
 International Journal of

Geo-Information

Article

A CUDA-Based Parallel Geographically Weighted
Regression for Large-Scale Geographic Data

Dongchao Wang 1 , Yi Yang 1,*, Agen Qiu 2, Xiaochen Kang 2, Jiakuan Han 1 and
Zhengyuan Chai 1

1 School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China;
wangdongchao@jou.edu.cn (D.W.); hanjk@jou.edu.cn (J.H.); chaizhengyuan@jou.edu.cn (Z.C.)

2 Research Center of Government GIS, Chinese Academy of Surveying and Mapping, Beijing 100039, China;
qiuag@casm.ac.cn (A.Q.); kangxc@casm.ac.cn (X.K.)

* Correspondence: yangyi@jou.edu.cn

Received: 3 September 2020; Accepted: 26 October 2020; Published: 30 October 2020
����������
�������

Abstract: Geographically weighted regression (GWR) introduces the distance weighted kernel
function to examine the non-stationarity of geographical phenomena and improve the performance of
global regression. However, GWR calibration becomes critical when using a serial computing mode to
process large volumes of data. To address this problem, an improved approach based on the compute
unified device architecture (CUDA) parallel architecture fast-parallel-GWR (FPGWR) is proposed
in this paper to efficiently handle the computational demands of performing GWR over millions of
data points. FPGWR is capable of decomposing the serial process into parallel atomic modules and
optimizing the memory usage. To verify the computing capability of FPGWR, we designed simulation
datasets and performed corresponding testing experiments. We also compared the performance of
FPGWR and other GWR software packages using open datasets. The results show that the runtime
of FPGWR is negatively correlated with the CUDA core number, and the calculation efficiency of
FPGWR achieves a rate of thousands or even tens of thousands times faster than the traditional GWR
algorithms. FPGWR provides an effective tool for exploring spatial heterogeneity for large-scale
geographic data (geodata).

Keywords: CUDA; GWR; parallel computation; large-scale geodata

1. Introduction

Large-scale geodata is currently a topic of considerable attention in many research fields,
including mobile communication [1], public transportation [2], medical health [3], Earth observation [4],
and climate monitoring [5]. To enhance the capability of analyzing massive geodata,
geographic knowledge mining is turning to data-driven patterns [6]. Distributed system and parallel
computing are two feasible technologies to solve the problem of massive geodata analysis. A tremendous
amount of multisource geodata is stored in a distributed spatial index system [7], enabling people to
access records efficiently. Using the advantages of the distributed system Hadoop, Aji et al. (2019) [8]
proposed a scalable high-performance spatial data warehousing system (Hadoop-GIS) that can meet
the needs of managing and querying massive geodata. Furthermore, based on the MapReduce parallel
computing framework and the HadoopBase database (HBase) technology, the origin–destination (OD)
estimation method [9] can efficiently manage massive bus travel data and directly reckon the origin
and destinations of travel for bus passenger. In the parallel computing field, large-scale geodata
could be parallelize into multiple data pieces utilizing the strategies of multiple instruction multiple
data (MIMD) and single instruction multiple data (SIMD). MIMD handles multiple instructions
simultaneously in opposition to SIMD. There are several environments to parallelize multiple tasks

ISPRS Int. J. Geo-Inf. 2020, 9, 653; doi:10.3390/ijgi9110653 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-3362-0631
http://www.mdpi.com/2220-9964/9/11/653?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9110653
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2020, 9, 653 2 of 20

based on different strategies (SIMD, MIMD), such as a message-passing interface (MPI), a multi-core
CPU, and a many-core shared-memory graphics processing unit (GPU). MPI is mainly used to
standardize the communication protocol of multi-program cluster, multi-core CPU relies on the
computing power of CPU core, and many-core shared-memory GPU benefits from numerous
stream processors (SP). Wilkinson et al. (1999) [10] introduce parallel programming techniques and
how to solve problems at a greater computational speed than is possible with a single computer.
Gong et al. (2013) [11] proposes a parallel approach that leverages the power of multicore systems,
to cope with the computational complexity of agent-based models (ABMs), and it solves the space-time
complexity of a geographic system. Tang et al. (2015) [12] and Zhang et al. (2017) [13] explored the
feasibility of using GPU to carry out the massively parallel spatial computing and accelerate the
spatial point pattern analysis. Sandric et al. (2019) [14] undertook parallelization for certain GIS
features operations using their message-passing interface–GIS (MPI-GIS) system, which integrated
the advantages of MPI input/output (I/O) and GPU on a cluster of nodes. Stojanovic et al. (2019) [15]
proposed an algorithm to analyze with watershed approach, called multiple flow direction (MFD),
which was designed for multicore CPU or many-core GPU. Amazing progress has been achieved in
the fields of computer hardware and software, which lay a solid foundation for updating geographical
research tools. However, there is still a sizable problem to be solved: how existing geographic analysis
tools can be transformed to accommodate the development of big geodata mining [16]?

Spatial non-stationarity analysis is an important research field of spatial data mining.
Brunsdon et al. (1996) [17] proposed the effective tool (GWR model) to explore spatial non-stationarity.
GWR introduces the idea of local smoothness to calibrate the regression coefficients and detect spatial
non-stationarity in the geographic space. The expansion of the location factor upgrades GWR from
ordinary linear regression (OLR) model to a local regression model. The locally weighted least squares
(LWLS) method is used to estimate the parameters point by point, where the weight refers to the distance
kernel function of some point against each observation points. The results of parameter estimation
from GWR are both clearly interpretable and statistically verifiable; therefore, GWR has become a major
method for studying spatial heterogeneity. Zhang et al. (2020) [18] employed GWR to identify the
driving forces of wastewater discharge between provinces in China and discovered that the macro
industry policy and environmental protection measures were major reasons for its spatial changes.
Wu (2020) [19] explored the influencing factors that cause spatially and temporally varying distributions
of ecological footprints using GWR. Yuan et al. (2020) [20] applied GWR to reveal the spatially varying
relationships in environmental variables (Pb and Al) and suggested that GWR was more effective than
conventional statistical analysis tools. Hong et al. (2020) [21] researched the spatially heterogeneous
relationship between price and pricing variables using multiscale geographically weighted regression
(MGWR), in which it overcame the limitations of hedonic pricing model research for sharing economy
accommodation. Wu et al. (2020) [22] developed a geographically and temporally neural network
weighted regression (GTNNWR) model that was extended from the spatiotemporal proximity neural
network (STPNN), which not only exhibited a better prediction performance but also more accurately
quantified the distribution of spatiotemporal heterogeneity.

Typically, parallelization of geographic analysis tools has become a comprehensive subject
across computer field and geography science. The package spgwr [23] was developed to implement
GWR in the R language. Another R package (GWmodel) [24] optimized this model with a moving
window weighting technique and achieved slightly better efficiency against spgwr. The Python-based
implementation (mgwr [25]) of MGWR was developed for multiscale analysis that allowed varying
relationships according to each coefficient. Li et al. (2019) [26] (a member of the mgwr package)
upgraded its mode to distributed parallelization utilized within a high-performance computing (HPC)
environment and the new package (FastGWR) achieved satisfactory results. Tran et al. (2016) [27]
studied the implementation of large-scale GWR on an in-memory cluster computing framework Spark
(Spark-GWR) and determined that it was a feasible solution using cluster computers to execute GWR
in parallel, but great difficulty is encountered for ordinary coders in developing and testing under

ISPRS Int. J. Geo-Inf. 2020, 9, 653 3 of 20

the cluster environment. As a representative model of local regression, GWR incorporates all of the
observations (samples) into the loop of the regression sequence. The key to geographic weighting is the
calculation of distance weights for each sample, where it causes costly complexity in terms of runtime
and memory. At the same time, the entire process consumes a large amount of computing time because
the weight calibrator participates in multilayer loops. Under the condition of large-scale geodata,
GWR needs to go through two levels of large cycle iteration, the outer iteration is responsible for
point by point regression, and the inner iteration is used for matrix calculation between single sample
and full samples. Therefore, limited by data structure and operating mode, GWR is less effective
in addressing large-scale geodata. Concurrency methods can improve the efficiency of geographic
analysis tools depending on the software optimization, but the hardware parallel environment could
obtain native support and achieve the best acceleration performance. Both FastGWR and Spark-GWR
could divide GWR into several parallel task sets, and the two parallel programs are designed for
CPU architecture that cannot be adapted to GPU architecture. FPGWR decomposes large-scale GWR
into simpler parallelizable computing units utilizing atomization algorithm and processes them with
numerous parallel GPU cores.

In this paper, we develop FPGWR to reduce the computational complexity in the GWR process
and enable GWR’s applications in millions or even tens of millions of geodata. This technique
significantly improves the efficiency in regression when utilizing the parallelization of large tasks.
On the basis of the CUDA framework, atomic subtasks that are decomposed from large tasks could run
on a GPU device in parallel mode. This paper contributes to the prior literature as follows. (1) FPGWR
can compensate for the deficiencies of GWR in undertaking regression computation for large-scale
geodata, and FPGWR with separate atomic computing units (atomization) is more efficient than GWR.
(2) FPGWR is a powerful model for exploring spatial heterogeneity and incorporating high parallelism
into geography analysis, which is applicable for studies in various fields, such as economic geography,
social science, public health. (3) The improvement from GWR to FPGWR can provide new insights
into geospatial computing from spatial and computational perspective.

2. GWR Model and Atomization Algorithm

2.1. GWR Review

Before the 1980s, OLR was frequently applied for geographical phenomena analysis. The predictive
coefficients β̂, calculated by the ordinary least squares (OLS) estimator method, abides by the rule of
global optimal unbiased estimation. The final regression result merely reflects the average level in the
study region. It is illegitimate to utilize the global regression methods in the local regression model.
Therefore, Foster et al. (1986) [28] created a spatial adaptive filter (SAF) learning from varying coefficient
modeling, which could describe step-jump and continuous spatial non-stationarity in the coefficients
automatically. Based on the local polynomial smoothing technique, Brunsdon et al. (1996) [17]
proposed the analysis tool of GWR.

2.1.1. GWR Model

The GWR model extends OLR, introducing the location factor to express the spatial variation of
coefficients. In other words, we have the following:

yi = β0(ui, vi) +

p∑
m=1

βm(ui, vi)xim + εii = 1, 2, · · · , n (1)

where yi is the regression variable (dependent variable) at location i, (ui, vi) represents the coordinate
(usually latitude and longitude) of the ith sample point in the study area, βm(ui, vi) denotes the kth
coefficient of the ith sample point based on a function with independent variables of ui and vi, xim

ISPRS Int. J. Geo-Inf. 2020, 9, 653 4 of 20

expresses the mth predictor variable (independent variable), and εi represents the error term, and n is
the sample size. The necessary conditions for Equation (2) can be expressed as follows:

εi ∼ N
(
0, σ2

)
∩ Cov

(
εi, ε j

)
= 0(i , j) (2)

For simplicity, Equation (1) is abbreviated as

yi =

p∑
m=0

βimxim + εi i = 1, 2, · · · , n ∩ xi0 ≡ 1 (3)

To prevent GWR from degenerating into a general linear regression, it is necessary that β1m =

β2m = · · · = βnm should not appear in the preconditions.
The variables related to GWR can be defined in the form of matrix. The independent variable

matrix X can be calculated by the following form:

X =

1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 (4)

2.1.2. Spatial Weight Kernel Function

There are n terms of spatial weight wi j between two sample points (i = j is allowed) in the study
area. In the GWR model, it is usual to denote the weight matrix Wi as a diagonal square matrix:

Wi =

wi1 · · · 0

...
. . .

...
0 · · · win

 (5)

At present, there are several forms of the weight kernel function wi j, and the most used are
Bi-Square and Gaussian. The two functions can be expressed as Equations (6) and (7):

Bi− Square : wi j =

1− (di j

bw

)2
2

,di j < bw

0 ,di j ≥ bw

(6)

Gaussian : wi j = e−1/2(
dij
bw)

2

(7)

where di j represents the distance between two sample points (i and j), and bw denotes the bandwidth
parameter which could be interpreted as not only the neighbors threshold but also the distance
attenuation factor within the weight kernel function.

2.1.3. Model Regression

The regression coefficient estimate β̂i at position i is defined by

β̂i =
(
XTWiX

)−1
XTWiY (8)

The regression value Ŷi of the regression point i based on β̂i can be estimated from

Ŷi = Xi
(
XTWiX

)−1
XTWiY (9)

ISPRS Int. J. Geo-Inf. 2020, 9, 653 5 of 20

where Xi represents the ith row vector in matrix X. The hat matrix plays a very important role in the
residual analysis of the linear regression model. This study introduces the hat matrix S into GWR.
The matrix S can be expressed as follows:

Si = Xi
(
XTWiX

)−1
XTWi (10)

The regression result matrix Ŷi can be represented with the hat matrix S:

Ŷ = SY =

Ŷ1
...

Ŷn

 =

S1
...

Sn

Y (11)

2.1.4. The Criteria of Optimal Bandwidth Selection

The key to discovering the optimal bandwidth bw is minimizing the AICc score. Loop selection
and golden selection methods are available to obtain the lowest AICc value. Searching the optimal
bandwidth bw is inseparable from the parameter estimation criterion. The criterion AICc [29] is
introduced by Brunsdon et al. (2002) [30] to select the optimal bandwidth of the weight function.
The specific formula can be expressed as

AICc = n ln
(
σ̂2

)
+ n ln(2π) + n

[
n + tr(S)

n− 2− tr(S)

]
(12)

The residual ε can be calculated by the sample data Y and the regression result Ŷ:

ε = Y − Ŷ (13)

The unbiased estimate of the random error variance is expressed as σ̂2:

σ̂2 =
RSS

n− 2tr(S) + tr(STS)
(14)

where RSS indicates the sum of squared residuals, tr(S) is the trace of the hat matrix S,
and n− 2tr(S) + tr

(
STS

)
represents the effective freedom degree of GWR. In most cases,

tr
(
STS

)
approximately equals tr(S) (tr

(
STS

)
≈ tr(S)), and thereby, the above Equation (14) can

be simplified as

σ̂2 =
RSS

n− tr(S)
(15)

2.2. Atomizing the GWR Model

As mentioned above, the regression process of the GWR model involves two fixed steps: optimal
bandwidth selection and model diagnosis. Most existing packages that have implemented the GWR
algorithm are supported by the serial mode. Compared with the parallel mode, the serial mode carries
undesirable consequences to the regression computation. The computing containers with noninfinite
computational power will be overloaded with too large-scale samples. The runtime arises along with
the sample size growth, following a power or even an exponential relationship [31]. In the paper,
it is a feasible solution to design the Algorithm 1 (atomization) in reducing the complexity of GWR
regression calculation.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 6 of 20

Algorithm 1 Atomic Process—The Minimum Unit of Algorithms.

Atomic Process: Optimizing bandwidth searching by minimizing AIC score

1. Given test bandwidth (bw) and atomic process index (z)
2. Calculate wzz (wzz ≡ 1) from Equation (7)
3. Loop each a = 1, 2, · · · , p + 1, calculate :
4. Loop each b = 1, 2, · · · , p + 1, calculate :
5. Set Bab = 0
6. Loop each i = 1, 2, · · · , n, calculate :
7. Bab+ = xia ×wzi × xib

8. End loop
9. End loop
10. End loop
11. Calculate B−1

12. Set Sz = 0, Ŷz = 0
13. Loop each a = 1, 2, · · · , p + 1, calculate :
14. Set temp_x_inv = 0
15. Loop each b = 1, 2, · · · , p + 1, calculate :
16. temp_x_inv+ = xzb × B−1

ba
17. End loop
18. Sz+ = temp_x_inv× xza ×wzz

19. Set temp_x_w = 0
20. Loop each i = 1, 2, · · · , n, calculate :
21. temp_x_w+ = xia ×wzi

22. End loop
23. Ŷz+ = temp_x_inv× temp_x_w
24. End loop
25. Return Sz, Ŷz

2.2.1. Intermediate Matrix

In order to introduce the parallel mode legally, we design GWR atomization to decompose the
matrix calculation process. The matrix elements used in the result are extracted on-demand to obtain
the result value via simple algebraic calculations. It will save huge memory usage and computing
resource occupy in the large matrix operation of GWR. Intermediate matrix is an important research
object of GWR atomization, which exists in several common models.

OLR can be calculated by the following matrix form:

Y = Xβ+ ε (16)

On basis of OLS, regression coefficient β̂ is estimated from

β̂ =
(
XTX

)−1
XTY (17)

Next, regression result Ŷ of OLR can be expressed as follows:

Ŷ = X
(
XTX

)−1
XTY (18)

By comprehensively analyzing Equations (8), (9), (17), and (18), we can find the intermediate
matrix M which exists in all regression models of estimating unbiased via OLS. It can be calculated by
the following:

M =
(
XTWiX

)−1
XTWi or M =

(
XTX

)−1
XT (19)

ISPRS Int. J. Geo-Inf. 2020, 9, 653 7 of 20

In the point-by-point regression process, the intermediate matrix M is inevitable.
Matrix XT can be defined by

XT =

1 1 · · · 1

x11 x21 · · · xn1
...

...
. . .

...
x1p x2p · · · xnp

. (20)

where p is the number of independent variables. The multiplication of matrix XT and the diagonal
square matrix Wi is special. The resulting matrix A can be expressed as follows:

A = XTWi =

1×wi1 1×wi2 · · · 1×win

x11 ×wi1 x21 ×wi2 · · · xn1 ×win
...

...
. . .

...
x1p ×wi1 x2p ×wi2 · · · xnp ×win

 (21)

Similarly, matrix B can be written as

B = XTWiX =

p+1∑
a=1

p+1∑
b=1

 n∑
j=1

(
x ja ×wzj × x jb

)

(p+1)×(p+1)

(22)

where matrix B is a square matrix with p + 1 dimensions. In practical applications, p + 1 is usually less
than 10, which means that it is legal to ignore the time spent by the inverse operation for matrix B.

Comparing with matrix decomposition, the regression subprocess of GWR relies on the weight
matrix Wi when calculating matrices A and B. The determination of weighting scheme Wi could be
achieved: (a) Obtain the coordinate matrix UV(n×2) of all samples, and then transpose the matrix
to matrix UVT

(2×n). (b) Solve the distance matrix D(n×n) between coordinate matrix UV(n×2) and

its transposed matrix UVT
(2×n). (c) Calculate the weight matrix W(n×n) of all samples according to

Equation (6) or (7), and then Wi is the diagonal matrix formed by the ith row elements of the weight
matrix W. However, the process needs huge memory space and calculation time when involving the
enormous sample size. In addition, each subprocess of GWR will determine Wi once, which causes
high redundancy of memory and runtime. The implementation of matrix decomposition approach has
been carried out to decrease memory usage and runtime occupation by means of Equations (21) and (22).

2.2.2. Implementation of the Atomization Algorithm

Unlike the large process with full-matrix multiplication, each logically independent subprocess
merely participates in the regression calculation once, on the basis of the atomization algorithm. It is
the prerequisite for parallelization to ensure that the subprocess is repeatable. To address the problems
caused by redundant computing, two aspects (memory and time) of optimization are conducted in
the study. The AICc scores and estimation Ŷ, generated during the bandwidth calibration process,
are stored in the singleton pattern. Moreover, by means of on-demand computing, the disadvantage
of a high-repetition-rate calculation is eliminated in the large process. Given a test bandwidth bw,
the detailed steps of the atomization algorithm can be implemented as Algorithm 1.

3. CUDA Enabled FPGWR

FPGWR based on CUDA has the capability to process massive spatial geodata. The technique is
substantially developed to increase the computing speed of GWR. Supported by a large number of
SP, the GPU device can handle parallel computing as a natural carrier of HPC. Hardware performs

ISPRS Int. J. Geo-Inf. 2020, 9, 653 8 of 20

superior to software in terms of the multithread scheduling. Hence, it is the preferred solution to
improve GWR on the basis of the CUDA framework.

3.1. Optimizing the Kernel Function of CUDA

CUDA is a general-purpose parallel computing architecture introduced by the NVIDIA
Corporation [32]. In the CUDA framework, parallel tasks would be instantiated as independent
controllable threads. Independence means that there are no mutually exclusive signals among all threads.
Each thread could run synchronously without depending on its sibling threads. Controllability means
that the specificity of the thread instances could be controlled by the same parameters. The initialization
values are differently set to make the generated instances diverse from each other. Due to the identical
computing processes of threads, merely one thread scheduler is needed to manage all threads.

There are two principles for designing the CUDA kernel function to maximize the usage of the
GPU scheduling resource and computing cycle. We should minimize the occurrence of WARP Branch
in the kernel function as much as possible. At the same time, it is recommended to choose the CUDA
memory type flexibly. The specific optimization strategy is shown in Figure 1. By the method of matrix
decomposition, the atomic kernel function has successfully prevented process branching. Hence the
computation workload can be evened out among the threads. Each atomic task will dynamically
be assigned one unique thread index (z) that is different from the others. Because the tasks execute
in a completely random order, the coupling relationship between the atomic threads and SPs is
disconnected. To overcome the performance bottleneck caused by frequent access to global memory,
FPGWR utilizes the shared memory to store these temporary variables.

ISPRS Int. J. Geo-Inf. 2019, 8, x 8 of 20

Hence the computation workload can be evened out among the threads. Each atomic task will
dynamically be assigned one unique thread index (𝑧) that is different from the others. Because the
tasks execute in a completely random order, the coupling relationship between the atomic threads
and SPs is disconnected. To overcome the performance bottleneck caused by frequent access to global
memory, FPGWR utilizes the shared memory to store these temporary variables.

Figure 1. Optimizing the compute unified device architecture (CUDA) kernel function.

3.2. Implementing FPGWR Based on CUDA

In this study, we have implemented FPGWR in a CUDA framework by utilizing the method of
atomization. FPGWR significantly shortens the total time of large-scale GWR regression and releases
the memory space of massive spatial matrix data. The FPGWR implementation consists of five steps.
Step 1, the program in Host device invokes the GPU device to be prepared, and at the same time, a
series of initial parameters are set in the constant memory of the GPU. Step 2, the sample data are
input to the global memory of the GPU. The volume of geodata is too enormous to be instantiated in
either the shared memory or the local memory. It will throw an “out of memory (OOM)” error when
sample data volume is too large to fit in GPU global memory. Step 3, CUDA loads the instructions
compiled from the code of the atomic kernel function, and then, the scheduler generates individual
threads with the same kernel function. Step 4, all threads are assigned to Streaming Multiprocessor
(SM) in the unit of WARP. To address the enormous number of threads, the GPU will activate the
flow-shop scheduling mode. Step 5, CUDA feeds back the regression results from the GPU to the
Host, and the GPU device resources are released immediately. The detailed workflow of the FPGWR
implementation is shown in Figure 2.

Figure 1. Optimizing the compute unified device architecture (CUDA) kernel function.

3.2. Implementing FPGWR Based on CUDA

In this study, we have implemented FPGWR in a CUDA framework by utilizing the method of
atomization. FPGWR significantly shortens the total time of large-scale GWR regression and releases
the memory space of massive spatial matrix data. The FPGWR implementation consists of five steps.
Step 1, the program in Host device invokes the GPU device to be prepared, and at the same time,
a series of initial parameters are set in the constant memory of the GPU. Step 2, the sample data are
input to the global memory of the GPU. The volume of geodata is too enormous to be instantiated in
either the shared memory or the local memory. It will throw an “out of memory (OOM)” error when
sample data volume is too large to fit in GPU global memory. Step 3, CUDA loads the instructions

ISPRS Int. J. Geo-Inf. 2020, 9, 653 9 of 20

compiled from the code of the atomic kernel function, and then, the scheduler generates individual
threads with the same kernel function. Step 4, all threads are assigned to Streaming Multiprocessor
(SM) in the unit of WARP. To address the enormous number of threads, the GPU will activate the
flow-shop scheduling mode. Step 5, CUDA feeds back the regression results from the GPU to the
Host, and the GPU device resources are released immediately. The detailed workflow of the FPGWR
implementation is shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2019, 8, x 9 of 20

.
(a) The flow overview of fast-parallel geographically weighted regression (FPGWR).

(b) Detailed process on data and input layers.

(c) core implementation process of the fpgwr_kernel function.

Figure 2. Flow diagram of FPGWR on CUDA (a–c). Figure 2. Flow diagram of FPGWR on CUDA (a–c).

As shown in Figure 2a, the FPGWR algorithm could be divided into four layers: data layer,
input layer, working layer, and output layer. The data layer is dedicated to storing the files of original
observations. The input layer reads the spatial observation data from hard disk into host memory.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 10 of 20

At the same time, the part of the CUDA programming is instantiated in this layer. The initialization
parameters and observation matrices are introduced together into the atomic kernel function, and then,
the function will be compiled into an executable program. The working layer runs on the NVIDIA
GPU. It starts massive task threads, which are managed uniformly by the multithreaded scheduler of
the GPU. At the physical level, WARPs are bundled into a queue of batches, while the WARPs in the
same batch are executed synchronously. The output layer is designed to collect the regression results.
Based on the bandwidth indexes, these results are organized into multiple sets of regression matrices
(S, Ŷ, and β̂). Finally, the algorithm finds the optimal results set that corresponds to the minimum
AICc score.

Figure 2b,c illustrate how the core part of FPGWR works at the micro level. The specific meanings
of the initialization parameters (n, p and bws) and the prototype of the FPGWR_KERNEL function
are described in Subfigure (b). The detailed process of FPGWR_KERNEL function is presented in
Subfigure (c). The steps of the process could correspond to those of Algorithm 1. The multithread
scheduling depends on the initial BLOCK and GRID settings of the kernel function in CUDA. BLOCK is
set as a one-dimensional vector with a constant value (64), namely, each BLOCK contains 64 threads.
GRID is set as a two-dimensional vector, in which the number of the first dimension is the sample size
n divided by 64 (number of BLOCK’s first dimension), and the second dimension is the size of the
bandwidth array.

4. Results and Discussion

4.1. Data Source

To explore the real performance of FPGWR, three data sources—the simulation dataset, the “Zillow
test dataset” [26], and the “Georgia” dataset [33]—are used for the experiment. The simulation dataset
is designed to evaluate the influences caused by the sample size and the independent variables size.
The “Zillow test dataset” (https://github.com/Ziqi-Li/FastGWR) is assigned to compare the acceleration
performance of the different GWR packages. The “Georgia” dataset is used to validate the result
accuracy of FPGWR against other schemes.

4.1.1. Simulation Dataset

The test region is displayed as a square area [34] with l length sides, where the sample points are
distributed evenly. After setting the sample size of each row to c, the total number of samples could
be expressed as n = c× c. The distance between two adjacent samples is calculated by ∆l = l/(c− 1).
The lower-left corner is defined as the origin of the coordinate system. The expression for calculating
the positions of the samples is given by

(ui, vi) =
(
∆l×mod

(i− 1
c

)
, ∆l× f loor

(i− 1
c

))
(23)

where mod stands for the remainder function, and floor denotes the rounding function.
The sample data are generated by the GWR model below. It is predefined in Equation (24) as

follows:
yi = β0(ui, vi) + β1(ui, vi)xi1 + β2(ui, vi)xi2 + β3(ui, vi)xi3 + β4(ui, vi)xi4 + εi (24)

To unify the dimensions of the regression coefficients β, all of the values are limited to the interval
(0, βmax) (βmax is a fixed constant). The coefficients β follow 5 functions as follows:

β0(ui, vi) =
2βmax

l2

(
l2

2
− (l− ui)

2
− (l− vi)

2
)

(25)

β1(ui, vi) =
βmax

2

((
sin

uiπ
l

)2
+

(
sin

viπ
l

)2
)

(26)

https://github.com/Ziqi-Li/FastGWR

ISPRS Int. J. Geo-Inf. 2020, 9, 653 11 of 20

β2(ui, vi) =
βmax

2

(
2−

((
tan

(uiπ
2l
−
π
4

))2
+

(
tan

(viπ
2l
−
π
4

))2
))

(27)

β3(ui, vi) = βmaxe−
1
2l ((

l
2−ui)

2
+(l

2−vi)
2
) (28)

β4(ui, vi) =
16βmax

l4

 l2

4
−

(
l
2
− ui

)2 l2

4
−

(
l
2
− vi

)2 (29)

The spatial distribution of the coefficients β is displayed in Figure 3. The five coefficients β
selected by the model are closely related to the position of the sample, which demonstrates the spatial
non-stationarity of the observations.

ISPRS Int. J. Geo-Inf. 2019, 8, x 11 of 20

𝛽ଵ(𝑢, 𝑣) = 𝛽௫2 ൬ቀsin 𝑢𝜋𝑙 ቁଶ + ቀsin 𝑣𝜋𝑙 ቁଶ൰ (26)

𝛽ଶ(𝑢, 𝑣) = 𝛽௫2 ൭2 − ൬ቀtan ቀ𝑢𝜋2𝑙 − 𝜋4ቁቁଶ + ቀtan ቀ𝑣𝜋2𝑙 − 𝜋4ቁቁଶ൰൱ (27)

𝛽ଷ(𝑢, 𝑣) = 𝛽௫𝑒ି ଵଶቆቀଶି௨ቁమାቀଶି௩ቁమቇ
 (28)

𝛽ସ(𝑢, 𝑣) = 16𝛽௫𝑙ସ ቆ𝑙ଶ4 − ൬𝑙2 − 𝑢൰ଶቇ ቆ𝑙ଶ4 − ൬𝑙2 − 𝑣൰ଶቇ (29)

The spatial distribution of the coefficients 𝛽 is displayed in Figure 3. The five coefficients 𝛽
selected by the model are closely related to the position of the sample, which demonstrates the spatial
non-stationarity of the observations.

Figure 3. Coefficient (𝛽, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ and 𝛽ସ) surface.

According to Formula (27), eight sets of sample datasets are produced for testing. The datasets’
construction parameters and resource link are exhibited in Table 1.

Table 1. Construction parameters of example data and access entrance of resource. 𝒍 𝒄 𝜷𝒎𝒂𝒙 𝒙𝒎𝒂𝒙 𝝈 Number of Data Points
10 10 4 2 0.5 100
10 40 4 2 0.5 1600
10 80 4 2 0.5 6400
10 100 4 2 0.5 10,000
10 200 4 2 0.5 40,000
10 500 4 2 0.5 250,000
10 1000 4 2 0.5 1,000,000
10 2000 4 2 0.5 4,000,000

Note: 1. Resource URL: https://pan.baidu.com/s/1c0Ga8Ngej0SG990sdxHQ_A. 2. Access code: 8dve.

Figure 3. Coefficient (β0, β1, β2, β3 and β4) surface.

According to Formula (27), eight sets of sample datasets are produced for testing. The datasets’
construction parameters and resource link are exhibited in Table 1.

Table 1. Construction parameters of example data and access entrance of resource.

l c βmax xmax σ
Number of
Data Points

10 10 4 2 0.5 100
10 40 4 2 0.5 1600
10 80 4 2 0.5 6400
10 100 4 2 0.5 10,000
10 200 4 2 0.5 40,000
10 500 4 2 0.5 250,000
10 1000 4 2 0.5 1,000,000
10 2000 4 2 0.5 4,000,000

Note: Resource URL: https://pan.baidu.com/s/1c0Ga8Ngej0SG990sdxHQ_A. Access code: 8dve.

https://pan.baidu.com/s/1c0Ga8Ngej0SG990sdxHQ_A

ISPRS Int. J. Geo-Inf. 2020, 9, 653 12 of 20

4.1.2. Zillow Test Dataset

The “Zillow test dataset” [26] is a subset of the Zillow property dataset, which consists of the
single-family housing information within the metropolitan area of Los Angeles. The mathematical
expression of the dataset is expressed as Equation (30). The dataset is open source on GitHub along
with the FastGWR algorithm (https://github.com/Ziqi-Li/FastGWR). This paper has downloaded
eight datasets (1 k, 2 k, 5 k, 10 k, 15 k, 20 k, 50 k and 100 k) from the GitHub repository for the
comparative experiment.

Valuei = βi0 + βi1Areai + βi2Nbathsi + βi3Nbedsi + βi4Agei + εi (30)

4.1.3. Georgia Dataset

The Georgia dataset [33] contains a subset (socio-demographic characteristics) of the 1990 US
census within the state of Georgia. The coordinates of the data points are set at the centroids of counties,
so there are 159 records containing county population attributes in the dataset. The model could be
defined as Equation (31):

PctBach = β0 + β1Intercept + β2PctPov + β3PctRural + β4PctBlack + ε (31)

4.2. Testing Specifications and Environment

The experiment for FPGWR is conducted on a desktop computer. The configuration of this
computer is an Intel i7-9700K 3.60 GHz 8-core CPU (Intel Corporation, Santa Clara, CA, USA),
16 GB Random Access Memory (RAM) (Kingston Technology Corporation, Fountain Valley, CA,
USA) and NVIDIA GeForce RTX 2080 Ti 11 GB GPU (NVIDIA Corporation, San Tomas Expressway
Santa Clara, CA, USA). In addition, it has installed version 10.2.95 of the CUDA development kit,
version 14.0.25431.01 Update 3 of Microsoft Visual Studio 2015 (development IDE), and the Microsoft
Windows 10.0.17134 Professional Edition operating system (OS). Note that 4352 SP core units are
placed in the GPU device. Relying on its ultra-high-speed task scheduling capability, the GPU can
withstand the pressure of multithreaded computation tasks in parallel.

4.3. Results

4.3.1. FPGWR Performance

Due to the transformation of parallelization, the regression efficiency of FPGWR increases
dramatically against GWR. The bandwidth optimization is clearly a repetitive process. To compare
the acceleration performances, this study analyzes only the single subprocess with a fixed bandwidth.
The runtimes of FPGWR with different sample sizes are shown in Table 2. Given four independent
variables, the runtime can be controlled within 2 s when the sample size is less than 40 k. After increasing
the sample size to 250 k, the runtime becomes approximately 66.6 s. As the sample size increases
to the millions scale, it spends only approximately 1094.7 s. The result shows that the runtime
obeys a logarithmic variation rule as the sample size changes.

The runtimes vary tremendously with different sample sizes. To enable the display of all results
together, the y-axis of the logarithmic scale is plotted in Figure 4. The comprehensive analysis of Table 2
and Figure 4 reveals that both the sample size and the number of independent variables can influence
the variation of runtime. The regression time has positive association with the number of independent
variables. When the sample size varies, the variation in the runtime is similar with different numbers
of independent variables. Given the same sample size, the results on the time exhibit a simple multiple
relationship among the different numbers of independent variables. In summary, the sample size has
a more pronounced impact than the number of independent variables on the regression time.

https://github.com/Ziqi-Li/FastGWR

ISPRS Int. J. Geo-Inf. 2020, 9, 653 13 of 20

Table 2. Runtime (in seconds) for different numbers of coefficients using different numbers of
data points.

Number of Data Points Four Independent
Variables

Three Independent
Variables

Two Independent
Variables

100 0.003 0.002 0.001
1600 0.022 0.017 0.011
6400 0.095 0.068 0.045

10,000 0.186 0.126 0.063
40,000 1.867 1.256 0.766
250,000 66.616 46.386 26.154

1,000,000 1094.654 738.636 421.922

ISPRS Int. J. Geo-Inf. 2019, 8, x 13 of 20

1,000,000 1094.654 738.636 421.922

The runtimes vary tremendously with different sample sizes. To enable the display of all results
together, the y-axis of the logarithmic scale is plotted in Figure 4. The comprehensive analysis of Table
2 and Figure 4 reveals that both the sample size and the number of independent variables can
influence the variation of runtime. The regression time has positive association with the number of
independent variables. When the sample size varies, the variation in the runtime is similar with
different numbers of independent variables. Given the same sample size, the results on the time
exhibit a simple multiple relationship among the different numbers of independent variables. In
summary, the sample size has a more pronounced impact than the number of independent variables
on the regression time.

Figure 4. Runtime comparison (bar) for different numbers of coefficients using different numbers of
data points.

Speed-up and efficiency are important metrics for the performance check of parallel algorithms
[35]. Speed-up refers to the ratio of single processor runtime to multiprocessor runtime, and efficiency
represents the average of speed-up in multiprocessors [36]. The speed-up of FPGWR relies on the
GPU performance, which consists of SP number, base clock frequency, and memory bandwidth.
Table 3 compares the performance configuration of different type GPUs. On basis of the 250,000
simulation samples, this study regresses the model given in equation (24) with an increasing number
of GPU cores. The runtime of GTX1050 is set as the benchmark value to calculate the speed-up factor
of GPUs with different SP numbers. The speed-ups growth proves that FPGWR has an outstanding
parallel scalability. Figure 5 illustrates that the computation time decreases approximate-linearly as
the number of GPU cores increases. It exhibits an obvious positive linear relationship between
efficiency and GPU cores.

Table 3. Performance comparison for different types of graphics processing unit (GPU).

Type of
NVIDIA GPU

SP
Number

Base Clock
Frequency (MHz)

Memory
Bandwidth (GB/s)

Runtime
(ms)

Speed-Up
Factor

GTX 1050 640 1354 84 568,086 1
GTX 1060 1280 1506 192 391,968 1.45
GTX 1070 1920 1506 256 232,801 2.44
RTX 2070 2304 1410 448 129,665 4.38
RTX 2080 2944 1515 448 92,141 6.17

RTX 2080 Ti 4352 1350 616 65,916 8.62

Figure 4. Runtime comparison (bar) for different numbers of coefficients using different numbers of
data points.

Speed-up and efficiency are important metrics for the performance check of parallel algorithms [35].
Speed-up refers to the ratio of single processor runtime to multiprocessor runtime, and efficiency
represents the average of speed-up in multiprocessors [36]. The speed-up of FPGWR relies
on the GPU performance, which consists of SP number, base clock frequency, and memory
bandwidth. Table 3 compares the performance configuration of different type GPUs. On basis of the
250,000 simulation samples, this study regresses the model given in equation (24) with an increasing
number of GPU cores. The runtime of GTX1050 is set as the benchmark value to calculate the
speed-up factor of GPUs with different SP numbers. The speed-ups growth proves that FPGWR
has an outstanding parallel scalability. Figure 5 illustrates that the computation time decreases
approximate-linearly as the number of GPU cores increases. It exhibits an obvious positive linear
relationship between efficiency and GPU cores.

The experimental result demonstrates the outstanding capability of FPGWR to accelerate GWR,
although its performance varies slightly among different orders of magnitude of observations. By setting
appropriate sample sizes and independent variable numbers, the full potential of FPGWR can be
achieved in various fields.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 14 of 20

Table 3. Performance comparison for different types of graphics processing unit (GPU).

Type of
NVIDIA GPU SP Number

Base Clock
Frequency

(MHz)

Memory
Bandwidth

(GB/s)

Runtime
(ms)

Speed-Up
Factor

GTX 1050 640 1354 84 568,086 1
GTX 1060 1280 1506 192 391,968 1.45
GTX 1070 1920 1506 256 232,801 2.44
RTX 2070 2304 1410 448 129,665 4.38
RTX 2080 2944 1515 448 92,141 6.17

RTX 2080 Ti 4352 1350 616 65,916 8.62ISPRS Int. J. Geo-Inf. 2019, 8, x 14 of 20

Figure 5. Performance comparison of FPGWR for an increasing number of GPU cores.

The experimental result demonstrates the outstanding capability of FPGWR to accelerate GWR,
although its performance varies slightly among different orders of magnitude of observations. By
setting appropriate sample sizes and independent variable numbers, the full potential of FPGWR can
be achieved in various fields.

4.3.2. Comparison of FPGWR and Other GWR

Benefiting from the development of computer hardware, researchers could quickly and easily
build the GPU environment for large-scale spatial study. To verify the acceleration capability, another
four GWR—namely, FastGWR (Python), MGWR (Python), GWmodel (R), and spgwr (R)—are
selected to compare with FPGWR. The test data utilized by the experiment is the “Zillow test dataset.”
GWmodel uses moving window weighting technique to decrease the computation. FastGWR
implements distributed parallelism in HPC environment to improve operating efficiency. FastGWR
is superior than MGWR, GWmodel and spgwr in terms of overall calculating efficiency. As a side
note, although the optimal environment for FastGWR is an HPC cluster, it is more unbiased to
conduct the experiments based on a single desktop environment.

The runtimes of the five packages with different sample sizes are displayed in Table 4. The
runtime merely contains the single regression time with a specified bandwidth (as in Section 4.3.1).
Given 1000 observations, FPGWR is 5 times faster than FastGWR, 32 times faster than MGWR, 88
times faster than GWmodel, and 865 times faster than spgwr. As the sample size increases to 10,000,
FPGWR is approximately 14 times faster than FastGWR, approximately 157 times faster than MGWR,
approximately 2185 times faster than GWmodel, and approximately 45,811 times faster than spgwr.
Once the sample size exceeds 20,000, spgwr will fail to complete the regression task first, followed by
GWmodel and MGWR. The cause is that the three schemes fail to avoid storing the high-dimensional
weight matrix and other intermediate matrices.

Table 4. Runtime (in seconds) for five GWR packages using different numbers of data points.

Number of Data Points FPGWR FastGWR MGWR GWmodel Spgwr
1000 0.01 0.05 0.32 0.88 8.65
2000 0.02 0.13 0.95 4.12 60.26
5000 0.06 0.47 5.43 53.15 1095.80

10,000 0.18 2.45 28.34 393.30 8245.93
15,000 0.27 4.42 58.97 1464.12 n/a
20,000 0.50 6.76 n/a n/a n/a
50,000 2.72 64.57 n/a n/a n/a
100,000 10.80 307.12 n/a n/a n/a

Figure 5. Performance comparison of FPGWR for an increasing number of GPU cores.

4.3.2. Comparison of FPGWR and Other GWR

Benefiting from the development of computer hardware, researchers could quickly and easily
build the GPU environment for large-scale spatial study. To verify the acceleration capability,
another four GWR—namely, FastGWR (Python), MGWR (Python), GWmodel (R), and spgwr
(R)—are selected to compare with FPGWR. The test data utilized by the experiment is the “Zillow
test dataset.” GWmodel uses moving window weighting technique to decrease the computation.
FastGWR implements distributed parallelism in HPC environment to improve operating efficiency.
FastGWR is superior than MGWR, GWmodel and spgwr in terms of overall calculating efficiency.
As a side note, although the optimal environment for FastGWR is an HPC cluster, it is more unbiased
to conduct the experiments based on a single desktop environment.

The runtimes of the five packages with different sample sizes are displayed in Table 4.
The runtime merely contains the single regression time with a specified bandwidth (as in Section 4.3.1).
Given 1000 observations, FPGWR is 5 times faster than FastGWR, 32 times faster than MGWR, 88 times
faster than GWmodel, and 865 times faster than spgwr. As the sample size increases to 10,000,
FPGWR is approximately 14 times faster than FastGWR, approximately 157 times faster than MGWR,
approximately 2185 times faster than GWmodel, and approximately 45,811 times faster than spgwr.
Once the sample size exceeds 20,000, spgwr will fail to complete the regression task first, followed by
GWmodel and MGWR. The cause is that the three schemes fail to avoid storing the high-dimensional
weight matrix and other intermediate matrices.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 15 of 20

Table 4. Runtime (in seconds) for five GWR packages using different numbers of data points.

Number of
Data Points FPGWR FastGWR MGWR GWmodel Spgwr

1000 0.01 0.05 0.32 0.88 8.65
2000 0.02 0.13 0.95 4.12 60.26
5000 0.06 0.47 5.43 53.15 1095.80

10,000 0.18 2.45 28.34 393.30 8245.93
15,000 0.27 4.42 58.97 1464.12 n/a
20,000 0.50 6.76 n/a n/a n/a
50,000 2.72 64.57 n/a n/a n/a
100,000 10.80 307.12 n/a n/a n/a

The runtimes of the five packages are illustrated in Figure 6. The y-axis is marked on a logarithmic
scale to display all of the results together. Observing each package separately reveals that the runtimes
of the five schemes all exhibit a logarithmic increasing trend. According to Figure 6, the performances
of the five packages are enhanced generation by generation. FPGWR is the most ideal implementation
among these schemes.

ISPRS Int. J. Geo-Inf. 2019, 8, x 15 of 20

The runtimes of the five packages are illustrated in Figure 6. The y-axis is marked on a
logarithmic scale to display all of the results together. Observing each package separately reveals that
the runtimes of the five schemes all exhibit a logarithmic increasing trend. According to Figure 6, the
performances of the five packages are enhanced generation by generation. FPGWR is the most ideal
implementation among these schemes.

Figure 6. Runtime comparison (bar) for different packages using different numbers of data points.

Overall, FPGWR is a feasible GWR accelerator with a low development cost and simple
productization process. Compared with other packages, FPGWR can greatly simplify a complicated
job through decomposing the redundant full-sample regression.

4.3.3. Validation of the Result Accuracy

To validate the accuracy of FPGWR against other GWR packages, the results (𝛽መ , 𝐴𝑑𝑗. 𝑅ଶ and 𝐴𝐼𝐶 scores) of the five packages are compared based on the well-known “Georgia” dataset. The
dependent variable PctBach and independent variables PctPov, PctRural and PctBlack are chosen to
calibrate the same GWR model according to Equation (31). On the basis of the adaptive Bi-square
kernel function, 93 nearest neighbors are selected for the optimal bandwidth. As shown in Table 5,
the Mean and Standard Deviation of the estimated coefficients 𝛽መ are displayed in the middle section,
and the 𝐴𝑑𝑗. 𝑅ଶ and 𝐴𝐼𝐶 scores are indicated in the lower section. The FPGWR result is clearly
consistent with those of the other four packages.

Table 5. Statistical results of local coefficient estimates and regression estimates for five GWR
packages.

Variables FPGWR FastGWR MGWR GWmodel Spgwr
 Mean
 Standard Deviation Intercept 23.0748 23.0748 23.0748 23.0748 23.0748

4.1048 4.1048 4.1048 4.1048 4.1048 PctPov −0.2625 −0.2625 −0.2625 −0.2625 −0.2625
0.0916 0.0916 0.0916 0.0916 0.0916 PctRural −0.1181 −0.1181 −0.1181 −0.1181 −0.1181
0.0370 0.0370 0.0370 0.0370 0.0370 PctBlack 0.0445 0.0445 0.0445 0.0445 0.0445
0.0576 0.0576 0.0576 0.0576 0.0576 PctBach 10.9363 10.9363 10.9363 10.9363 10.9363

Figure 6. Runtime comparison (bar) for different packages using different numbers of data points.

Overall, FPGWR is a feasible GWR accelerator with a low development cost and simple
productization process. Compared with other packages, FPGWR can greatly simplify a complicated
job through decomposing the redundant full-sample regression.

4.3.3. Validation of the Result Accuracy

To validate the accuracy of FPGWR against other GWR packages, the results (β̂, Adj.R2 and AICc

scores) of the five packages are compared based on the well-known “Georgia” dataset. The dependent
variable PctBach and independent variables Intercept, PctPov, PctRural and PctBlack are chosen to
calibrate the same GWR model according to Equation (31). On the basis of the adaptive Bi-square
kernel function, 93 nearest neighbors are selected for the optimal bandwidth. As shown in Table 5, the
Mean and Standard Deviation of the estimated coefficients β̂ are displayed in the middle section, and
the Adj.R2 and AICc scores are indicated in the lower section. The FPGWR result is clearly consistent
with those of the other four packages.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 16 of 20

Table 5. Statistical results of local coefficient estimates and regression estimates for five GWR packages.

Variables FPGWR FastGWR MGWR GWmodel Spgwr

Mean

Standard Deviation

Intercept 23.0748 23.0748 23.0748 23.0748 23.0748
4.1048 4.1048 4.1048 4.1048 4.1048

PctPov
−0.2625 −0.2625 −0.2625 −0.2625 −0.2625
0.0916 0.0916 0.0916 0.0916 0.0916

PctRural
−0.1181 −0.1181 −0.1181 −0.1181 −0.1181
0.0370 0.0370 0.0370 0.0370 0.0370

PctBlack
0.0445 0.0445 0.0445 0.0445 0.0445
0.0576 0.0576 0.0576 0.0576 0.0576

PctBach
10.9363 10.9363 10.9363 10.9363 10.9363
4.3489 4.3489 4.3489 4.3489 4.3489

Value

Adj.R2 0.5812 0.5812 0.5812 0.5812 0.5812
AICc 896.35 896.35 896.35 896.35 896.35

The spatial distribution of the estimated coefficients β̂ in the study area is illustrated in Figure 7.
To simulate the spatial variation better, both the surfaces are interpolated as a continuous surface
utilizing the griddata method.

ISPRS Int. J. Geo-Inf. 2019, 8, x 16 of 20

4.3489 4.3489 4.3489 4.3489 4.3489
 Value Adj. Rଶ 0.5812 0.5812 0.5812 0.5812 0.5812 AICc 896.35 896.35 896.35 896.35 896.35

The spatial distribution of the estimated coefficients 𝛽መ in the study area is illustrated in Figure
7. To simulate the spatial variation better, both the surfaces are interpolated as a continuous surface
utilizing the griddata method.

Figure 7. Surfaces of coefficient estimates.

4.4. Discussion

Multiple loops are necessary in the GWR model until FPGWR atomizes the large process.
Enormous calculation redundancy would inevitably emerge in the implementation of the GWR
algorithm. The algorithm structure is nested with multilevel loops, where the upper loop depends on
the lower loop and the internal sequence of each loop is fixed. It is illegitimate to disturb the original
iterative sequence of the subprocesses; otherwise, the accuracy of the regression results would be
questioned seriously. FPGWR introduces a hybrid (parallel–serial) mode, which could enable the
GPU device to not only tolerate parallel tasks of each batch but also complete all of the tasks
efficiently. The subprocesses could be randomly executed without errors, and the accuracy of the
results is guaranteed for the model diagnosis. FPGWR differs obviously from GWR in its memory
usage and time cost.

4.4.1. Memory

The matrix storage strategy of GWR is different from FPGWR, as shown in Figure 8. The FPGWR
optimizes the storage mode in utilizing the schemes, the on-demand storage and the matrix
vectorization. The weight matrix 𝑊 is stored as an 𝑛 × 𝑛 diagonal matrix in the GWR model.
Although only the diagonal elements must be solved, a storage space of size 𝑛ଶ is demanded. The

Figure 7. Surfaces of coefficient estimates.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 17 of 20

4.4. Discussion

Multiple loops are necessary in the GWR model until FPGWR atomizes the large process.
Enormous calculation redundancy would inevitably emerge in the implementation of the GWR
algorithm. The algorithm structure is nested with multilevel loops, where the upper loop depends
on the lower loop and the internal sequence of each loop is fixed. It is illegitimate to disturb the
original iterative sequence of the subprocesses; otherwise, the accuracy of the regression results would
be questioned seriously. FPGWR introduces a hybrid (parallel–serial) mode, which could enable
the GPU device to not only tolerate parallel tasks of each batch but also complete all of the tasks
efficiently. The subprocesses could be randomly executed without errors, and the accuracy of the
results is guaranteed for the model diagnosis. FPGWR differs obviously from GWR in its memory
usage and time cost.

4.4.1. Memory

The matrix storage strategy of GWR is different from FPGWR, as shown in Figure 8. The FPGWR
optimizes the storage mode in utilizing the schemes, the on-demand storage and the matrix vectorization.
The weight matrix Wi is stored as an n × n diagonal matrix in the GWR model. Although only the
diagonal elements must be solved, a storage space of size n2 is demanded. The memory complexity
could be expressed as O

(
n2

)
. In the subsequent steps, the calculations of the matrices B, B−1 and A all

inherit the memory complexity. In comparison, the FPGWR method only stores the data as required.
Its memory complexity can be reduced into O((p + 1)n) (p + 1 ≤ 10 in common).

ISPRS Int. J. Geo-Inf. 2019, 8, x 17 of 20

memory complexity could be expressed as 𝑂(𝑛ଶ). In the subsequent steps, the calculations of the
matrices 𝐵, 𝐵ିଵ and 𝐴 all inherit the memory complexity. In comparison, the FPGWR method only
stores the data as required. Its memory complexity can be reduced into 𝑂൫(𝑝 + 1)𝑛൯ (𝑝 + 1 ≤ 10 in
common).

Figure 8. Different storage modes of weight matrix between classical GWR and FPGWR.

Table 6 illustrates the comparison of memory usage between FPGWR and GWR. When the
sample size is less than 100,000, the memory of the GPU device is still available for usage. Once the
size is increased to 10,000,000, GWR approximately requires 364 TB RAM. Any existing single GPU
device could not allocate so much storage space. In contrast, FPGWR consumes only 380 MB RAM.
To summarize, FPGWR demonstrates a tremendous advantage over GWR.

Table 6. The comparison of memory usage for FPGWR against classical GWR.

Number of Data Points FPGWR Classical GWR
100 3.9 KB 39 KB
1000 39 KB 3.8 MB

10,000 390 KB 380 MB
100,000 3.8 MB 38 GB

1,000,000 38 MB 3.8 TB
10,000,000 380 MB 364 TB

Note: 32-bit floats were used for all decimals and 𝑝 = 9.

4.4.2. Time

It is necessary for the process of calculating the hat matrix 𝑆 in GWR. The weight matrix 𝑊 is
a special diagonal matrix that does not increase the runtime complexity during matrix multiplication.
The runtime complexity of matrices 𝐴 is 𝑂(1), and the runtime complexity of 𝐵 is 𝑂((𝑝 + 1)ଶ𝑛).
Because 𝑝 + 1 is far less than 𝑛, the computing time of matrix 𝐵 can be ignored. Given a fixed
weight bandwidth, the runtime complexity of hat matrix 𝑆 can be expressed as 𝑂((𝑝 + 1)ଶ𝑛). After 𝑛 operations on 𝑆, the runtime complexity of matrix 𝑆 is defined by 𝑂((𝑝 + 1)ଶ𝑛ଶ). Different GWR
schemes utilize varied ways to select the optimal bandwidth, and thereby, the study will omit a
discussion about the runtime complexity of the whole process. The regression subprocess of single
sample is appropriate to be used for the runtime analysis in this subsection. Instead of computing
iteratively, FPGWR atomizes the regression process of each point as an independent thread. The
strategy has reduced the runtime complexity of matrix 𝑆 appreciably. At the same time, the runtime

Figure 8. Different storage modes of weight matrix between classical GWR and FPGWR.

Table 6 illustrates the comparison of memory usage between FPGWR and GWR. When the
sample size is less than 100,000, the memory of the GPU device is still available for usage. Once the
size is increased to 10,000,000, GWR approximately requires 364 TB RAM. Any existing single GPU
device could not allocate so much storage space. In contrast, FPGWR consumes only 380 MB RAM.
To summarize, FPGWR demonstrates a tremendous advantage over GWR.

ISPRS Int. J. Geo-Inf. 2020, 9, 653 18 of 20

Table 6. The comparison of memory usage for FPGWR against classical GWR.

Number of Data Points FPGWR Classical GWR

100 3.9 KB 39 KB
1000 39 KB 3.8 MB

10,000 390 KB 380 MB
100,000 3.8 MB 38 GB

1,000,000 38 MB 3.8 TB
10,000,000 380 MB 364 TB

Note: 32-bit floats were used for all decimals and p = 9.

4.4.2. Time

It is necessary for the process of calculating the hat matrix S in GWR. The weight matrix Wi is
a special diagonal matrix that does not increase the runtime complexity during matrix multiplication.
The runtime complexity of matrices A is O(1), and the runtime complexity of B is O

(
(p + 1)2n

)
.

Because p + 1 is far less than n, the computing time of matrix B can be ignored. Given a fixed
weight bandwidth, the runtime complexity of hat matrix Si can be expressed as O

(
(p + 1)2n

)
. After n

operations on Si, the runtime complexity of matrix S is defined by O
(
(p + 1)2n2

)
. Different GWR

schemes utilize varied ways to select the optimal bandwidth, and thereby, the study will omit
a discussion about the runtime complexity of the whole process. The regression subprocess of single
sample is appropriate to be used for the runtime analysis in this subsection. Instead of computing
iteratively, FPGWR atomizes the regression process of each point as an independent thread. The strategy
has reduced the runtime complexity of matrix S appreciably. At the same time, the runtime complexity
of matrix of A becomes O((p + 1)n), and the runtime complexity of matrix of B becomes O

(
(p + 1)2n

)
.

By combining matrices A and B in the form of parallel addition, the hat matrix Si gains a runtime
complexity of O((p + 1)(p + 2)n). The runtime complexity of FPGWR is theoretically lower than GWR,
but the instruction operation efficiency of host device differs significantly from the GPU device, and the
methods used by the different libraries to optimize the matrix operation are inconsistent. Therefore,
the actual comparison results should refer to the experimental results (in Section 4.3.2).

The achievement of GWR regression coefficients requires consuming much time for repeated
iteration when handling big geodata. For example, when the sample size is 1,000,000, single point
regression of GWR needs to be iterated for 1,000,000 times with a huge time occupying and memory
usage. Therefore, this problem could be solved by parallelization strategy. The atomization algorithm
does not store the weight matrix and other temporary matrices during each point regression iteration,
but only reads and calculates the matrix elements on-demand. FPGWR shortens computation time
while using much less memory space through parallelizing these atomic units on CUDA.

5. Conclusions

GWR is a local modeling technique that has been widely used in various disciplines. However,
GWR has significant computational redundancy and can handle approximately 15,000 geographical
observations at most. To apply the local smoothing technique on a large-scale spatial dataset,
we proposed an improved algorithm FPGWR to solve these problems. FPGWR optimizes the
matrix storage mode to overcome the limitation on memory space, thereby significantly reducing the
memory complexity of GWR. Furthermore, it introduces a parallel computing mode, decomposing the
full-sample large cycle into an atomization process, to decrease the runtime complexity substantially.

To demonstrate the practicability of FPGWR, simulation and Zillow datasets are used to conduct
the experiment. The results show that the regression runtime is exponentially related to the number of
observations, and thus, GWR is unable to process the regression task with large volumes of geodata.
In comparison, the time taken up by FPGWR exhibits a logarithmic relationship with the number

ISPRS Int. J. Geo-Inf. 2020, 9, 653 19 of 20

of observations; hence, FPGWR represents a significant advance in handling the massive geodata
mining task.

In summary, the dilemma that limits GWR in the data scale could be considerably alleviated
by FPGWR, and thus, the application domains of GWR would be potentially expanded to a large
extent. Under these circumstances, increasingly large datasets from geographical or nongeographical
fields could be converted to the providers of the large-scale geographic analysis services. In the future,
we will investigate a key issue: how to adapt FPGWR to non-CUDA architectures, even other non-GPU
HPC devices, to enhance the versatility of the extended algorithm.

Author Contributions: Conceptualization, Dongchao Wang, and Yi Yang; Methodology, Dongchao Wang;
Resources, Dongchao Wang; Software, Dongchao Wang; Validation, Dongchao Wang; Writing—original draft,
Dongchao Wang; Writing—review and editing, Dongchao Wang, Yi Yang, Agen Qiu, Xiaochen Kang, Jiakuan Han,
and Zhengyuan Chai. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Project (grant number
2019YFB2102500/2019YFB2102503), the National Natural Science Foundation of China (grant number 71903183,
41801316, 41701461), and the Basic Scientific Research Fund of CASM (grant number AR1910).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Toch, E.; Lerner, B.; Ben-Zion, E.; Ben-Gal, I. Analyzing large-scale human mobility data: A survey of machine
learning methods and applications. Knowl. Inf. Syst. 2019, 58, 501–523. [CrossRef]

2. Weckström, C.; Kujala, R.; Mladenović, M.N.; Saramäki, J. Assessment of large-scale transitions in public
transport networks using open timetable data: Case of Helsinki metro extension. J. Transp. Geogr. 2019,
79, 102470. [CrossRef]

3. Hicks, J.L.; Althoff, T.; Sosic, R.; Kuhar, P.; Bostjancic, B.; King, A.C.; Leskovec, J.; Delp, S.L. Best practices
for analyzing large-scale health data from wearables and smartphone apps. NPJ Digit. Med. 2019, 2, 1–12.
[CrossRef]

4. Tasar, O.; Tarabalka, Y.; Alliez, P. Incremental learning for semantic segmentation of large-scale remote
sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3524–3537. [CrossRef]

5. Li, Z.; Huang, Q.; Jiang, Y.; Hu, F. SOVAS: A scalable online visual analytic system for big climate data
analysis. Int. J. Geogr. Inf. Sci. 2020, 34, 1188–1209. [CrossRef]

6. Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2015, 80, 449–461. [CrossRef]
7. Xia, J.; Huang, S.; Zhang, S.; Li, X.; Lyu, J.; Xiu, W.; Tu, W. DAPR-tree: A distributed spatial data indexing

scheme with data access patterns to support Digital Earth initiatives. Int. J. Digit. Earth 2020, 1–16. [CrossRef]
8. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop-GIS: A high performance spatial data

warehousing system over MapReduce. In Proceedings of the VLDB Endowment International Conference
on Very Large Data Bases, Trento, Italy, 26–30 August 2013; Volume 6.

9. Wu, Q.Y.; Su, K.Y.; Zou, Z.J. A mapreduce-based method for parallel calculation of bus passengers origin
and destination from massive transit data. J. Geo Inf. Sci. 2018, 20, 647–655.

10. Wilkinson, B.; Allen, M. Parallel Programming; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
11. Gong, Z.; Tang, W.; Bennett, D.A.; Thill, J.-C.F. Parallel agent-based simulation of individual-level spatial

interactions within a multicore computing environment. Int. J. Geogr. Inf. Sci. 2013, 27, 1152–1170. [CrossRef]
12. Tang, W.; Feng, W.; Jia, M. Massively parallel spatial point pattern analysis: Ripley’s K function accelerated

using graphics processing units. Int. J. Geogr. Inf. Sci. 2015, 29, 412–439. [CrossRef]
13. Zhang, G.; Zhu, A.X.; Huang, Q. A GPU-accelerated adaptive kernel density estimation approach for efficient

point pattern analysis on spatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 2068–2097. [CrossRef]
14. Sandric, I.; Ionita, C.; Chitu, Z.; Dardala, M.; Irimia, R.; Furtuna, F.T. Using CUDA to accelerate uncertainty

propagation modelling for landslide susceptibility assessment. Environ. Model. Softw. 2019, 115, 176–186.
[CrossRef]

15. Stojanovic, N.; Stojanovic, D. Parallelizing multiple flow accumulation algorithm using cuda and openacc.
ISPRS Int. J. Geo Inf. 2019, 8, 386. [CrossRef]

16. Pei, T.; Song, C.; Guo, S.; Shu, H.; Liu, Y.; Du, Y.; Ma, T.; Zhou, C. Big geodata mining: Objective, connotations
and research issues. J. Geogr. Sci. 2020, 30, 251–266. [CrossRef]

http://dx.doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.1016/j.jtrangeo.2019.102470
http://dx.doi.org/10.1038/s41746-019-0121-1
http://dx.doi.org/10.1109/JSTARS.2019.2925416
http://dx.doi.org/10.1080/13658816.2019.1605073
http://dx.doi.org/10.1007/s10708-014-9602-6
http://dx.doi.org/10.1080/17538947.2020.1778804
http://dx.doi.org/10.1080/13658816.2012.741240
http://dx.doi.org/10.1080/13658816.2014.976569
http://dx.doi.org/10.1080/13658816.2017.1324975
http://dx.doi.org/10.1016/j.envsoft.2019.02.016
http://dx.doi.org/10.3390/ijgi8090386
http://dx.doi.org/10.1007/s11442-020-1726-7

ISPRS Int. J. Geo-Inf. 2020, 9, 653 20 of 20

17. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for
exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]

18. Zhang, P.; Yang, D.; Zhang, Y.; Li, Y.; Liu, Y.; Cen, Y.; Zhang, W.; Geng, W.; Rong, T.; Liu, Y.; et al.
Re-examining the drive forces of China’s industrial wastewater pollution based on GWR model at provincial
level. J. Clean. Prod. 2020, 262, 121309. [CrossRef]

19. Wu, D. Spatially and Temporally Varying Relationships between Ecological Footprint and Influencing Factors
in China’s Provinces Using Geographically Weighted Regression (GWR). J. Clean. Prod. 2020, 261, 121089.
[CrossRef]

20. Yuan, Y.; Cave, M.; Xu, H.; Zhang, C. Exploration of spatially varying relationships between Pb and Al in
urban soils of London at the regional scale using geographically weighted regression (GWR). J. Hazard. Mater.
2020, 393, 122377. [CrossRef]

21. Hong, I.; Yoo, C. Analyzing Spatial Variance of Airbnb Pricing Determinants Using Multiscale GWR
Approach. Sustainability 2020, 12, 4710. [CrossRef]

22. Wu, S.; Wang, Z.; Du, Z.; Huang, B.; Zhang, F.; Liu, R. Geographically and temporally neural network
weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci.
2020, 1–27. [CrossRef]

23. Bivand, R.; Yu, D.; Nakaya, T.; Garcia-Lopez, M.A. Package SPGWR; R Software Package; R Foundation for
Statistical Computing: Vienna, Austra, 2020.

24. Gollini, I.; Lu, B.; Charlton, M. GWmodel: An R Package for Exploring Spatial Heterogeneity Using
Geographically Weighted Models. J. Stat. Softw. 2015, 63, 1–50. [CrossRef]

25. Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python implementation of multiscale
geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J.
Geo Inf. 2019, 8, 269. [CrossRef]

26. Li, Z.; Fotheringham, A.S.; Li, W.; Oshan, T. Fast Geographically Weighted Regression (FastGWR): A scalable
algorithm to investigate spatial process heterogeneity in millions of observations. Int. J. Geogr. Inf. Sci. 2019,
33, 155–175. [CrossRef]

27. Tran, H.T.; Nguyen, H.T.; Tran, V.T. Large-scale geographically weighted regression on Spark. In Proceedings
of the 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), Hanoi, Vietnam,
6–8 October 2016; pp. 127–132.

28. Foster, S.A.; Gorr, W.L. An adaptive filter for estimating spatially-varying parameters: Application to
modeling police hours spent in response to calls for service. Manag. Sci. 1986, 32, 878–889.

29. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.
30. Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Geographically weighted summary statistics—A framework

for localised exploratory data analysis. Comput. Environ. Urban Syst. 2002, 26, 501–524. [CrossRef]
31. Harris, R.; Singleton, A.; Grose, D.; Brundson, C.; Longley, P. Grid-enabling geographically weighted

regression: A case study of participation in higher education in England. Trans. GIS 2010, 14, 43–61.
32. NVIDIA Corporation. Compute Unified Device Architecture (CUDA). Available online: https://developer.

nvidia.com/cuda-toolkit (accessed on 6 October 2020).
33. Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially

Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002.
34. Zhang, H.; Mei, C. Local least absolute deviation estimation of spatially varying coefficient models: Robust

geographically weighted regression approaches. Int. J. Geogr. Inf. Sci. 2011, 25, 1467–1489.
35. Eager, D.L.; Zahorjan, J.; Lazowska, E.D. Speedup versus efficiency in parallel systems. IEEE Trans. Comput.

1989, 38, 408–423.
36. Yang, L.; Sun, X.; Li, Z. An efficient framework for remote sensing parallel processing: Integrating the

artificial bee colony algorithm and multiagent technology. Remote Sens. 2019, 11, 152. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://dx.doi.org/10.1016/j.jclepro.2020.121309
http://dx.doi.org/10.1016/j.jclepro.2020.121089
http://dx.doi.org/10.1016/j.jhazmat.2020.122377
http://dx.doi.org/10.3390/su12114710
http://dx.doi.org/10.1080/13658816.2020.1775836
http://dx.doi.org/10.18637/jss.v063.i17
http://dx.doi.org/10.3390/ijgi8060269
http://dx.doi.org/10.1080/13658816.2018.1521523
http://dx.doi.org/10.1016/S0198-9715(01)00009-6
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.3390/rs11020152
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	GWR Model and Atomization Algorithm
	GWR Review
	GWR Model
	Spatial Weight Kernel Function
	Model Regression
	The Criteria of Optimal Bandwidth Selection

	Atomizing the GWR Model
	Intermediate Matrix
	Implementation of the Atomization Algorithm

	CUDA Enabled FPGWR
	Optimizing the Kernel Function of CUDA
	Implementing FPGWR Based on CUDA

	Results and Discussion
	Data Source
	Simulation Dataset
	Zillow Test Dataset
	Georgia Dataset

	Testing Specifications and Environment
	Results
	FPGWR Performance
	Comparison of FPGWR and Other GWR
	Validation of the Result Accuracy

	Discussion
	Memory
	Time

	Conclusions
	References

