with a high urbanization level (Table 6).

Table 6. Comparative analysis of spatial consistency of data sets.

Case areas Consistency (%) HYDE GPWv4 GHSL WorldPop

United
Kingdom

HYDE 100.00
GPWv4 65.27 100.00
GHSL 40.65 61.94 100.00

WorldPop 52.14 79.72 85.63 100.00

Argentina

HYDE 100.00
GPWv4 81.53 100.00
GHSL 83.31 66.26 100.00

WorldPop 90.59 76.42 91.23 100.00

Sri Lanka

HYDE 100.00
GPWv4 79.22 100.00
GHSL 44.91 55.18 100.00

WorldPop 71.61 90.83 61.13 100.00

Tibet
Autonomous

Region of
China

HYDE 100.00
GPWv4 92.21 100.00
GHSL 90.60 93.15 100.00

WorldPop 93.55 97.68 93.90 100.00

3.3. Consistency of Datasets in Different Population Density Levels

In order to explore the spatial relationship between population density and consistency,
we conducted a statistical analysis of the distribution of population density levels in consistent
or inconsistent regions. Judging from the distribution of population density levels in completely/highly
consistent regions (Figure 3), in the four case areas, each dataset is dominated by low-density population
distribution of level 1–3, with an area proportion of more than 45%, which indicates that the data
consistency is great among extremely low population density areas. Especially in Tibet and Argentina,
the proportion of areas wherein population density is level 1 and 2 is as high as 77%, and in the
UK it is 51%. In Sri Lanka, where the population density is high and the spatial distribution is
relatively uniform, there are always highly consistent areas for each population density level. In the
UK, with a high level of urbanization, 40–82% of the high-density population areas (level 7–9) are
highly consistent (WorldPop, 81.72%; GHSL, 66.94%; GPWv4, 58.90%; HYDE, 40.47%). Since HYDE
contains historical data for long time series, its spatial resolution is far lower than that of the others.
Therefore, in densely populated and highly heterogeneous areas, spatial accuracy will be reduced due
to the influence of mixed pixels and the precision of original data, which is reflected in the UK and
Sri Lanka (Figure 3.). Lowly consistent/completely inconsistent regions are mainly distributed in the
medium population areas with a high urbanization level. Among the medium density population
areas in the UK and Argentina, in 62–93% of the regions the four datasets are completely inconsistent,
or only two are consistent (Figure 4, Table 7).
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Table 7. Area proportion of lowly consistent/completely inconsistent areas in medium population
density areas.

HYDE GPWv4 GHSL WorldPop

United Kingdom 62.49% 81.77% 63.85% 63.13%
Argentina 93.92% 67.85% 72.03% 93.92%
Sri Lanka 22.19% 25.54% 6.47% 20.31%

Tibet Autonomous
Region of China 16.70% 27.31% 13.28% 23.05%

4. Discussion

It can be seen that the spatial patterns of the spatial population datasets produced by different
methods and data sources are very similar in Tibet, where data are scarce and the population is sparse.
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In the data selection of such regions, the accuracy of population estimation and the time scale needed for
research are the main considerations. For regions with high levels of urbanization, we should not only
consider spatiotemporal resolution and accurate quantity, but also pay more attention to the uncertainty
of data in areas with medium population density. Based on the results, a table is summarized to show the
applicability of datasets in different population density areas (Table 8). This study serves as a basis for
not only the selection of population data, but also the future development of population spatialization.
In areas where data are lacking, improving the accuracy of spatial population datasets depends more
on continuously refining demographic data [52–56] and abundant data sources [57]. The difficulty in
obtaining data in areas at high altitude and with poor data quality may be the reason for the large
relative error in the Tibet Autonomous Region of China [58]. Remote sensing, mobile communication,
and other big data will play important roles in improving the accuracy of spatial population data
in areas with deficient data. For areas with medium population density, with the development
of spatialization methods, from simple interpolation to machine algorithms based on intelligent
models such as neural networks, decision trees, genetic algorithms and random forest [9,48,59,60],
strengthening the experimental research and verifying such areas will improve the reliability and
consistency between datasets. Verifying the accuracy of spatial population datasets is a massive
problem in the research. According to the comparison between the population of spatial datasets
and census data in this study, not only are there differences in spatial layout, but there is also about
20% deviation in the population. Therefore, in areas with different geographical characteristics and
with more detailed statistical units, even at grid scale, it is also a necessary development direction of
population spatialization to develop standard experimental areas, and to provide verification data
for the accurate quantity and spatiotemporal layout of spatial data designed by various applications.
Besides, urban/rural populations are two concepts of population geography corresponding to urban
and rural areas. When it comes to urban population in most countries, the population of small cities
generally is included, while in China, it usually refers to the population of towns [61]. Although the
population scale for towns in China is equivalent to that for small cities of other countries, the difference
in definition for urban/rural population may have a slight effect.

Table 8. Applicability of datasets in different population density areas.

Dataset
Accuracy of
Population
Estimation

Consistency
with Other

Datasets

Consistency of Datasets in Different Population Density
Levels

Low-Density
Area

Medium-Density
Area

High-Density
Area

HYDE FFF FF FFF F FF

GPWv4 FFFF FFF FF F FF

GHSL FFFF FF FFFF FF FFFF

WorldPop FF FFFF FFF F FFF

Notes: The number of stars indicates the degree of applicability of datasets.

5. Conclusions

In order to understand differences in the number and spatial distribution of the main spatial
population datasets in the world, four datasets with different spatiotemporal resolutions (HYDE,
GPWv4, GHSL and WorldPop), developed based on multiple data sources and spatialization methods,
were selected, and Sri Lanka, the UK, Argentina and the Tibet Autonomous Region of China were
taken as the case areas. This paper conducted research from the aspects of relative error of population,
consistency of population spatial distribution, and the characteristics of population density distribution
within consistent and inconsistent regions. Furthermore, this paper analyzed the causes of the
differences by combining the data production process and the difficulty of data acquisition, urbanization
level and the characteristics of population distribution for the case areas. The results show the following:
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(1) The differences in source data and spatialization methods between datasets affect their accuracy.
The development of remote sensing and deep learning technology promotes the progress of data
collection and spatialization methods. Therefore, the accuracy of each dataset in the study is
very different. Because GPWv4 is based on 2010 census data for allocation according to the principle
that the population in each administrative unit is unchanged, and GHSL is based on GPWv4 for
secondary spatialization, their absolute value for the relative error of total population is the smallest,
both of which being within 3%. Although WorldPop uses the same data source as GPWv4, the relative
error of the former is as high as 20% in Argentina, Sri Lanka and the Tibet Autonomous Region
of China, due to different spatialization methods. HYDE, for the purpose of producing long time series
historical data, has medium accuracy for estimating the population of the UK, Argentina and Sri Lanka;

(2) The application of geospatial data makes the datasets more accurate in the UK with
abundant information, where the absolute value of the relative error of the four datasets is less
than 4%. In other case areas, the absolute value of the relative error of GPWv4 and GHSL is less than 3%,
and that of HYDE and WorldPop is between 5% and 25%. Affected by the imprecision of statistical
data and the difficulty in obtaining new auxiliary data, the relative error of datasets in the Tibet
Autonomous Region of China is relatively large, especially with HYDE using historical literature data
and WorldPop using multi-source geographic information data. With regard to the ability to describe
spatial distribution, the pairwise consistency between WorldPop and the other three datasets is the
highest due to the fusion of multiple data sources, and GHSL, which mixes built-up area distribution
information extracted from remote sensing, has more advantages in terms of spatial consistency in
areas with a high urbanization level. It is difficult to spatialize population distribution in areas with
complex variation, characterized by reduced consistency in spatial distribution. The consistency of
population spatial distribution for the four datasets is the highest in the Tibet Autonomous Region
of China, where the total proportion of four and three datasets being consistent is as high as 97.01%.
On the other hand, in the UK, where the population spatial distribution is complex, only 66.75% of the
regions are completely or highly consistent;

(3) Areas where the four datasets are completely/highly consistent are mainly distributed in
low population density areas. In Tibet, Argentina and the UK, the proportions of level 1 and 2 in
completely/highly consistent areas are as high as 89%, 76% and 92,% respectively, indicating that data
consistency is great in low-density areas. In addition, in highly urbanized and densely populated areas,
the spatial distribution of each dataset is also highly consistent, and 62% of high-density population areas
in the UK are completely/highly consistent areas. The lowly consistent/completely inconsistent regions
are mainly distributed in the middle density areas with a high urbanization rate, and 62–93% of middle
density population areas in the UK and Argentina are lowly consistent/completely inconsistent regions.
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