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Abstract: The satellite-retrieved Aerosol Optical Depth (AOD) is widely used to estimate the con-
centrations and analyze the spatiotemporal pattern of Particulate Matter that is less than or equal
to 2.5 microns (PM2.5), also providing a way for the related research of air pollution. Many studies
generated PM2.5 concentration networks with resolutions of 3 km or 10 km. However, the relatively
coarse resolution of the satellite AOD products make it difficult to determine the fine-scale char-
acteristics of PM2.5 distributions that are important for urban air quality analysis. In addition, the
composition and chemical properties of PM2.5 are relatively complex and might be affected by many
factors, such as meteorological and land cover type factors. In this paper, an AOD product with a
1 km spatial resolution derived from the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm, the PM2.5 measurements from ground sites and the meteorological data as
the auxiliary variable, are integrated into the Modified Support Vector Regression (MSVR) model
that proposed in this paper to estimate the PM2.5 concentrations and analyze the spatiotemporal
pattern of PM2.5. Considering the relatively small dataset and the somewhat complex relationship
between the variables, we propose a Modified Support Vector Regression (MSVR) model that based
on SVR to fit and estimate the PM2.5 concentrations in Hubei province of China. In this paper, we
obtained Cross Correlation Coefficient (R2) of 0.74 for the regression of independent and dependent
variables, and the conventional SVR model obtained R2 of 0.60 as comparison. We think our MSVR
model obtained relatively good performance in spite of many complex factors that might impact
the accuracy. We then utilized the optimal MSVR model to perform the PM2.5 estimating, analyze
their spatiotemporal patterns, and try to explain the possible reasons for these patterns. The results
showed that the PM2.5 estimations retrieved from 1 km MAIAC AOD could reflect more detailed
spatial distribution characteristics of PM2.5 and have higher accuracy than that from 3 km MODIS
AOD. Therefore, the proposed MSVR model can be a better method for PM2.5 estimating, especially
when the dataset is relatively small.

Keywords: PM2.5; MAIAC 1 km AOD; MODIS; modified support vector regression; meteorologi-
cal data

1. Introduction

Currently, air pollution and its related health problems have become research hot
spots [1]. Numerous studies have indicated that particles smaller than 2.5 µm in aerody-
namic diameter (PM2.5) have adverse effects on human health and can cause pulmonary
and cardiovascular diseases [2,3].

People exposed to polluted environments are prone to illness or even death. Thus,
PM2.5 exposure monitoring and pattern analysis are critical to air quality assessment and
environmental epidemiologic studies [4,5]. PM2.5 concentrations are traditionally obtained
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by ground monitoring sites distributed throughout a country. However, the existing ground
monitoring sites are too sparse to provide continuous PM2.5 monitoring due to the high
construction cost. In contrast, satellite remote sensing has wide and continuous spatial
coverage and has been widely applied in the estimation of PM2.5 concentrations [6,7],
although the cloud could affect the availability of data.

Satellite-derived Aerosol Optical Depth (AOD) represents the quantity of light re-
moved from a beam by the role of aerosol scattering or absorption during its path [8,9].
Furthermore, previous studies have indicated that there exists a direct relationship between
the atmospheric particles (such as PM2.5) and AOD [10]. Thus, remote sensing satellites’
AOD products provide a potentially cost-effective way to estimate ground-level PM2.5 mass
concentrations [11,12]. A series of AOD products have been applied to such surveys [13],
e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS) [14,15], the Multi-angle
Imaging Spectroradiometer [16], the Himawari-8 (H8) [17,18], and the Visible Infrared
Imaging Radiometer Suite [19]. However, the relatively coarse spatial resolutions (usually
3 km or 10 km) of the above-mentioned satellite sensors limit the precise estimates of PM2.5
in urban areas. Recently, the Multi-Angle Implementation of Atmospheric Correction (MA-
IAC) algorithm, which utilizes time-series analysis and image-based processing techniques,
was developed to conduct aerosol retrievals and atmospheric corrections.

The Multiangle Implementation of Atmospheric Correction (MAIAC) is a new generic
algorithm applied to collection 6 (C6) MODIS measurements to retrieve Aerosol Optical
Depth (AOD) over land at high spatial resolution (1 km) [20]. The related AOD product
MCD19A2 (MODIS Collection 6 (C6) daily AOD dataset), which is based on the MAIAC
algorithm, was released in 2018 [21]. Although the goal of the MAIAC AOD product is
aerosol monitoring, this product of 1 km resolution gives us chance to estimate PM2.5
concentrations in a higher spatial and temporal resolution.

Previous studies have shown that the relationship between PM2.5 and AOD is rela-
tively complex and may be affected by a series of parameters, such as the aerosol type and
the vertical structure of aerosol distribution [22], the relative humidity (RH) [23], planetary
boundary layer height (PBLH) [24], wind speed and direction [25], the depth and tempera-
ture difference of the inversion layer [24], land cover [26], etc. Furthermore, recently, more
sophisticated methods used to estimate PM2.5 have been developed by taking into account
these parameters.

Studies have tried to explore the relationship between these variables by statistical
approaches. There have been many different approaches proposed by studies that explored
the relationship between PM2.5 and AOD. For example, including but not limited to, the
linear regression model, the geographically weighted regression model [27,28], the two-
stage model [29] and the newly developed neural network methods [30,31]. As geospatial
data, PM2.5 concentration data have spatial heterogeneity and spatial dependence. The
statistical characteristics of PM2.5 concentrations may vary over space and time. This
space–time anisotropy may violate the independent and identically distributed random
variables in most of the machine learning methods [32].

The Support Vector Machine (SVM) based on the principle of structural risk minimiza-
tion initially developed for solving classification problems using small sample learning is
found to be promising for solving regression problems. The SVM for regression termed
as Support Vector Regression (SVR) has revealed superior performance due to its inher-
ent capability to circumvent overfitting problem in regression and improved response
approximation ability [33].

Considering the characteristics of the experiment:
1. Nonlinear and complex relationship; as an atmospheric research, the relationship

between PM2.5, AOD and auxiliary variables is rather complicated and it would be better
to describe it with nonlinear model. The kernel function can simplify the inner prod-
uct operation in the mapping space, avoiding calculating in the high-dimensional space
directly.
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2. The relatively small dataset. Regression algorithms generally obey the law of big
data; this means that the final result is relatively more accurate with more samples. The
SVM makes it possible to achieve relatively good results on small samples. SVR based
on the support vector machine solves regression problems using small sample learning.
Furthermore, the ′small sample′ is a considerable concept; we think the samples in our
experiment are enough for digging out the nonlinear relationship.

3. The capability to handle high-dimensional data sets well. SVR can grasp the
nonlinear relationship between data and features on relatively small datasets, especially
compared to most other machine learning methods.

Thus, this paper proposes the modified SVR (MSVR) method to improve the estimation
accuracy of PM2.5 concentrations. MSVR considers the impacts of spatial distance on
estimation accuracy and adds factors in the model input that are generally included and
contribute relatively more significant influence, with MAIAC AOD as the primary predictor
and the meteorological and land cover information as ancillary information.

2. Materials and Methodology
2.1. Study Area

The study area of this paper is Hubei, China. Hubei Province is located in central
China, and its capital city, Wuhan, is one of the largest cities and developing centers of
the country (Figure 1). With the rapid development of urbanization and industrialization
in China, climate disasters, such as smog, frequently occur in large cities in China as a
result of worsening atmospheric and environmental conditions [34]. Research on PM2.5
estimation and analysis in Wuhan can provide constructive guidance for urban air quality
research in other large cities in China. Meanwhile, due to the complex climate and land
cover of Hubei Province, research in this area can help analyze the effects of various factors
such as climate and land cover on PM2.5 distribution.
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Figure 1. The study area and the monitoring sites were distributed in Hubei Province, and the total number of monitoring
sites was 47 at 2017.

2.2. Experimental Data
2.2.1. MAIAC and MODIS AOD Data

The MAIAC algorithm is an advanced algorithm for aerosol retrievals and atmospheric
correction for MODIS data over both dark vegetated and bright desert surfaces. This
algorithm explores the advantages of time-series processing at a synergistic level for cloud
masking and aerosol-surface retrievals. The MAIAC algorithm uses up to 16 days of
gridded MODIS measurements to make simultaneous retrievals of AOD and surface
bidirectional reflectance distribution factor (BRF)/albedo and then produces the AOD at
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a 1 km resolution. The algorithm uses both individual grid cells (also called pixels) and
fixed-size (25 × 25 km2) areas (also called blocks), as required by the cloud mask algorithm
and retrieval [21].

Studies have indicated that MAIAC AOD agreed well with AERONET AOD (Aerosol
Robotic Network AOD), which is commonly considered as the ground true values of
AOD [35]. Additionally, comparison studies between the satellite AOD and the AERONET
AOD showed that the MAIAC algorithm improved the accuracy than MODIS DB (Deep
Blue)/DT (Dark Target) [36]. Mhawish [20] obtained RMSE 0.148 for MAIAC, 0.198 for
MODIS DB, and 0.183 for MODIS DT.

AERONET AOD currently has 61 stations distributed in China, but there are no sta-
tions in our research area, Hubei Province. Therefore, we may not be able to conduct a
comparison of AERONET and MODIS data in the study area of the study period. Fur-
thermore, there has been research that gained the insights regarding the performance of
MAIAC algorithm by comparing MAIAC aerosol products with the ground-based obser-
vations at nine typical sites spread out in China. The research indicated that MAIAC and
ground-observed AOD values showed high correlation coefficient (R of most sites reached
higher than 0.85 or even 0.9) in spite of the complicated surface types, diverse aerosol
sources, and heavy loading of aerosols in the vast atmosphere of China. MODIS MAIAC 1
km AOD at 550 nm, compared with AERONET measurements in Xuzhou and Taihu sites
that are relatively close to our research area, obtained R of 0.91 and 0.878. More and more
studies have applied MAIAC AOD to PM2.5 inversion in China. We believe that this AOD
product has quality assurance over China.

2.2.2. Auxiliary Variables

Because atmospheric flow is affected by meteorological parameters (e.g., temperature
and humidity) [25] and because air pollutants may be absorbed by some land cover types
(e.g., vegetation) [37], meteorological parameters and land cover parameters were adopted
as auxiliary variables in our algorithm to improve the estimation accuracy of PM2.5.

• Meteorological data

Boundary layer height (BLH, m) refers to the thickness of the planet’s boundary
layer and is one of the important physical parameters for atmospheric numerical model
and atmospheric environment evaluation. Usually, BLH has a negative relationship with
PM2.5 because a higher BLH can expand the near-surface atmosphere and facilitate vertical
convection. Humidity can influence the concentration of PM2.5 by changing the weight of
particulates and further affecting the diffusion speed of pollutants [38]. Temperature has a
negative relationship with PM2.5 because the inversion layer caused by low temperature is
not conducive to the convection of the atmosphere [39]. Therefore, in this paper, the three
types of meteorological parameters, BLH, relative humidity (RH, %), and 2 m near-ground-
temperature (T, ◦C), were adopted in our algorithm to improve the estimation accuracy.

The BLH, RH, and T data employed in this paper were obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/). The
ECMWF provides quality controlled spatially and temporally consistent, real-time, current
forecasts, climate reanalysis and specific datasets. The data assimilation system used to
produce ERA-Interim was based on a 2006 release of the IFS (Cy31r2). The system includes
a 4-dimensional variation analysis (4D-Var) with a 12-h analysis window. The spatial
resolution of the data set is approximately 80 km (T255 spectral) on 60 vertical levels, from
the surface up to 0.1 hPa, and at a horizontal resolution of 0.125◦ × 0.125º, and its temporal
resolution is 3 h.

• Land cover data

Land cover variables, especially vegetation coverage and construction parameters, can
influence the performance of the AOD-PM2.5 regression models [40]. Studies have shown
that vegetation coverage has an obvious effect on reducing and redistributing atmospheric
particulate matters by means of sedimentation, retardation and adsorptions. It is worth

https://www.ecmwf.int/
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noting that these effects will change with the change of seasons, because some vegetation
will have different states in different seasons. Generally, winter vegetation has the smallest
reduction effect on PM2.5 [41]. Conversely, construction land produces dust and other
pollutants that increase the concentration of atmospheric pollutants.

Land cover data with a 1 km spatial resolution were utilized in this paper. The
data were obtained from the “Remote sensing monitoring data of land cover in China”
section on the website of the Chinese Academy of Sciences Data Centre for Resources and
Environmental Sciences (http://www.resdc.cn). It provides a database of multi-phase
land cover status for the national land area under the years of accumulation generated by
manual visual interpretation and based on the Landsat TM/ETM remote sensing image
data. The land cover types include six primary types: cultivated land, forestland, grassland,
waters, residential areas and unused land.

2.2.3. Ground PM2.5 Measurements

The ground PM2.5 measurements were used as training data and testing data in our
algorithm to obtain the relationship between PM2.5 and AOD and were then utilized to
generate continuous PM2.5. As shown in Figure 1, there are 47 national ground monitor-
ing sites in the study area (Hubei Province). The 47 sites are mainly located in densely
populated cities, such as Wuhan (10 sites), and there are rural areas without ground sites.
The PM2.5 measurements in four seasons of 2017 from these sites were used in the ex-
periment of this paper. The PM2.5 hourly data were collected from the PM25.IN website
(http://www.pm25.in/) provided by the China National Environmental Monitoring Cen-
ter (CNEMC); as for worldwide research, the PM2.5 data can be obtained from the following
website (http://www.aqicn.info/here/).

Terra and Aqua satellites passed over the equator at approximately 10:30 a.m. and
13:30 p.m. local time [42]. To ensure the time consistency of AOD and PM2.5, we took the
average of the hourly PM2.5 measurements from 10:00 AM to 14:00 PM.

2.2.4. Data Pre-Processing and Integration

All the data and the descriptions were listed in Table 1.

Table 1. List of the data and variables adopted in the experiment.

Variables Unit Description Temporal Period

PM2.5 µg/m3 Particulate matter smaller than 2.5 µm
in aerodynamic diameter

Hourly average of
10:00 am to 13:00 pm

AOD Satellite-retrieved Aerosol Optical Depth Daily data

RH % Relative Humidity
Hourly

instantaneous dataBLH (m) Boundary Layer Height

T ◦C 2 m Temperature

Land Cover Vegetation coverage and
construction factors

Remote sensing
monitoring data of
China’s land use

status in 2015

Four types of data were used in MSVR, including AOD, meteorological factors, land
cover, and ground PM2.5, and data pre-processing and integration were required due to the
differences in the spatial coverage and observation frequency of the data. To ensure the spa-
tial consistency of the data from multiple sources, all data were first re-projected to a unified
coordinate system: The World Geodetic System 1984 geographic coordinate system [43,44].

On the one hand, the atmosphere is moving and circulating, thus the concentration of
atmospheric particles at a certain location changes over time. On the other hand, variables
in this research are not instantaneous data, but the average over a certain period of time.
Therefore, we took the weighted average of 3 × 3 pixels centered on the grid.

http://www.resdc.cn
http://www.pm25.in/
http://www.aqicn.info/here/


ISPRS Int. J. Geo-Inf. 2021, 10, 31 6 of 18

Meanwhile, the forest and construction land-use data that significantly affected the
formation and concentration of PM2.5 were extracted with a buffer of 1 km from the ground
monitoring sites. In terms of temporal consistency, the meteorological data were integrated
to the average of the period from 10:00 AM to 14:00 PM local time to correspond to the
period when Terra and Aqua passed over the equator. The extraction and integration of
multi-source data were mainly implemented by coding in Python.

2.2.5. Model Constructing and Training

For better performance of MSVR, the datasets including all variables were first nor-
malized to [0, 1]. As for the parameter setting of the MSVR model, we selected the RBF
kernel for the kernel function considering the complicated relationships between all the
variables. We listed a series of value combinations of the parameters “gamma” and “C”
(penalty parameter) and then chose the optimal parameter values by grid searching.

Five-fold cross validation was employed in this experiment. The training dataset
was first randomly split into five subsets, with approximately 20% of the total data record
in each subset. In each round of cross-validation, one subset was selected to be used as
validation samples, and the remaining subsets were utilized to train and fit the model.

In this experiment, three statistical indicators, including the R2, the mean percentage
error (MPE) and the square root of the mean squared prediction errors (RMSE), were
calculated to assess the model performance. The accuracy evaluation and the comparison
of the different models are discussed later in Section 4.1.

2.3. Principle of SVR

A Support Vector Machine (SVM) is a kind of machine learning method based on
statistical learning theory, dimension theory and structural risk minimization principle. It
shows many unique advantages in solving small sample, nonlinear and high-dimensional
pattern recognition problems, and to a large extent overcomes the problems of “dimen-
sion disaster” and “over-learning” [45]. SVM is widely used to solve problems such as
classification and nonlinear mapping and performs better in solving the problem of small
sample datasets. SVM can, to a certain extent, solve the problems of model selection and
over-learning that may be difficult for some traditional networks to solve.

Support Vector Regression (SVR) is the application of SVM in regression analy-
sis [46], and it solves the regression task by transforming an inseparable problem of
low-dimensional space into a linearly separable problem of high-dimensional space using
the space mapping function [47]. We must find a hyperplane to fit the distribution of the
sample data, which means minimizing the sum of the distance between the sample points
and the hyperplane [48,49].

In this experiment, for a given set of training data, the variables x, y are both vectors.
{(x1, y1), (x2, y2), · · · , (xi, yi)}, x ⊂ Rn and y ⊂ R, the problem of regression is to find
the flattest function f that map a point in the space Rn onto the space R with the lowest
expected risk.

The key of nonlinear SVR is to map the input vector X ∈ Rn into a high dimensional
feature space H ∈ Rm (with m larger than n), through mapping and then to solve a linear
regression in space H.

ϕ(X) : X → H (1)

We call ϕ(X) the mapping function, and usually the mapping function is difficult to cal-
culate. Therefore, the kernel function K(x, y) is introduced into SVR, where 〈∅(x), ∅(y)〉
stands for the scalar product mapped to the feature space.

K(x, y) = 〈∅(x), ∅(y)〉 (2)

In the high dimensional space, we can find a hyperplane to divide the sample points
and the hyperplane is defined as below. ω is the normal vector, which determines the
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direction of the hyperplane; b is the displacement, which determines the distance between
the hyperplane and the origin.

ωφ(x) + b = 0 (3)

The loss function of SVR was defined as

L( f (x), y, ε)

=

{
0, |y− f (x)| ≤ ε

|y− f (x)| − ε, |y− f (x)| > ε

(4)

where y is the true value corresponding to the dependent variable in the sample, f (x) is the
predicted value returned by the trained model, and ε describes the variation between the
above y and f (x).

The slack variables ξi, ξ∗i are introduced, and then the initial nonlinear problem is
converted to find the optimal values for ω and b, the parameters of the linear regression
function. Thus, the solving process could be represented as the mathematical model below.

min 1
2 ||ω||

2 + C
n
∑

i=1

(
ξi + ξ∗i

)
s.t.


yi −ωφ(xi)− b ≤ ε + ξ∗i

−yi + ωφ(xi) + b ≤ ε + ξ∗i , i = 1, 2, · · · , n
ξi ≥ 0, ξ∗i ≥ 0

(5)

2.4. Basi Idea of MSVR

A number of studies have indicated that the spatial distribution of PM2.5 concentra-
tions is distinct. According to the first law of geography, the farther the pixel is from the
center pixel, the smaller the impact is [50]. However, the traditional SVR model utilized the
general average method, and the different impacts of the pixel distances from the central
value were ignored in the estimations of PM2.5. PM2.5 is most essentially characterized by
its spatial and temporal heterogeneity, and many models such as the GWR and the GTWR
models were proposed to cover these characteristics [33,51].

In this research, the SVR is modified and improved not only in making use of rich
information of the input variables, but also in terms of extracting geospatial information
weighted by the distance of adjacent pixels from a center pixel and the time difference from
ground-based PM2.5 measurements. Thus, the Modified SVR can also be called Space–Time
Support Vector Regression. The basic structure of MSVR was clarified in Figure 2.
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For a given pixel, its spatial (Ps) and temporal (Pt) characteristics can be expressed
as below,

Ps =
∑w

w=1
1

ds2
w

Psw

∑w
w=1

1
ds2

w

(6)

Pt =
∑L

l=1
1

dt2
l
Ptl

∑L
l=1

1
dt2

l

(7)

where ds and dt represent the spatial and temporal distances. W and L represent the w
pixels near the site and the l prior days for the same pixel.

When considering the spatial and temporal information, the model can be described
as PM2.5 = f (AOD, RH, BLH, T, LC, Ps, Pt).

In order to evaluate the accuracy of the model, we introduced commonly used re-
gression evaluation indicators: R2, MPE and RMSE. The specific meaning and calculation
methods of these indicators are described as follows:

Cross correlation coefficient (also R2) statistically quantifies the predictive accuracy
of a statistical model. It shows the proportion of variance in the outcome variable that is
explained by the predictions. It is also known as the cross correlation coefficient.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

Mean percentage error (MPE) that are reported in some statistical procedures are
signed measures of error which indicate whether the forecasts are biased.

MPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (9)

The root mean squared error (RMSE) is the square root of the mean squared error.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

where yi represents the true value, ŷi represents the predicting value, y represents the
average of all the true values.

3. Experiments and Results
3.1. MSVR Model Construction and PM2.5 Estimations
3.1.1. Statistical Features of the Variables

To obtain an overview of the general situation and trend of the variables, the descrip-
tive statistics of the variables used in the MSVR model are illustrated in Tables 2 and 3,
including the mean, maximum (Max), minimum (Min), and standard deviation (Std. Dev.)
for all the variables presented in the table. According to the table records, the 2017 annual
mean PM2.5 concentration for all monitoring sites in Hubei Province was 66.79 µg/m3,
and the maximum PM2.5 concentration reached 344.66 µg/m3, which was far beyond the
standard of the World Health Organization Air Quality Interim Target of 35 µg/m3 (WHO,
2006) and exceeded the allowable value (75 µg/m3) of the Chinese air quality standard.
These statistical data further demonstrate the great necessity of conducting PM2.5 research
and the rationality of selecting Hubei, China, as an experimental area.
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Table 2. The descriptive statistics of the variables of 2017.

Variables Mean Max Min Std.Dev.

PM2.5
(
µg/m3) 66.79 344.66 4.00 43.40

AOD (unit less) 0.48 3.27 0.09 0.31
Relative humidity (%) 3.5 13.8 0.6 4.7

BLH (km) 1.35 2.01 0.79 0.43
2m temperature (◦C) 14.25 33.23 4.06 5.52

Table 3. The descriptive statistics of the variables of 2018.

Variables Mean Max Min Std.Dev.

PM2.5
(
µg/m3) 52.91 328.00 2.33 34.70

AOD (unit less) 0.43 3.57 0.00 0.36
Relative humidity (%) 3.8 14.2 0.8 4.5

BLH (km) 1.41 2.86 0.84 0.58
2m temperature (◦C) 14.73 36.44 2.36 6.89

3.1.2. Estimated PM2.5 by MSVR

Before estimating the PM2.5 based on the constructed MSVR method, we explored
the relationships between PM2.5 and AOD. The results demonstrated that the AOD had a
positive relationship with the PM2.5 concentrations, and when the site location or obser-
vation time changed, the AOD values and PM2.5 concentrations had similar fluctuating
trends. By utilizing the optimal MSVR model produced in the training process, we obtained
continuous PM2.5 estimations at a spatial resolution of 1 km. For visualization, we created
a rendering map reflecting the concentration and distribution of PM2.5 in the study area,
which is shown in Figure 3. As shown in the graph, the PM2.5 estimations had different
values and distributions in different regions, and we discuss the details of these features in
the following section.
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3.2. Pattern Analysis of PM2.5 Concentrations
3.2.1. Spatial Pattern of the Estimated PM2.5

The MSVR model proposed in this paper was used to estimate the continuous PM2.5
concentrations in the study area at the grid resolutions of both 1× 1 km from the MAIAC
AOD and 3× 3 km from the MODIS AOD. Although derived from different data sources,
the distribution patterns of MAIAC- and MODIS-derived PM2.5 were very similar, e.g.,
similar high-value areas and similar spatial variation patterns.

Whether from MAIAC or MODIS, the high PM2.5 concentrations generally occurred
in developed urban cities where the population and pollution sources were concentrated,
while the low PM2.5 concentrations usually occurred in rural areas or mountainous ar-
eas as it was demonstrated in the literature. In the study area of Hubei Province, the
high values were mainly distributed in Wuhan, Xiangyang, Jingzhou and other quickly
developing cities.

As shown in Figure 4, although the PM2.5 of MODIS and MAIAC have extremely sim-
ilar spatial distributions in 2017, the 1 km PM2.5 from MAIAC has indisputable advantages
in terms of resolution. When the study area was zoomed out to a smaller scale, such as
an urban area, the 3 km PM2.5 could describe only the general spatial variation, and the
pixels became relatively coarse and difficult to read. However, the 1 km PM2.5 derived
from MAIAC AOD were able to reflect subtler spatial changes and could distinguish the
pixels with high levels of PM2.5 from the others; this difference enabled us to locate the
pollution sources.
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Additionally, MAIAC AOD with 1 km resolution could generate many more AOD-
PM2.5 pairs [52,53] than MODIS AOD with 3 km resolution. As a result, when the dataset
becomes larger, the MAIAC AOD is able to reflect more information related to PM2.5, and
can achieve better results.

To evaluate the estimating accuracy, we extract the measured PM2.5 values of ground
monitoring site 1844A as the situ true values. The estimated PM2.5 values are generated
from MAIAC 1 km AOD and MODIS 3 km AOD. We analyzed the linear correlation of
the measured and estimated PM2.5 values, 0.6355 for MAIAC AOD and 0.5918 for MODIS
AOD (shown as Figure 5). As the result shows, the PM2.5 estimated from MAIAC AOD
not only have higher spatial resolution, but also have higher estimating accuracy, which
reveals the feasibility and superiority of MAIAC AOD in terms of PM2.5 estimating.
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MAIAC 1 km AOD and MODIS 3 km AOD.

3.2.2. Seasonal Pattern of the Estimated PM2.5

To illustrate the temporal and seasonal pattern of PM2.5 in the study area, the data
for different seasons were extracted to construct the seasonal regression models and then
estimate the PM2.5 concentrations of different seasons. Figure 6 shows the seasonal mean
value distributions of PM2.5. Figure 6 shows that the PM2.5 estimations derived from the
optimal MSVR model using the 1 km resolution MAIAC AOD values as the model inputs
had significant seasonal differences.

The PM2.5 concentration values were generally low in summer, reaching the lowest
values among the four seasons. Conversely, the PM2.5 concentrations reached the highest
level in winter, which might be the reason for more frequent air pollution weather in winter.
In addition, the PM2.5 concentrations in spring and autumn fell between the other two
seasons, generally higher than summer and lower than winter, which could be explained
by the seasonal climate differences.

The PM2.5 concentration values were generally low in summer, reaching the lowest
values among the four seasons. On the contrary, the PM2.5 concentrations generally reached
the high level in winter, which fitted the fact that the smoggy weather occurred more
frequently in winter. Furthermore, from this side, our experiment results were reasonable.
In addition, the PM2.5 concentrations in spring and autumn fell between the other two
seasons, generally higher than summer and lower than winter, which could be explained
by the seasonal climate differences.
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4. Discussion
4.1. Performance of the MSVR Model

Conventional Support Vector Regression (SVR) models were conducted on the same
dataset to compare and evaluate the performance of MSVR. Three evaluation indexes,
including the R2, MPE and RMSE, were applied in the model performance evaluation. As
recorded in Tables 4 and 5, the regression accuracy was influenced by season and model
type and generally increased when models were established in different seasons (e.g., the
summer model showed poor performance due to the absence of AOD data) compared
to the whole year; additionally, the MSVR model generally had better performance than
the SVR. The R2 of the whole-year MSVR model increased by 0.14 compared to the SVR
model, while the MPE and RMSE of the MSVR model decreased by 1.42 µg/m3 and
1.73 µg/m3, respectively. Considering the complexity of atmospheric retrieval and study
area, surface reflectance impact, cloud contamination, etc., we think MSVR in this paper
obtained relatively good performance.

The R2, MPE and RMSE of the MSVR models generally increased in the four seasons,
respectively. The measurements and estimation values at different scales for different
seasons showed that the PM2.5 concentration values changed over time. Generally, as the
results illustrate, the PM2.5 concentrations reached a peak value in winter and the lowest
value in summer, which was in good agreement with existing empirical knowledge.

As shown in Figure 7, the estimated PM2.5 and measured PM2.5 are concentratedly
distributed near the centerline, which means that the estimated PM2.5 generally have
the similar pattern with the measured PM2.5 no matter for MSVR model or SVR model.
According to the figure, most of PM2.5 values fall between 20 µg/m3 to 80 µg/m3. And
from the figure, the gap between the estimated and measured PM2.5 values of SVR model
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gets bigger when PM2.5 values get higher. This means the MSVR model is more capable for
accurate estimating in the high level of PM2.5 values.

As the results showed, the MSVR model performed better than the conventional SVR
model in PM2.5 estimating. In addition, compared with other nonlinear models, such
as the neural network, MSVR is more suitable for relatively small datasets, such as the
dataset used in this paper. SVM has a solid mathematical theoretical basis and a strong
generalization ability, which can effectively solve the problem of high-dimensional data
model construction under limited sample size, and correspondingly, MSVR is relatively
easy to construct and train compared to other nonlinear models.

Table 4. Accuracy comparisons between SVR and MSVR for different seasons and the entire year in 2017.

Model Time Period R2 MPE (µg/m3) RMSE (µg/m3)

SVR

Whole year (2017) 0.60 11.16 12.58
Spring 0.61 12.14 14.53

Summer 0.50 10.54 12.55
Autumn 0.56 12.63 15.31
Winter 0.64 13.35 15.68

Modified SVR
(MSVR)

Whole year (2017) 0.74 9.74 10.85
Spring 0.69 10.69 13.76

Summer 0.53 8.33 10.36
Autumn 0.70 10.01 14.02
Winter 0.82 12.35 14.71

Table 5. Accuracy comparisons between SVR and MSVR for different seasons and the entire year in 2018.

Model Time Period R2 MPE (µg/m3) RMSE (µg/m3)

SVR

Whole year (2018) 0.66 10.11 12.85
Spring 0.53 11.04 13.66

Summer 0.52 9.62 11.47
Autumn 0.60 11.39 13.18
Winter 0.72 12.65 14.92

Modified SVR
(MSVR)

Whole year (2018) 0.78 8.92 11.32
Spring 0.61 9.58 11.89

Summer 0.59 8.27 11.01
Autumn 0.76 10.17 12.22
Winter 0.80 11.64 12.15

4.2. Advantages of MAIAC AOD

In this paper, the MAIAC AOD with a spatial resolution of 1 km and the MODIS AOD
with a spatial resolution of 3 km were utilized to estimate the ambient PM2.5 concentrations
with the same optimal model. According to the results, the PM2.5 estimations from MAIAC
AOD and MODIS AOD had similar spatial and temporal distributions. However, as
shown in Figures 4 and 5, MAIAC AOD with 1 km resolution could generate many more
AOD-PM2.5 pairs than MODIS AOD with 3 km resolution. As a result, when the dataset
becomes larger, the MAIAC AOD is able to reflect more information related to PM2.5, and
can achieve better results in the inversion. Researches have shown that the correlation
between PM2.5 and AOD decreased significantly as AOD resolution was degraded in spite
of the intrinsic mismatch between PM2.5 ground level measurements and AOD vertically
integrated measurements [54]. This conclusion could also be seen from our analysis in
Figure 5.

PM2.5 retrievals of higher spatial resolution make it possible to figure out the spatial
distribution characteristics. This is of great importance to accurately locate the source of air
pollution where the PM2.5 concentration usually abnormally elevates. Additionally, we
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cannot ignore the other superiorities of MAIAC algorithm over the DB/DT algorithm. For
example, high-resolution MAIAC is capable to distinguish aerosol sources and fine feature,
MAIAC retrieval accuracy is higher than DT/DB with more accuracy over dark surface,
and MAIAC has less sensitivity to variation in aerosol types across the seasons.
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4.3. Analyses of the Spatiotemporal Pattern of PM2.5

Firstly, as shown in Figure 3, it should be noted that most cities in the middle and
southern parts, such as Jingzhou, Qianjiang, Jingmen, and Wuhan, have the higher PM2.5
concentration level. This might be interpreted as the lager population, heavy vehicle
emissions and more reliance on carbon-intensive industries for a significant proportion
of their economic activities [55]. Additionally, researches show that secondary particles
resulting from chemical reactions in primary gaseous pollutants may also contribute to
levels in this region [51]. On the other hand, the lowest PM2.5 level occurs in Shiyan,
northwest of Hubei, with more mountainous woodland and vegetation cover and far lower
anthropogenic emission levels, which is helpful for atmospheric dispersion and dilution.

Secondly, the PM2.5 concentrations differ greatly across the seasons. The highest PM2.5
levels in 2017 occurred during the winter and the lowest during the summer (Figure 6).
Seasonal maximum PM2.5 concentrations in winter may be the reason of coal combustion
and unfavorable meteorological conditions for pollution dispersion in winter (such as the
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stagnant weather and temperature inversion) [56]. It is worth noting that the secondary
particles generated from chemical reactions in primary gaseous pollutants can contribute to
fine PM formation. Summer was the season with the lowest average PM2.5 concentration.
This may be interpreted as the reduced anthropogenic emissions related to coal burning
for domestic heating; summer monsoons can also help to dissipate aerosols [57].

4.4. Limitations

The MSVR method proposed in this paper has its own limitations. First, due to the
missing AOD data on some days, which are usually caused by cloud cover and high surface
reflectance, the number of AOD-PM2.5 matchups per day is limited [58], resulting in model
over-fitting or decreased estimation accuracy. Moreover, the focus of this experiment is the
regression method. PM2.5 feature analyses in large-scale and long period or in the urban
areas are not detailed enough. In future work, more available satellite data with higher
resolution and quality should be introduced into AOD-PM2.5 research.

It is worth noting that MODIS AOD is a column average and not surface. There are
satellite products that offer vertical profiles, and these are assimilated in MERRA-2 and
ECMWF air chemistry sub-models, and could provide surface estimates [59]. However, in
view of the current wide application of MODIS AOD and the current research on AOD of
vertical profiles not being enough, we have not explored the impact of column average on
the experiment. This is the focus of our future work.

In this experiment, we mainly added meteorological and land cover data but, in
fact, the relationship between AOD and PM2.5 is affected by many factors, such as the
temperature inversion and more parameters including meteorological, topographic and
society parameters [60]. The influence of these factors is relatively complex, and the current
research is not yet mature. In future work, we will try to introduce more factors into the
regression and analysis.

In addition, the composition and structure of atmospheric pollutants are quite complex
and diverse [61], such as SO2, NO2, CO, O3, etc. We will be committed in the research and
retrieval of AOD and other more pollutants.

5. Conclusions

The satellite AOD data used in this experiment has superiority over the conventional
DB/DT AOD in terms of resolution and accuracy. A higher resolution (1 km) satellite
AOD data is used to ensure that the obtained PM2.5 can reflect more accurate and detailed
temporal and spatial characteristics. Additionally, the accuracy of MAIAC algorithm
has been proved to be higher than DT/DB algorithm over dark surface. The experiment
verified the feasibility of 1 km MAIAC AOD for PM2.5 retrieval and the superiority over
the 3 km MODIS AOD in terms of spatial resolution and retrieval accuracy.

MSVR proposed in this paper, is modified based on the traditional SVR for the
regression of AOD and PM2.5 and obtain the improvement of experiment accuracy. The
results showed that the MSVR model could improve the accuracy of the regression from
R2 0.60 to 0.74 in 2017 and 0.66 to 0.78 in 2018 compared to the traditional SVR.

We introduced the commonly used meteorological parameters to reduce the influence
of complex factors on PM2.5 retrieval from satellite AOD to a certain extent. The integrated
meteorological parameters and land cover data demonstrated that the appropriate auxiliary
variables could improve the performance of PM2.5 retrieval.

The experimental results also showed that PM2.5 has obvious spatial and temporal
differences. We analyzed the spatial and temporal distribution and characteristics of PM2.5
in Hubei Province, and conducted the above analysis by season. We also analyzed the
possible reason of such spatiotemporal differences.

In our future work, we will make efforts from three aspects. First, we will try to find
satellites with higher resolution and aerosol retrieval algorithm with better performance. It
is worth noting that, recently, there are studies that propose combining satellite remote-
sensing techniques and a newly established low-cost sensor network to estimate long-
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term PM2.5 concentrations to increase the measurement density. Secondly, we will try
to figure out the specific influence of meteorological, topographic and social factors on
the distribution characteristics of PM2.5 and the retrieval of PM2.5 from satellite AOD.
Thirdly, we will attempt to conduct longer time series and wider range of analyses of PM2.5
distribution characteristics.
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