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Abstract: In this paper, we propose a methodology and algorithms for search and rescue mission
planning. These algorithms construct optimal areas for lost person search having in mind the initial
point of planning and features of the surrounding area. The algorithms are trained on previous search
and rescue missions data collected from three stations of the Croatian Mountain Rescue Service. The
training was performed in two training phases and having two data sets. The first phase was the
construction of a regression model of the speed of walking. This model predicts the speed of walking
of a rescuer who is considered a well-trained and motivated person since the model is fitted on a
dataset made of GPS tracking data collected from Mountain Rescue Service rescuers. The second
phase is the calibration of the model for lost person speed of walking prediction with transfer learning
on lost person data. The model is used in the simulation of walking in all directions to predict the
maximum area where a person can be located. The performance of the algorithms was analysed with
respect to a small dataset of archive data of real search and rescue missions that was available and
results are discussed.

Keywords: search and rescue; machine learning; regression; transfer learning; cellular automata
simulation

1. Introduction

Lost person search and rescue (SAR) activities are civil protection activities carried
out by search and rescue teams. A subject may be lost under various circumstances—such
as tourists wandering off the hiking trail, children wandering off into wildlands, or older
people with dementia wandering from home. Only in Croatia, Croatian Mountain Rescue
Service carried out over 6000 missions since its establishment 60 years ago [1]. When a
person is lost, an incident of a lost person is reported, a SAR team assembles in a time-critical
manner and carries out activities aimed towards finding the lost person as soon as possible.
SAR team members have a task to search a certain area and the operation is directed and
coordinated by the SAR manager. Each such incident and activity is different and has its
own challenges, but the experience and intuition of the SAR team and manager can be of
vital importance in critical situations. Experienced SAR managers will make decisions that
will lead to the most effective completion of the task.

Specific SAR operation is characterised by Initial Planning Point (IPP), which is the
initial point around which a search for a lost person is planned. Usually, it is the same as
the geographic location where the lost person is last seen. This location is often referred to
as Point Last Seen (PLS). This location is known from the report of the lost person since the
person who reports a person is lost also gives the location where the subject is seen last
time. The direction of the search, focus area and distance from IPP to be searched depends
on different factors and are subject to an assessment of the SAR Manager. Experienced
SAR manager will make decisions that will lead the team towards finding the lost person
quickly. However, focusing only on the most probable locations, one can miss the true
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location of the lost person, since not all behavior is the most common one. The research
presented in this paper is aimed towards constructing a method and a software tool that
will make these decisions easier.

Information and Communication Technologies (ICT) have infiltrated in all aspects of
human activities [2]. Today, ICT tools are used not only in the improvement of productivity,
communication, lifestyle, and traveling, but can also be found in the domain of government
management and public safety [3]. In SAR activities, ICT tools, in its rudimentary form, are
used as communication tools between team members. In its more sophisticated form, ICT
tools can also serve as a Decision Support System (DSS). DSS can be beneficial for optimal
planning of SAR activities providing suggestions which are based on data, models and
artificial intelligence.

This paper presents a methodology used and results achieved while developing an
ICT-based tool whose intention is to be used by a search and rescue mission planning team
for assessment of an area to be scanned by the team while searching the lost person. Our
method makes suggestions of the direction of search, focus area and distance from IPP to
be searched. In other words, the method suggests an irregularly shaped area to the SAR
manager where a lost person should be searched for.

We describe the steps of the methodology for constructing algorithms—data pre-
processing, development of regression models, transfer learning model calibration, simula-
tion algorithm and construction of the proposed shape of the area that should be searched.
We compared the results of the algorithms—shape of the proposed area with locations
where the person was found from archived records and presented results.

1.1. Related Work

As already stated in the introduction, ICT tools can ease several tasks of organized SAR
activities. In this work we will focus on the role of ICT systems in the task of determining
the search area. Search area is the area searchers are screening to find out the new location
of the lost person. There are various approaches in determining the search area.

First, we must distinguish that SAR can occur on the land and on the sea. When a
person is lost at sea, the search area is determined with respect to sea currents, but the
spatial features of the nearby coast can also be a valuable input for determining a more
precise search area as proposed in [4].

In cases when SAR occurs on land, the prediction of the new location of the lost person
depends on many factors that can be roughly separated to (a) features of the lost person
and (b) spatial features of the surrounding area. In our work, we deal with the search for a
lost person in non-urban environments, and that is often referred to as wilderness search
and rescue [5]. Methodological search area prediction is based on a model, while subject of
modelling can be the lost person or the area.

A model that describes lost person behaviour usually relies on an archive record of
previous cases and statistics. The first documented attempt to analyze lost person behavior
is when Father Lorenzo at the St. Gotthard Hospice, a monastery in Switzerland started
recording missions of search and rescue in the Swiss Alps [6] in 1783. Since then, there
are several records of lost person search and rescue archive databases. Statistics compiled
in the book [7] was used as the first ground for search management. More recent archive
database of previous SAR activities—International Search and Rescue Incident Database
(ISRID) is the basis for lost person behavior analysis in [8].

Lost person behavior has been most thoroughly studied in [8]. In [8] the author
proposes a model of lost person behaviour based on the statistics obtained from the ISRID
database. The model uses Euclidian distance tables and proposes a search area using the
point radius method around IPP.

However, for a case study of Yosemite National Park, the proposed model has shown
poor results so new statistics for only this area is proposed in [9]. Evaluation of lost person
behavior models was done in [10]. The authors compared Euclidean distance tables from
[8] and watershed model from [9] and proposed a novel model based on combining the two
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previous models. As we observe the differences between the model based on international
statistics and the model based on local statistics, we can assume that in addition to the lost
person behavior, the local characteristics of the terrain should be taken into account when
estimating the search area.

Analysis of the terrain is most effectively performed by using Geographical infor-
mation systems (GIS). GIS systems effectively manipulate multiple information about
terrain characteristics such as digital elevation model, land cover, roads, sightseeings, etc.
In [11] authors present a GIS-based search and rescue decision support software. The
software uses a model based on previous operations data and calculates the probability of
a subject to be found in different segments of the search area. The output of the software is
a heat map constructed by combining influencing features of the terrain. In [12] authors
integrated aspects of the terrain and lost person and used Bayesian approach for predicting
lost person behavior.

In contrast to similar systems, where the proposed search area is an area with the
largest probability of finding the lost person having in mind the statistics of archived
searches, we propose a new simulation-based approach. Our method is based on simula-
tions of all possible behaviours and trajectories of walking and proposes the search area
with all locations where the person can dwell after wondering from IPP.

The second novel aspect of our research is the usage of data science methods for
modelling the speed of walking on non-urban terrain. Data science methods were already
used for modelling the speed of walk-in urban areas. Linear regression, as a common
machine learning technique was used in [13] for predicting the speed of walking. In [14]
the authors exploited a latent terrain model to predict a traversal path of a subject moving.
In [15] authors used transfer learning to predict urban crowd movement patterns. However,
lost person movement in the wilderness is different and needs different approaches than
urban movement modelling.

Transfer learning [16] has been successfully used in deep learning. With this approach,
a neural network model is pre-trained with a large set of data and the learned features
are used for the specification of the model for a particular domain where it is not possible
to obtain a data set large enough for training the actual classifier or model. The same
approach can be used for transfer learning of a linear regression model. In [17] a method
for refining a linear regression model that is initially trained for one domain to be used on
another domain is described.

Cellular automata (CA) [18] are simple mathematical models often used to investigate
the summary effect of the collection of simple components. Their usefulness has been
proved in many domains. Cellular automata have been used for traffic simulation [19] and
simulation of pedestrians walking [20]. GIS-based cellular automata have been used for
land-use change simulation [21] and fire spread simulation [22] . In the civil protection
domain, cellular automata has been used to simulate evacuation routes in [23].

In [24] the authors used agent-based modelling to calculate the distribution of behav-
iors and compute the distributions of horizontal distances traveled in a fixed time.

1.2. Proposed Method

The novelty of our work can be noticed in two aspects. The first is a new, simulation-
based approach for determining the search area. In similar systems search area is proposed
as the most probable area where the lost person will be found based on the statistics
of archived searches. Our prediction is based on simulation. We do not assume the
lost person’s behaviour will be statistically predictable, but rather simulate all possible
behaviours and all possible trajectories of walking in order to achieve maximal area off all
places where the person can dwell after wandering from IPP. The only parameter of the
lost person’s behaviour we assume is the predicted speed of walking on the terrain with
various features.

The second novelty of our proposed method is the transfer learning-based regression
model of the speed of walking. We do not have records of lost people walking so we cannot
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create a machine learning model for predicting the speed of walking of the lost person.
Thus, we use the available trajectories to create a model for predicting the speed of walking
on a segment of terrain and use transfer it by scaling on a model for predicting the speed
of walking of the lost person. The transfer learning-based approach enables us to create a
lost person speed of walking model without a sufficient amount of data for an accurate
machine learning model. We use the recorded data of walking on the same terrain we
could obtain, and that is the GPX records of people searching for a lost person. We use a
small set of records of lost person pairs of two locations—the initial point of search and
point where the person is found and transfer model for the lost person.

2. Methodology

In this section, we will describe the data we used and the methodology of our work.
Firstly, data collected from various sources that are expressed in several formats were pre-
processed. Preprocessing was performed for data association and integration as depicted
in Figure 1. The result of the preprocessing is a connected dataset that we used for training
the model. The training was performed in two phases - pretraining model and calibration
of the model. Finally, we describe algorithms we used for predicting search area.

2.1. Description and Sources of Data

The basis of our dataset was a set of files provided by the Croatian Mountain Res-
cue Service [1]. The set consisting out of 1908 GPX trails was made available for our
research. The GPX trails are collected from three Mountain rescue service departments—
Split, Karlovac and Dubrovnik. The trails were collected using different GPS devices held
by different persons. The trails are recorded on wide areas of the three cities as shown in
Figure 2. The trails were recorded and collected during real search missions on the past
on incidents that occurred between 1999 and 2020. All data was anonymized. GPX [25] is
GPS Exchange Format—XML format for exchanging GPS data. A GPX trail consists of a
series of points each with associated geo-coordinates (longitude and latitude), elevation
and time. This data set was enriched with spatial data collected from other sources describ-
ing the terrain of the segment, particularly vegetation—Corine land cover, CLC [26] and
terrain—digital elevation model, DEM [27] and processed into the data set. CLC and DEM
data were obtained in geotiff format [28], a format for storing georeferenced raster data.

2.2. Data Preprocessing

The complete diagram of pre-processing data is depicted in Figure 1. GPX set contains
a set of GPX files. Each file consists of a trail of one person walking. A GPX trail is a record
of a series of geographical points where a person wearing a GPS device was walking. Trails
were processed and transformed into segments. A segment describes walking between two
points on the earth’s surface. Each segment is described with start and end points as well
as start and end time. From this information, we can easily calculate the necessary features
of a segment: distance length, the slope of the terrain and the speed of walking segment.

The distance length of a segment was calculated using haversine formula [29] for
calculating the spherical distance between two points on the earth’s surface. Even though
the average length of a segment is only 6.7 m and the spherical distance is not necessary,
we exploited the formula that is used as a common practice for distance calculation.

We assume that the person walked the distance between two points in a straight line
having in mind the GPS devices used were precise enough and recorded points that are
close enough. Terrain slope was calculated expressed as the absolute value of the tangent of
the angle obtained as the elevation difference and length ratio. The absolute value is taken
in accordance to [30]. In this work, the author proposed the model of hiking speed in hilly
terrain. The resulting model showed that the speed depends on the absolute value of the
slope rather than being significantly different for walking uphill and downhill. A similar
relationship was discovered in our data set, so that decision is made that the variable of the
slope of the terrain is expressed in the absolute value of the angle tangent.



ISPRS Int. J. Geo-Inf. 2021, 10, 80 5 of 15

Speed of walking is calculated as an average horizontal speed of walking towards
the end point of the segment from the start point of the segment. The majority of the
segment’s length was under 10 m, the average being 6.7 m. In such a segment we assume
that the walking was a straight line. The elevation difference is not taken into account
while calculating the speed of walking. This simplification is also beneficial for final
implementation because the model will be used on a two dimensional cell grid and we will
need distance walked predicted from the model as distance on the map not on the sphere.

Finally, the dataset is enriched with data about land cover from additional source.
In our implementation we used the Corine Land Cover map obtained from Copernicus
site [26].

Steps of data preprocessing used in this work are shown in Figure 1.

GPX file

A collection of GPX trail, Each trail
is a collection of geographical points.

Point

Each point has the following features - ge-
ographical longitude, geographical lat-
itude, Elevation above sea level, time

Segments

Segment is a record of walking between two points.
The final data set is a collection of segments

Distance

Distance walked in a segment is assumed to be
a straight line between two points. Distance is

calculated using the Haversine distance formula.

Elevation
difference

Difference between elevation above the
sea level of two points making a segment

Slope

Slope the segment is making with the sea sur-
face is expressed as a tan(slope) and calculated

as a fraction of elevation difference and distance

Time
difference

Difference between time tags of
the two points making a segment

Speed of
walking

Fraction of time difference and distance

Land code

Extraction of land cover code for the geographi-
cal location of the segment from land cove map

Figure 1. Steps of data preprocessing.
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After preprocessing the whole dataset, we filtered the data that can bring confusion
into the model, but can be rejected heuristically—such as calculated speed of walking was
higher than 10 km/h, where time difference was larger than 20 s and similar. The dataset
that was left consists of 1,432,740 segments of walking of various users on various terrains.

To better understand the volume and distribution of data in the dataset we visualized
the data in a way that we presented the number of users walking the same segment as
color and the result is shown in Figure 2. The darker the color of the line the more GPS
trails are recorded on that segment.

Figure 2. Spatial distribution of the GPX files data. The GPX trails are collected from three Mountain
rescue service departments—Split, Karlovac and Dubrovnik. The trails are collected in a wide area of
the three cities.

Additionally, to enrich the dataset, we described each segment with information
about the land cover. Initially, we used the standard land cover classification, Corine
Land Cover [26]. Corine land cover code is a three digit code describing the class and
subclasses of the terrain. When observing the average speed of walking the terrain, those
codes did not suffice the purpose of linearity, so additional pre-processing was made. After
observation of the speed of walking on particular terrains, we constructed a translation
table from the original CLC codes into our Land cover identification codes (LC id). CLC
codes were translated into an LC id using the translation table shown in Table 1.
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Table 1. Translation table for Corine land cover translation to Land Cover id.

LC id CLC Code Label

22 244 Agro-forestry areas
23 311 Broad-leaved forest
24 312 Coniferous forest
25 313 Mixed forest
26 321 Natural grasslands
27 322 Moors and heathland
28 323 Sclerophyllous vegetation
29 324 Transitional woodland-shrub

Finally, we constructed a data set where each row represents a segment walked by a
particular person. A segment in a row is described with the following features:

• id—unique identifier of the data sample
• LC id—land cover type identifier as described in Table 1
• DEM—value read from the digital elevation model file associated with the start point

denoting elevation above sea level in meters,
• abs slope—absolute value of the slope tangent, calculated as a fraction of vertical

elevation difference (in meters) and horizontal distance (in meters).
• dist wgs—distance length of the segment between two geographical points in World

Geodetic System in meters,
• d from start—distance, i.e., position of the segment in the collection from the start of

the GPX trail
• speed 2d kmh—average speed of walking on the segment by the particular user

expressed in km/h

A sample of data from the dataset is shown in Table 2.

Table 2. A sample of data used for regression model training.

id LC id DEM abs Slope Elev d Dist Wgs d from Start Sped 2d kmh

0 29 68.39 0.000137 0.96 7.0102 0 2.80408
3 29 68.39 0.000203 0.96 4.721129 3 1.545097
7 29 67.91 0.000424 0.96 2.26302 7 0.581919

11 29 68.87 −0.000168 −0.96 5.731096 11 1.375463

2.3. Linear Regression Model

Linear regression is a machine learning technique used to predict the value of a
continuous dependent variable, often referred to as output variable, modelled as linear
combinations of independent variable values, referred to as explanatory variables or input
variables [31]. A simple regression equation has on the right hand side an intercept
and an explanatory variable with a slope coefficient. A multiple regression has multiple
explanatory variables on the right hand side, each with its own slope coefficient. Equation
for prediction is shown in Equation (1):

y = q0 + q1x1 + q2x2 + ..... + qnxn (1)

where y is the value being predicted, q0 is bias or intercept , q1, q2, ..qn, are slope coefficients
for explanatory variables x1, x2,..xn respectively.

Training a linear regression model comes down to adjusting the values of slope
coefficients so that the model will fit the best into training data. In this work, we trained a
linear regression model to predict the time taken for walking a segment of the terrain as a
linear combination of values:

• land cover id value, determined as described in the previous section,
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• terrain slope,
• distance length a segment,
• difference in elevation of end and start point,
• elevation above the sea level.

The output variable is the time of walking the terrain segment. We rather predict time
than speed since the time of walking will be used later in the simulation. However, these
two variables are correlated if we have a fixed distance length. After performing gradient
descent for k-folds fitting we received a model with a score on the train set 0.4127 and on
the test set 0.4120.

Although the score value is not optimal, we assume that this is due to the simplification
we made by neglecting the variable that describes a person walking the segment and his or
her characteristics. Due to the anonymization of data the aspect of information regarding
a person could not be included in the model using the method described in this paper.
However, we assume that the produced model incorporated averaging of the speed of
walking, which can be used as a basis for calibration with transfer learning.

2.4. Model Calibration with Transfer Learning

Detailed information about lost people tracking is not available. We cannot assume
the dynamics of the direction change by a subject wondering between the IPP and the
location of finding. The only available information we could obtain for research purposes
was the initial point—IPP or PLS and the location where the lost person is found. Both of
these points are described with geographical coordinates. Quite a small number of point
pairs was collected—only 20 samples of data. All collected locations are situated in forests
or rural areas. By analyzing this data set we came to the conclusion that 50% of lost persons
are found within 1 km distance from the initial point, while 75% of lost persons are found
within 2 km distance from the initial point.

We used the model from the previous section to predict the distance to which a person
would walk in all directions. The time of simulation was intuitively selected to be four
hours to support the initial search. The distance walked is calculated using the same
cellular automata simulation procedure as described in the next section. The simulation
result is visualized as isochrones—lines connecting the distances that a person modeled
would be able to walk in any direction from the initial point at the same time. The result of
one of the simulation is shown in Figure 3, where the initial point of the search is labeled
with a star, location where the person is found is labeled with a cross, and isochrones
connecting every 30 min steps are shown in red lines. After inspecting the results of the
simulation for all data from the archive dataset, comparing the resulting isochrones with
the location where the lost person is found, and neglecting the outliers we adjusted the
parameters of the resulting model so that the location where the person is found is inside
the simulation isochrones for 75% of the data. The described process of building the final
model is depicted in Figure 4.
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Figure 3. An example of simulation and comparison of lost person end point and distance walked
predicted with pre trained model.

Figure 4. The process of building the model.

2.5. Search Area Prediction

As already mentioned, predicting the search area is performed by running a simulation
of walking the terrain surrounding the initial point of search. Before running the simulation
we prepare a cell grid of the terrain features surrounding the initial point. Each cell covers
5 m × 5 m area, since this is the most precise resolution of the data we use. We create
a grid with 400 cells in each direction (up, down, left and right) of the initial point. The
reason for choosing exactly 400 cells is to cover the maximum radius of 2 km distance. Each
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cell is described with elevation above the ground (dem) and Land Cover id (LC id) read
from GIS data. The simulation is performed in time ticks. Initially, a person is located in
the initial point—IPP located in the center of the grid. The cell in the center is assigned a
visited state and is labeled active for calculation. For all 8 surrounding cells as shown in
Figure 5 we calculate the time taken to reach the cell. The time needed to reach the cell
is time for walking 5m for up, down, left and right cells, and 7.25 m for diagonal cells.
When assigning the distance, we do not calculate the distance that takes into account the
difference in elevation, since the elevation difference is taken into account in the other
features—slope and elevation difference. The time of walking the segment is predicted
using the model in the form of Equation (1)

Surrounding cells become visited and are labeled active for activation in the next
step. Active cells are assigned a value of the time taken to reach them from the IPP. The
simulation is done in iterations, calculating the time taken to reach each surrounded cell of
all active cells. If a cell can be reached from more than one active cell, the cell is assigned
the value of the lowest time to reach the IPP. The simulation runs until all cells are visited.
The dynamic of this process is depicted in Figure 6 where figure (a) depicts the state of the
cells after 30 ticks and (b) after 300 ticks.

Figure 5. Search for surrounding cells in the initial tick of simulation.

(a) (b)

Figure 6. Visualization of time taken to reach the cells in (a) 30 ticks and (b) 300 ticks.

After the simulation is done, each cell of the grid has a value assigned—a positive num-
ber denoting the time taken to reach the cell from the initial cell. We use gdal-contour [32]
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utility for transforming the obtained results to a shapefile of isochrones reached every
30 min. The produced shapefile is used for visualization of results in any standard GIS
software, such as QGIS [33].

3. Results and Discussion

Pre-training of a linear regression model was done with a training set that is obtained
by processing a whole set of GPX tracks into segment items. Furthermore, the dataset
was associated with DEM and Corine land cover data. The final set is split into training
and testing sets in the ratio 0.67/0.33. Several instances of regression models were tested.
Polynomial regression with 2 degree polynomial produced slightly better scores on the
training and test set. We also performed an experiment with other regression models on
the same train and test dataset. The resulting scores on the test set are compared in Table 3.

Table 3. Comparison of test score of various regression models on the same dataset.

Model Test Score

Linear Regression 0.412
Polynomial Regression 0.454
Decision Tree Regressor 0.647
Bayesian Ridge Regression 0.412
Elastic Net Regression 0.410
Ridge Regression 0.401

Decision Tree Regressor model for speed of walking scored the best results on a test
set. However, the gain in the score results was not significant enough to justify using a
more complex model, so we decided to proceed with the more simple linear regression
model. The motivation for using linear regression is because this simple model is easily
transferred between the domains of different subjects — searchers and the lost person. We
obtained a linear regression model for predicting time for walking a segment as shown in
Equation (2):

timept = q0 + q1 ∗ LCid + q2 ∗ dem + q3 ∗ absslope + q4 ∗ elevd + q5 ∗ dist (2)

where:
q0 4.786872732767515
q1 0.013315859975442301
q2 0.0019411657191748125
q3 −16.319148163916193
q4 −0.026739066247719285
q5 0.5717657455052271
and
LCid land cover id value
dem elevation above sea level in m
absslope absolute value of segment slope tangent
elev d difference in elevation between and and start point
dist distance walked in m

In this equation, the pre-trained prediction of time for walking segment (timept) is
calculated as a linear combination of explanatory values. We provide slope coefficient
precise values for the reproducibility of the model. After calibration of the equation for
predicting the lost person speed of walking as explained in Section 2.4, we obtained
following factors for lost person speed of walking on a segment of terrain:
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q0 1.1967181831918787
q1 0.0033289649938605752
q2 0.0004852914297937031
q3 −4.079787040979048
q4 −0.006684766561929821
q5 0.14294143637630677

Equation (2) together with corrected factors shown in the table above is exploited in
a simulation. We developed a script written in Python programming language [34] for
running the simulation, while several ticks and the extension of the area that is observed
can be adjusted as a parameter. We used Rasterio library [35] for transforming the resulting
grid cell into a georeferenced tiff file and gdal-contour [32] for vectorizing the results into
a shapefile. The resulting shapefile gives us the area where a lost person can obtain
depending on the time elapsed since the person is seen in the initial point. An example of
simulation and search area prediction is shown in Figure 7.

Figure 7. Result of simulation with isochrones showing maximal reached area in every half an hour.
IPP is taken from archive of SAR activities, and location where subject is found is denoted with
red cross.

The resulting area is irregularly shaped, and the shape depends on the configuration
of the surrounding terrain. This means that in directions where the terrain is configured so
that one must walk slower, the area to be searched is smaller. Search area defined in such a
way is more accurate than the traditional approach—determination of the radius of a circle
around the initial point of the search where every direction is probably the same, while
still we do not reject area where the probability of finding the lost person is low.

To evaluate the results, we ran the simulation for 20 locations from the archive data
of the lost person SAR and compared the location where the person is found and the
isochrones resulting from the simulation. Out of 20 cases, four people were found outside
the area predicted with our method. For nine simulations the lost person is found within
the first isochrone, in six cases within 2. isochrone, and for 1 case the person is found
within 3. isochrone line. This is summed up in Table 4.

Table 4. Evaluation of the algorithm on real lost person SAR database.

Number of Isochrones within the Person Is Found Number of Cases

1 9
2 6
3 1

outside the predicted area 4
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This method is based on many approximations and neglects several aspects such as
lost person physical and psychological features, circumstances under which the person is
lost, auxiliary conditions such as weather and visibility. However, the model and prediction
technique can help SAR managers to better understand the influence of features, such as
land cover and terrain slope, in lost person movement and help them decide about the
search area shape and extent while still relying on experience and intuition. The predicted
area can be further analyzed in GIS software.

In the scope of this paper, we do not address the problem of calculation time and
complexity since we focus primarily on predicting the shape and size of the search area
that can be done offline.

4. Conclusions and Future Work

This paper proposes and demonstrates a method for building a software system which
can be used as a part of a decision support system in search and rescue operative actions
management. We present the software we created using the proposed method. The goal of
the system is to propose a search area—an area of land within what the lost person most
probably will be found. We speculate that the best proposed search area does not have a
regular shape, but its irregularity depends on surrounding terrain configuration as well as
land cover. We propose a linear regression model trained on GPS tracking data collected
from previous search and rescue missions by tracking the movement of rescuers. The speed
of walking the segment of land is modeled as a linear regression with a score on the train
set 0.4127 and a score on the test set 0.4120. The linear regression model was calibrated
to predict the speed of walking of the lost person by introducing the scaling factor of the
original coefficients.

An algorithm for predicting the search area is based on cellular automata simulation
of walking from the initial point and determining the maximum distance a lost person
could walk in a predefined period of time. We calculate the times for reaching the locations
within a 2 km distance from the initial point and create isochrone lines for every 30 min.
Each isochrone shows the maximal area where the subject may be found if he/she has
walked an additional 30 min. The resulting model predicts the search area based on terrain
configuration described with land cover class, elevation above the sea level, and slope of
the terrain in the direction of walking. The resulting area can be included in GIS-based
decision support software and further analyzed with respect to roads, watersheds, and
place-marks for which the lost person may have an interest.

Other features could be taken into account in the future refining of the model. Remote
sensing data and data from other sources (such as weather data) will be used to enrich the
training dataset in an attempt to achieve better precision of the predictive model.

A model that would take into account the features of the lost person could significantly
improve the accuracy of the model. One of the directions of future work is to extract
the features of the person’s behavior from obtained GPS tracks by using latent space
transformation. More sophisticated modelling techniques for predicting the movement of
lost persons will be examined in future work.

Additionally, more attention will be given to optimizing the performance of the
simulation in order to achieve usability in real-time with faster results.
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The following abbreviations are used in this manuscript:
SAR Search and Rescue
IPP initial planning point
PLS Point Last Seen
ICT Information and Communication Technologies
DSS Decision Support System
CA Cellular Automata
ISRID International Search and Rescue Incident Database
GIS Geographical Information System
GPS Global Positioning System
GPX GPS Exchange Format
XML eXchangable Markup Language
CLC Corine Land Cover
DEM Digital Elevation Model
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