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Abstract: Positioning information has become one of the most important information for processing
and displaying on smart mobile devices. In this paper, we propose a visual positioning method using
RGB-D image on smart mobile devices. Firstly, the pose of each image in the training set is calculated
through feature extraction and description, image registration, and pose map optimization. Then,
in the image retrieval stage, the training set and the query set are clustered to generate the vector
of local aggregated descriptors (VLAD) description vector. In order to overcome the problem that
the description vector loses the image color information and improve the retrieval accuracy under
different lighting conditions, the opponent color information and depth information are added to
the description vector for retrieval. Finally, using the point cloud corresponding to the retrieval
result image and its pose, the pose of the retrieved image is calculated by perspective-n-point (PnP)
method. The results of indoor scene positioning under different illumination conditions show that
the proposed method not only improves the positioning accuracy compared with the original VLAD
and ORB-SLAM2, but also has high computational efficiency.

Keywords: visual positioning; RGB-D Images; 3D model; image retrieval; pose estimation

1. Introduction

Positioning is an important task in the field of geographic information. As for smart
phone devices, positioning information has become one of the most important information
for smart phones. Different positioning sensors in smart phones use various positioning
methods and technologies. In recent years, the positioning technology around all types of
positioning equipment has made significant progress. With the popularization of smart
mobile devices and the development of technology, positioning information has become
basic information for smart mobile devices to process and display, which is widely used
in location-based services, the Internet of Things, artificial intelligence, and future super
intelligence (robot + human), etc. Global navigation satellite systems (GNSSs), such as the
Beidou and the global positioning system (GPS), are widely used in outdoor open areas
owing to their wide coverage, high positioning accuracy, and strong real-time performance.
However, due to buildings blocking the satellite signal, the accuracy of GPS positioning
in downtown and indoor areas is sharply reduced. Further, the GNSS module generally
has a long cold start time, which severely affects the user experience in non-car navigation
applications, and has other limitations.

Base stations and wireless fidelity (Wi-Fi) networks are likewise common positioning
methods for smart mobile devices. The base station signal not only covers the downtown
area and almost all indoor areas but also realizes the full coverage of the positioning scene.
Wi-Fi networks have the advantages of being low cost and convenient to deploy. They are
widely distributed in indoor places (e.g., airports, campuses, hospitals, business districts,
and residential buildings) and form one of the hotspots of mobile terminal positioning
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research. Base station and Wi-Fi positioning do not require the deployment of additional
equipment. Compared with GNSS, they can realize cold start positioning more rapidly and
have widespread applications. However, the radio waves in indoor or densely-built areas
are usually blocked by obstacles, reflected, refracted, or scattered, and their propagation
path to the receiver has been changed, leading to non-line-of-sight propagation. This causes
large deviations in the positioning results, which severely affects the positioning accuracy.

In recent years, with the development of terminal sensors, a large number of mobile
sensors have been used in the field of positioning, and the demand for positioning tech-
nology in various application scenarios has increased significantly. However, numerous
methods at this stage are limited in their application. On the one hand, Bluetooth, radio
frequency identification (RFID), ultra-wideband, ZigBee, geomagnetic, ultrasonic, and
infrared positioning technologies have developed rapidly and are widely used in the field
of positioning. However, the above positioning methods require additional equipment,
and geomagnetic positioning is also limited by the operating environment among other
factors. On the other hand, positioning methods based on accelerometers, gyroscopes,
and other inertial devices, such as pedestrian dead reckoning, require other methods to
provide the initial position, and cumulative errors are common, which often demands
supplementary methods.

The positioning technology based on visual and depth images does not suffer from
signal attenuation, environmental interference, multipath propagation, and other problems
of Wi-Fi, Bluetooth, and other wireless network positioning methods, and it does not
require additional equipment or other types of peripherals. It can achieve sub-meter
positioning accuracy at a small cost. Numerous smart mobile devices in the market can
adopt this positioning method, which is one of the main directions in the field of positioning
research to realize positioning through visual and depth images.

Currently, smart mobile devices are typically equipped with monocular cameras,
making monocular vision positioning the main method for visual localization on smart
mobile devices. There are numerous methods of monocular visual localization, and the
most direct method is based on image retrieval. First, we must establish an image database
with location information. Subsequently, we use the image color, shape, texture, spatial
layout, or other features as the table image index; extract the multi-dimensional vector to
represent the image feature information; and use the distance between the query image
feature and the database image feature to retrieve the image location. The accuracy of this
method is related to the spatial density of the image database; however, excessive image
density has a substantial impact on the retrieval efficiency. Another common method is the
optical flow method. The concept of optical flow was proposed by Gibson in the 1950s [1].
Continuous image acquisition was used to estimate the speed and rotation. The optical flow
method is based on the assumption of invariable brightness, which requires high frame-
rate image acquisition to ensure that adjacent frames meet the calculation requirements.
This suggests higher requirements for image capture and calculation ability of mobile
device platforms. Further, the optical flow method based on monocular vision has scale
ambiguity. Therefore, the optical flow method is more commonly used in continuous speed
measurement, obstacle avoidance, and other scenes, and it is not optimal for the realization
of a complete visual localization function.

In recent years, there have been several studies on image location based on deep
learning [2]. Most related studies have applied deep learning to local sub-modules, such as
positioning modules or closed-loop detection modules, and lack of applying deep learning
architecture to the entire system. Compared with the above deep learning image location
method, the three-dimensional (3D) scene data composed of feature point clouds are more
compact and efficient. Using 3D scene data for visual location is feasible for smart mobile
devices at the present stage. This method is based on the principle of camera intersection,
which includes the following: a large number of overlapping photos are collected from the
positioning field, the salient image feature points of the positioning field are extracted, the
object coordinates of the salient image feature points in the positioning field are determined
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using the principle of density matching and structure from motion (SfM), and the feature
point cloud library is established. During positioning, the feature points of the positioning
image are calculated and matched with the image features in the image feature point cloud.
The known object coordinates of the matching feature points are used to intersect and
determine the position of the mobile device camera and the angle of the mobile device
when shooting (hereinafter referred to as the “pose”), which can achieve centimeter-level
positioning accuracy.

Positioning is the process of obtaining the precise location of smart mobile devices in
three-dimensional space. Since we want to get the position in the three-dimensional space,
we not only need to obtain the plane information through the monocular camera. Scale
information, that is, the third dimension of information acquisition, is also very important.
Binocular stereo vision and light detection and ranging (LiDAR) were commonly used to
obtain 3D spatial information. However, the robustness of binocular vision is limited and
the cost of LiDAR equipment is high. Moreover, LiDAR is not simple to use on portable
devices. Thus, a depth camera is a good alternative to binocular vision and LiDAR in
collecting 3D information. A depth camera can directly capture the distance between an
object and the camera. Owing to the initial high price of the equipment, there were very
few users of early depth cameras, and the related research was also sparse. However,
since the launch of low-price depth cameras in 2011 [3], the number of users of low-price
depth cameras has gradually increased, and the application of depth cameras has become
increasingly common. The combination of depth and RGB images can be used in action
recognition [4], simultaneous localization and mapping (SLAM) [5], 3D reconstruction [6],
augmented reality (AR) [7], and other geographic information applications.

The depth sensor directly obtains distance and scale information optically. Compared
with other devices, the depth sensor has its own advantages. The working methods of
depth cameras were mainly based on the use of structured light and time-of-flight (TOF).
They are two active depth data acquisition methods. The Intel RealSense D435i depth
sensor (manufacturer: Intel Co., Ltd., Santa Clara, CA, USA) used in this study is based on
structured light. It is equipped with both left and right infrared cameras to collect depth
data. The left and right infrared receivers are used to receive the infrared light; infrared
dot matrix projectors are present in the middle of the device, which can enhance the
exposure of the infrared band. In an indoor environment, the projectors can significantly
improve the image quality of the infrared image and improve the accuracy of the depth
image. The right-most RGB camera is used to collect visible-light signals. An active stereo
sensor produces noise owing to the non-overlapping of image areas or lack of texture [8];
the presence of system noise also produces noise in the form of holes in the captured
depth images. The quality of captured depth images is poor because of the holes. Since
the existence of these holes would weaken the effect of feature coding step, we needed
to fill them in the pre-processing. Here, we used an algorithm based on morphological
reconstruction [9] to fill these holes.

In this paper, a monocular camera is used to collect plane information, and a depth
camera is used to collect depth information. First of all, we need to collect several photos
in the real scene as the basis for subsequent visual positioning, also known as the training
set. After preprocessing the depth image of the training set, the pose of each image in
the training set is calculated through the steps of oriented features from the accelerated
segment test and rotated binary robust in-dependent elemental features (ORB) extraction
and description, image registration and pose map optimization, and the 3D model of
the scene is established. In the visual positioning process, an RGB-D image is taken by
a smart mobile device, and the current position of the device is determined by image
retrieval. Image retrieval technology is on the basis of computer vision. This technology
combines pattern recognition, matrix theory, and other disciplines, and it provides full
play to the advantages of the computer in the rapid processing of a large number of
repeated calculations. In a typical image retrieval system, users are prompted to input an
image containing some exemplary object or some scene, after which the search for images is
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conducted with the same or similar content in the constructed image library. This represents
a vector similarity calculation technology, which combines the development of several
technologies and yields automatic, fast, and accurate results, avoiding the subjectivity
of human judgment. In the image retrieval stage, the training set and the query set are
clustered to generate the VLAD description vector. In order to overcome the problem that
the description vector loses the image color information and improve the retrieval accuracy
under different lighting conditions, we add the opponent color information and depth
information into the description vector to carry out the retrieval operation. Finally, using
the point cloud corresponding to the retrieval result image and its pose, the pose of the
retrieved image is calculated by PnP method. The flow chart of the whole work is shown
in Figure 1.
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In recent years, several scholars have published their own research in the field of
visual positioning as well. Wan et al. [10] proposed an improved random sample consensus
(RANSAC) method for indoor visual localization. They defined a function to measure the
matching quality of matched image pairs. According to the matching quality, the four
best matching pairs are selected to calculate the projection transformation matrix of the
two images to eliminate false matching. Cheng et al. [11] proposed a location method
based on the 3D structure and presented a two-stage outlier filtering framework using
the visibility and geometric characteristics of a SfM point cloud for urban-scale location
of tens of millions of points. Salarian et al. [12] used SfM to reconstruct the 3D camera
position and improved the convergence speed of the SfM by using the criterion of the
highest intra-class similarity between the images returned from the retrieval method. Then,
the selected image and the query are used to reconstruct the 3D scene, and the relative
camera position is determined by the SfM. In addition, an effective camera coordinate
transformation algorithm was introduced to estimate the query geo-tag. Guan et al. [13]
proposed an indoor positioning system that can be divided into two stages: offline and
online. In the offline phase, feature points in speeded up robust features (SURF) format
and line features are extracted to establish an image database, while in the online phase,
the homography matrix and line features are used to estimate the position and direction.
This method reduces the storage cost of the database and reduces the delay in practical
applications. Kawamoto et al. [14] proposed a voting-based image similarity algorithm
for image retrieval, which is robust to image geometric transformation and occlusion.
To improve the performance of image retrieval, multiple voting, and ratio testing are
introduced. Moreover, a particle filter is introduced to smoothly estimate the trajectory
of the moving camera for the vision location. Feng et al. [15] established a visual map
database that included visual features and corresponding location features. Subsequently,
the query images of the two users were matched with the two database images, and the
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position and pose of the query camera were obtained using the inertial measurement unit
(IMU) and electronic compass device on the smartphone.

Çinaroğlu et al. [16] obtained the semantic descriptor through semantic segmentation
and subsequently used the approximate nearest neighbor search for localization. The
success of this method is compared with the local descriptor-based method commonly
used in the literature. On this basis, a hybrid method that combines the two methods
was proposed.

Kim et al. [17] proposed a location method based on image and map data, which
is suitable for various environments. To realize the localization process, they used an
image-based localization method and Monte Carlo localization method with an a priori
map database. The experimental results show that the open dataset has a satisfactory
effect in various environments. To overcome the resource limitations of mobile devices,
Tran et al. [18] designed a system that takes advantage of the scalability of image retrieval
and positioning accuracy based on a 3D model. A novel cascading search algorithm
based on a hash was proposed to rapidly calculate the corresponding relationship from
2D to 3D. Furthermore, a novel multiple RANSAC algorithm was proposed to achieve
accurate angle estimation. This solves the challenge of repeated building structures in
urban environment positioning.

Feng et al. [19] used an RGB-D sensor to build a visual map that contains the basic
elements of image-based positioning, including camera posture, visual features, and 3D
structure of buildings. Using the matched visual features and corresponding depth values,
a novel local optimization algorithm is proposed to realize point cloud registration and
pose estimation of the database camera. Then, the global consistency of the mapping was
obtained by graph optimization. Based on a visual map, the image-based localization
method is studied using the epipolar constraint. He et al. [20] proposed a six degree-
of-freedom (6-DOF) pose estimation for a portable 3D vision sensor installed on mobile
devices. A detailed 3D model of the indoor environment and a Wi-Fi received signal
strength model are established in the offline training phase. In the online positioning
process, the authors first use a Wi-Fi signal to locate the device in the 3D sub-model. Then,
6-DOF angle estimation is calculated by feature matching between the two-dimensional
image collected online and the key frame image used to build the 3D model.

In addition, there is a great deal of work using deep learning methods to evaluate
image similarity for the purpose of positioning. Xia et al. proposed a supervised hash code
image retrieval method based on image expression learning [21]. This method does not
need to use artificially defined visual features in feature extraction, and takes the lead in
using deep neural network to extract image features. Lai et al. proposed a deep supervised
hashing for fast image retrieval [22], which extracts image feature data and hash code
by using image tag and other auxiliary information. In order to meet the performance
requirements of large-scale image retrieval system, Liang et al. proposed a deep hashing
for compact binary codes Learning [23], which extracts the nonlinear relationship between
similar images through deep neural network. Liu et al. proposed a deep supervised
hashing for fast image retrieval [24] to learn the similarity semantic relationship between
image feature expression and hash code by using labeled image data as objects.

The organization of this paper is as follows. The methods of 3D model construction,
image retrieval and pose estimation are presented in Sections 2–4. Section 5 describes
the experimental environments and datasets and discusses the experimental results. The
conclusion is offered in Section 6.

2. Construction of 3D Model
2.1. Feature Point Extraction and Description

In a real scene, color and depth images are captured together. To establish the asso-
ciation between different images, feature points must be extracted from the image and
analyzed. Subsequently, image registration, and other operations can be performed to
calculate the pose of each image, which can be used as the basis of visual positioning. There
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are numerous algorithms for feature point extraction and description. Here, we chose
the ORB algorithm with both accuracy and efficiency. ORB, whose full name is oriented
features from the accelerated segment test (FAST) and rotated binary robust independent
elemental features (BRIEF), is a fast feature extraction and description algorithm proposed
by Ethan Rublee et al. [25]. Feature extraction is developed from FAST algorithm [26], and
feature description is improved based on the BRIEF algorithm [27]. This has been improved
and optimized on its original basis. Compared with other feature extraction methods, such
as scale-invariant feature transform (SIFT) [28] and speeded up robust features (SURF) [29],
the speed of ORB is approximately 100 times that of SIFT and 10 times that of SURF.

2.2. Image Registration

Previously, we conducted the extraction and matching of feature points between
images, after which we could register the images. Suppose we have two frames, F1 and F2.
Moreover, we obtain two sets of one-to-one corresponding feature points:

P = {p1, p2, · · · , pN} ∈ F1,Q = {q1, q2, · · · , qN} ∈ F2 (1)

where p and q are points in R3.
This problem aims to find a rotation matrix R and displacement vector t such that:

∀i, pi = Rqi + t. (2)

In fact, owing to the existence of errors, it is impossible for the left and right sides to
be equal. The rotation R and displacement vectors t must be solved by minimizing the
following errors:

min
R, t

N

∑
i=1
‖ pi−(Rqi + t) ‖2. (3)

This problem is solved using the perspective-n-point (PnP) method [30]. PnP is a method
used for solving the motion from 3D to 2D point pairs. There are numerous methods for
solving PnP problems, such as perspective-3-point (P3P) [31], efficient PnP (EPnP) [32], and
universal PnP (UPnP) [33]. Here, we used the P3P method to calculate motion.

2.3. Pose Graph Optimization

The pose graph, as the name suggests, is a graph composed of a camera pose. The
graph here is based on graph theory. It consists of nodes and edges:

G = {V, E}. (4)

In the simplest case, the node represents each pose (quaternion form) of the camera:

vi =
[
x, y, z, qx, qy, qz, qw

]
=

[
R3×3 t3×3
O3×3 1

]
i

(5)

Edge refers to the transformation between two nodes:

Ei,j =

[
R3×3 t3×3
O3×3 1

]
i,j

. (6)

The figure below shows a schematic diagram of the pose map in the process of the 3D
model construction:
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This is because there are errors in the edge Ei,j, which makes the data given by all
edges inconsistent. In the process of pose graph optimization, the inconsistency error must
be optimized:

minE = ∑
i,j
‖ x∗i − Ei,jx∗j ‖ 2

2, (7)

where x∗i is the estimate of xi. In the optimization process, they had an initial value. Then,
according to the gradient of the objective function to x:

x∗(t+1) = x∗(t) − η ∗ ∇xE. (8)

The value of x is adjusted to reduce E. If this problem converges, the change in x will
be smaller, and E will converge to a minimum. During this iteration, the change in the
value of x is x∗.

Thus far, the problem can be abstracted as a nonlinear optimization problem. This
problem is also called bundle adjustment (BA) [34], and the Levenberg Marquardt (LM) [35]
method is usually used to optimize the nonlinear square error function.

3. Image Retrieval
3.1. Feature Clustering

In the process of building the 3D model, feature points are extracted from all sample
images. In the image retrieval stage, based on these extracted feature points, we must cluster
the feature points to obtain a codebook. Then, the codebook is used to map the original
n-dimensional feature vector to the k-dimensional space. The results of the clustering
algorithm affect the quality of the codebook, which is crucial for the subsequent retrieval
process. Clustering is an unsupervised learning algorithm. Its essence is to automatically
classify similar objects into the same cluster without any additional training. Here we use
the K-means algorithm to cluster the features. The most significant feature of this algorithm
is that it is easy to understand and runs fast.

The process of feature clustering algorithm is as follows:
Step 1: Randomly select k sample points as the center of each cluster. {µ1, µ2, µ3, · · · , µk}.

The distance between the center points is set as far as possible.
Step 2: Calculate the distance between all sample points and the center of the k clusters.

Then, all points are divided into the nearest cluster center according to the nearest-neighbor
principle. The formula below represents the process of dividing the sample points into
cluster centers:

ci = argmin ‖ xi − µj ‖2, (9)

where xi is the ith sample point, µj is the jth cluster center, ci and is the cluster center
assigned to the ith sample point.

Step 3: Recalculate the cluster center of each class according to their existing objects.
The calculation formula is given below:

µj =
∑m

i=1 1{ci = j}xi

∑m
i=1 1{ci = j} . (10)

Step 4: Repeat steps 2–3 until the position of the cluster center is almost unchanged,
and the cluster center is the center of the feature point.

To ensure the convergence of the feature clustering algorithm, a loss function must
be defined:

J(c1, c2, · · · , cm, µ1, µ2, · · · , µk) =
1
m

m

∑
i=1
‖ xi − µci ‖

2. (11)

It represents the square sum of the distances from each sample point to the cluster
center. The ideal result of the feature clustering algorithm is to minimize the loss function.
If the current loss function does not reach the minimum value, we can first maintain the
cluster center µj of each cluster. The cluster center point ci of each sample point was
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adjusted to reduce the objective function. In contrast, ci remains unchanged, while a
change in µj can likewise reduce the loss function. As the formula above is a nonconvex
function, the clustering algorithm may not reach the global minimum, but converge to
the local minimum instead. In this case, we must run the feature clustering algorithm
numerous times, randomly select the cluster center point each time, and subsequently
select the smallest center point in the final result.

3.2. Feature Coding

After obtaining the codebook, we can start to encode the features, which aims to
reduce the large amount of noise generated during feature extraction. This process removes
redundant information and simplifies the feature representation vector. Feature coding not
only improves the expressiveness of the vector, better expresses an image but also generates
a unified and standardized contrast template, which is conducive to the establishment of
an index in the subsequent image retrieval.

It is a prerequisite for the image retrieval process to represent an image as a vector.
An image vector representation method based on local visual features was employed. The
specific steps are as follows:

Step 1: Read the image file. The local feature descriptor of the image was extracted
and recorded as {x1, x2, · · · , xi, · · · , xn}. For an image database with n sample size, we
first extract local feature descriptors from all images, assuming that the number of local
features extracted is n, and each local feature descriptor xi is 128 dimensions; then, all the
descriptors are extracted from a n× 128 dimensional matrix.

Step 2: Use the feature clustering algorithm to cluster the extracted n descriptors to
generate a visual dictionary. Set the number of cluster centers as k and the visual words as
{µ1, µ2, · · · , µj, · · · , µk

}
.

Step 3: Quantize each local feature and divide it to the nearest cluster center using the
K-D tree [36] data structure:

NN(xi) = argmin ‖ xi − µj ‖, (12)

where NN(xi) is the cluster center assigned to xi.
Step 4: Calculate the residual of the cluster center and local features, sum all the

residuals of each image on the same cluster center, and then normalize them. Finally, each
cluster center obtains a residual sum. If every local feature descriptor is 128 dimensional,
then the sum of residuals is also a 128-dimensional vector. We define the vector as S.
Different features may exhibit different signs.

Step 5: Sum the residuals. The formula of residual sum is expressed as follows:

vj = ∑
i

xi − µj, ∀NN(xi) = j, (13)

where vj is the residual sum of the jth cluster center.
Step 6: Splice the sum of k residuals to generate a long vector [v1, v2, · · · , vk] with

a length of k × 128. After normalization, the vector of the local aggregated descriptors
(VLAD) [37] is obtained.

3.3. Combining Color and Depth Information in the Vector of the Locally-Aggregated
Descriptor (VLAD)

Our feature coding method is the algorithm of the feature coding stage of image
retrieval in this study; it is both fast and efficient. However, some useful information is
lost in the process of feature description, which weakens the ability to distinguish feature
points. This leads to incorrect matching in the process of image matching and affects the
final retrieval effect.

To solve the above problem, we added the color information of the picture in the
feature coding stage, such that the coding vector contains the color information. In contrast,
our visual positioning image acquisition equipment not only has an RGB camera but
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also a depth camera such that the depth information is likewise a very important tool for
improving the positioning accuracy. We further added depth information in the feature
coding stage such that the coding vector includes depth information. In the feature coding
stage, we aggregated the features that we extracted previously, and the significance of
aggregation is to simplify the number of features. In the image, the dimension of the
binary descriptor extracted by the ORB operator is 128, so a k× 128 dimension vector of
locally aggregated descriptor (VLAD) of the image can be obtained after feature coding,
which significantly reduces the computational complexity compared with the large ORB
feature descriptor. In this scenario, the combination of the VLAD vector with the color
information extracted from the image, and the depth information extracted from the depth
image will not significantly increase the time cost and will not occupy a substantial amount
of memory. While ensuring the matching speed, this increases the utilization of valuable
information of the image, improves the robustness of color and depth, and strengthens the
discrimination of each image feature vector. It can also achieve a better image retrieval
effect in an environment of illumination and scale changes.

In the process of improving the VLAD feature coding algorithm for image retrieval,
the input RGB image is first converted into a gray image, and then the values of the three
channels in the RGB image are transformed into the opponent color space to obtain O1, O2,
O3, and the image matrix corresponding to the three color channels. The opponent color
space is one of the most outstanding mainstream color descriptors [38]. The opponent
decomposes the color space into three channels, namely, O1, O2, and O3. Each channel is
described by a descriptor. The conversion method from RGB space to opponent space is
expressed in the following formulae:

O1 = R−G√
2

,

O2 = R+G−2B√
6

,

O3 = R+G+B√
3

.

(14)

Here, O1 and O2 channels contain red-green and blue-yellow opponent colors, respec-
tively, which have good invariance to the brightness of the image. The O3 channel contains
the intensity information of the color space, which is affected by the scale factor. The
above three-color channels constitute the opponent color space. In real scenes of daily life,
the changes of lighting conditions include the changes of brightness conditions and color
conditions. The opponent color space contains three channels. O1 and O2 channels contain
red-green and yellow-blue component colors respectively, which have good invariance to
the brightness of the image. They are robust when the brightness condition changes. The
O3 channel is the intensity information, and the value of the O3 channel will not change
when the color condition changes. In short, the opponent color space can enhance the
robustness of image retrieval under different lighting conditions.

Adding three channels of color information in the feature coding stage of image
retrieval not only maintains the efficiency of the ORB binary descriptor but also improves
the robustness of the image retrieval structure to color.

In the process of VLAD coding, the ORB descriptors of each image are assigned to
all cluster centers according to the nearest neighbor principle, and there are several ORB
descriptors in each cluster center. We take the nearest feature descriptor from each cluster
center as the color and depth key point of the image and extract the color information and
depth information using binary coding. For each key point i, the 3 × 3 region R with the
key feature point as the center is selected from the corresponding image matrix of O1, O2,
and O3 color channels, respectively, and the mean value of the corresponding color channel
of each region is calculated. Similarly, another 3 × 3 region R with the key feature point as



ISPRS Int. J. Geo-Inf. 2021, 10, 195 10 of 19

the center is selected on the depth image, and the mean of the depth value of each region is
obtained. The calculation is carried out according to the following formulae:

Gn = ∑9
x=1 Mnx

9

H = ∑9
x=1 Nx

9 ,
(15)

where n represents the three color channels of the image, with n = 1, 2, and 3; x is the
number of points in region R, with a total of nine feature points; Gn represents the mean
value of region R on the nth color channel of the image; Mnx represents the value of the
nth color channel of the xth feature point on the image; H represents the mean value of
region R of the depth image; and Nx represents the value of the xth feature point on the
depth image.

After obtaining the mean value Gn of each color channel of region R around the color
key point i of the image, the color and depth binary coding corresponding to the key point
i is generated:

Cnx =

{
0, Mnx < Gn
1, Mnx ≥ Gn

Dx =

{
0, Nx < H
1, Nx ≥ H

,

(16)

where Cnx represents the binary color coding of the xth feature point on the nth color chan-
nel of the image. The value of each color channel of each feature point in the neighborhood
R centered on the key point i is compared with the channel mean value of region R. If the
value of the point is less than the channel mean value of the region, the binary code of the
point is 0. If the value of the point is larger than the channel mean value of the region, the
binary code of the point is 1. Dx represents the binary encoding of the xth feature point in
the corresponding depth image. The depth value of each feature point in the neighborhood
R centered on the key point i is compared with the mean depth value of the region R. If
the value of the point is less than the mean depth of the region, the binary code is 0; if it is
greater than the mean, the binary code is 1. Each color channel has nine binary codes, a
total of three color channels, and a depth channel. In particular, a picture has 36 codes.

After the above operations on a picture, the binary coding of the picture in three
opponent color channels and depth channels is obtained. After obtaining the color binary
coding of all the regions around the color key points, it is added to the original VLAD
representation vector such that a new vector with a length of k × (n + 36) is obtained,
which is the improved VLAD feature coding vector. The process of obtaining the improved
VLAD feature code is shown in Figure 2.
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3.4. Similarity Measurement

The results of image retrieval were sorted according to the rules used to measure
the similarity between images. To evaluate whether two images match, we must use
a similarity measure to calculate the similarity between images. The similarity measure
calculates the distance between the sample descriptor vectors and sorts them after obtaining
the image feature coding descriptor.

As the descriptor vector in this study is binary, to evaluate the similarity more effi-
ciently, the Hamming distance [39] of the distance between the measurement vectors is
employed. The Hamming distance is used to calculate the similarity of two vectors; that
is, by comparing whether each bit of the vector is the same, if it is different, Hamming
distance is added by one to obtain the Hamming distance. The higher the vector similarity,
the smaller the corresponding Hamming distance:

d(x, y) =
k∗(n+36)

∑
i=1

xi ⊕ yi, (17)

where d(x, y) denotes the Hamming distance of the two descriptor vectors x, y, which are
k× (n + 36) bit codes. Further, ⊕ denotes the XOR operation.

4. Pose Estimation

After retrieving the most similar image, there is a certain difference between it and the
pose of the handheld device, explained in a conversion relationship between the poses of
the two images. Therefore, in this process, a rotation matrix R and translation matrix t are
required. As the 3D model of the scene has been generated by the scene image library, the
most similar image has its corresponding 3D point cloud. The pose solving problem here
aims to solve the rotation and translation matrix between a given 3D point cloud and an
image. This case is a 2D–3D problem that can be solved by PnP.

The homogeneous equation of the high-space point P is P = (X, Y, Z)T. Let it project
to feature point

→
x 1 = (u1, v1, 1)T. To solve R and t, the augmented matrix [R|t] is defined;

after expanding the equation, we obtain the following results:

s

 u1
v1
1

 =

 t1 t2 t3 t4
t5 t6 t7 t8
t9 t10 t11 t12




X
Y
Z
1

. (18)

After eliminating s, the constraint is obtained:

u1 = t1X+t2Y+t3Z+t4
t9X+t10Y+t11Z+t12

.

v1 = t5X+t6Y+t7Z+t8
t9X+t10Y+t11Z+t12

(19)

Assume that: →
t 1 = (t1, t2, t3, t4)

T

→
t 2 = (t5, t6, t7, t8)

T

→
t 3 = (t9, t10, t11, t12)

T

(20)

so: →
t 1

TP−
→
t 3

TPu1 = 0
→
t 2

TP−
→
t 3

TPv1 = 0
(21)
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Here, t is a variable. A feature point can provide two constraints on t if there are N feature
points; the following equation holds:

PT
1 0 −u1PT

1

0 PT
1 −v1PT

1
...

...
...

PT
N 0 −uNPT

N

0 PT
N −vNPT

N



→
t 1
→
t 2
→
t 3

 = 0, (22)

where t has 12 variables and the solution of T can be obtained by at least six pairs of
matching points. Hence, this method is referred to as the direct linear transformation
method; when the matching points are more than six pairs, singular value decomposition
(SVD) [40] methods can be used to solve the overdetermined equation.

The solution T is composed of R and t, so R satisfies R = SO(3). Hence, we must find
the best rotation matrix for the T matrix, which can be completed by QR decomposition [41],
which is equivalent to ghost the result from the matrix space to the SE(3) manifold, and
transform it into rotation and translation.

5. Experiment

In this section, we introduce the experimental environments and datasets we used,
present the visual positioning results of the proposed method as well as the original VLAD
method, and then compare them.

5.1. Experimental Environments and Datasets

The algorithms were launched on a computer with an Intel i5 2.50 GHz CPU, 8 GB
RAM. The computer has installed the Ubuntu 16.04 LTS operating system, which is a
widely used open-source operating system. The code was written in the C++ language.

To verify the effectiveness of the proposed algorithm, the experiments were per-
formed on the Intel RealSense D435i (manufacturer: Intel Co., Ltd., Santa Clara, CA, USA)
depth images of several public datasets and compared with the algorithms of VLAD [37].
OpenLORIS-Scene datasets [42], created by researchers at the Inter Research Center and
Tsinghua University, have RGB and depth images collected by RealSense D435i with a
resolution of 848 × 480 and data from an inertial measurement unit, a fish-eye camera, and
a wheel odometer. The data of each sensor were collected at the same time. This study
used the RGB and depth image data. The depth image was processed and aligned with the
RGB image. We synthesized the ground truths through artificial restoration, referencing
information from RGB images. Datasets of five scenes were used: home, cafe, office, and
corridor environments.

5.2. Experimental Results and Comparison

In the four scenes of home, cafe, office and corridor of LORIS data set, the RGB-
D images data with moderate daylight intensity is selected to construct the 3D model.
The data set with moderate illumination can reduce the difficulty of model construction
and pose estimation, and has better effect and higher accuracy. This is beneficial to the
subsequent use of these postures as the basis for visual positioning. The three-dimensional
model of the four scenes is shown in Figure 3.

In the image retrieval stage, this experiment selects two images as the images to be
retrieved in each of the four scenes mentioned above. Each image was retrieved by VLAD
and our proposed method, a total of eight times. The first similarity image is displayed as
the result. The images to be retrieved and the images previously constructed in the image
retrieval training set are taken under different lighting conditions. In this way, we can
effectively compare the image retrieval effect under the condition of light change, and the
difference between the two methods.
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Figure 3. Three-dimensional model constructed from RGB-D image: (a) Home scene; (b) cafe scene;
(c) office scene; (d) corridor scene.

In the home scene, we selected two photos taken when the lights were on at night
as the query set images. The images in the training set are taken when the light is not on
in the daytime. The lighting conditions of the query set and the training set are different.
Figure 4 shows the most similar image (that is, the image with the smallest Hamming
distance) retrieved each time after the two images are retrieved by VLAD method and our
proposed method. For the first image of the query set, VLAD method searches out the
wardrobe. There is still a distance between the inquired pictures and the wardrobe, which
only accounts for a small part. The result of our proposed method is very close to the query
image. The second image of the query set is taken in front of the wardrobe. The retrieval
results of the two methods are mainly pictures of the wardrobe. The images retrieved by
our proposed method are closer to those retrieved.
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Since the lighting conditions of each dataset of the cafe scene are almost the same,
the lighting conditions of the query set and the training set are similar. Figure 5 shows
the most similar images retrieved each time after the two images are retrieved by VLAD
method and our proposed method. The first image of the query set is taken in front of the
bar near the seat. The image retrieved by VLAD method is taken behind the bar, which is a
little different from the image being queried. The image retrieved by our proposed method
is in front of the bar, which is similar to the image being retrieved. For the second image,
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the retrieval results of the two methods are similar to the retrieved image, and the results
of this method are similar.
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In the office scene, two photos taken in a narrow space with weak light are selected
as the query set images. The illumination condition of training set image is moderate.
Figure 6 shows the retrieval results of the two methods. For the first image in the query set,
the distance between the retrieve result by VLAD and the query image is far, and the two
images have no common feature points, so it is impossible to use PnP to solve the pose.
The retrieve results by our proposed method are very close to retrieved images. For the
second image of the query set, the images retrieved by the two methods are similar to the
query image.
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In the corridor scene, two photos taken under strong sunlight conditions are selected
as query set images. The illumination condition of training set image is moderate. Figure 7
shows the retrieval results of the two methods. Generally speaking, the retrieved images
are similar to the retrieved images. However, the retrieval result of the second image in the
query set is quite different from it.

After the completion of image retrieval, we choose images ranked first in each scene
query result to estimate the pose. In the early stage, we have generated the 3D model of
the scenes. We extract the corresponding 3D point cloud of the query result. The point
cloud and the retrieve result image are used for 3D-2D pose calculation, using PnP method.
Since the images in the train sets have known 6-DOF pose, the 6-DOF pose of the query
image can be known by calculating the displacement matrix and rotation matrix between
the query image and the query result. Table 1 shows the three-dimensional coordinates
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of each query image in the four scenes of home, cafe, office and corridor by VLAD and
our proposed method, as well as the error compared with the ground true value. It can be
seen that the coordinate errors of VLAD method are relatively large. Some of them have
errors of 5–6 m. In addition, because the query result of the fifth image does not have the
same feature points with the queried image, its pose cannot be calculated. The errors of
our proposed method are relatively small, and the maximum error is about two meters.
Compared with the original VLAD method, it has been greatly improved.
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Table 1. Pose estimation result of VLAD and our proposed method (position, unit: m).

Scene Query Image No.
Ground Truth Vlad Our Proposed Method

x y z x y z Error x y z Error

Home 1 1.062 −1.773 0 0.628 −1.779 0 0.434 1.285 −1.723 0 0.229
2 1.647 −0.619 0 0.998 −1.773 0 1.324 1.620 −0.753 0 0.137

Cafe 3 21.164 21.281 0 25.596 18.951 0 5.007 22.246 21.346 0 1.084
4 24.477 20.188 0 24.879 19.374 0 0.908 24.548 20.053 0 0.153

Office 5 1.216 −0.576 −1.081 / / / / 0.156 −0.449 −1.088 1.068
6 −0.967 −0.538 −1.086 0.053 −0.665 −1.086 1.028 −1.172 −0.488 −1.088 0.211

Corridor 7 33.550 −8.288 −0.186 33.300 −7.843 −0.183 0.510 33.256 −7.523 −0.182 0.820
8 34.528 −12.113 −0.205 33.014 −6.254 −0.175 6.052 33.455 −11.763 −0.194 1.129

For the fifth image in the query set, the distance between the retrieve result by VLAD and the query image is far, and the two images have
no common feature points, so it is impossible to use PnP to solve the pose.

Table 2 shows the angle of each query image in the four scenes calculated by VLAD
and proposed method (expressed by quaternion for convenience of calculation), together
with the errors compared with ground true value. Although the errors of the two methods
are small, the results of VLAD method are relatively large. Compared with the original
VLAD method, the error of the proposed method is relatively small.

Table 2. Pose estimation result of VLAD and our proposed method (angle, quaternion form).

Scene Query
Image

No.

Ground Truth VLAD Our Proposed Method

qx qy qz qw qx qy qz qw Error qx qy qz qw Error

Home 1 0 0 0.99 0.139 0 0 0.988 0.151 0.012 0 0 0.988 0.152 0.013
2 0 0 −0.797 0.604 0 0 0.998 0.067 1.874 0 0 −0.797 0.605 0.001

Cafe 3 0 0 −0.215 0.977 0 0 −0.222 0.975 0.007 0 0 −0.134 0.991 0.082
4 0 0 −0.571 0.821 0 0 −0.475 0.880 0.113 0 0 −0.579 0.815 0.010

Office 5 0.004 −0.007 0.984 −0.176 / / / / / 0.004 −0.009 0.996 0.094 0.270
6 0.002 −0.007 0.998 0.556 0.006 −0.009 0.998 0.061 0.495 0.004 −0.008 0.999 0.031 0.525

Corridor 7 0.002 0.001 −0.641 0.768 0.002 0.002 −0.668 0.744 0.036 0.002 0.002 −0.67 0.742 0.039
8 0.002 0.001 −0.656 0.755 0.002 0.001 −0.642 0.766 0.018 0.002 0.002 −0.721 0.693 0.090

For the fifth image in the query set, the distance between the retrieve result by VLAD and the query image is far, and the two images have
no common feature points, so it is impossible to use PnP to solve the pose.

ORB-SLAM2 is another state-of-the-art positioning method proposed by Mur-Artal
and Tardós [43]. It uses feature descriptor and extractor to tracking for real-time localization
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and mapping. It supports monocular, stereo and RGB-D camera data. Tables 3 and 4 shows
the position and angle estimation result of ORB-SLAM2 method. Most of the errors are
larger than those of our proposed method. It shows that the positioning effect of our
proposed method is better.

Table 3. Pose estimation result of ORB-SLAM2 method and our proposed method (position, unit: m).

Scene Query Image No.
ORB-SLAM2 Our Proposed Method

x y z Error x y z Error

Home
1 1.664 −0.757 0.164 1.192 1.285 −1.723 0 0.229
2 1.774 −0.751 0.235 0.297 1.62 −0.753 0 0.137

Cafe
3 21.155 20.123 −0.093 1.161 22.246 21.346 0 1.084
4 21.375 21.153 0.735 3.331 24.548 20.053 0 0.153

Office
5 1.867 −0.183 1.028 2.242 0.156 −0.449 −1.088 1.068
6 2.358 −0.156 −1.102 3.347 −1.172 −0.488 −1.088 0.211

Corridor
7 33.55 −7.288 0.186 1.067 33.256 −7.523 −0.182 0.820
8 33.67 −8.301 0.519 3.974 33.455 −11.763 −0.194 1.129

Table 4. Pose estimation result of ORB-SLAM2 method and our proposed method (angle, quaternion form).

Scene Query Image No.
ORB-SLAM2 Our Proposed Method

qx qy qz qw Error qx qy qz qw Error

Home
1 0.006 0.133 −0.792 1.596 2.305 0 0 0.988 0.152 0.013
2 0.013 0.547 −0.795 1.442 1 0 0 −0.797 0.605 0.001

Cafe
3 −0.003 −0.092 −0.303 1.95 0.981 0 0 −0.134 0.991 0.082
4 0.025 0.331 −0.294 1.897 1.16 0 0 −0.579 0.815 0.01

Office
5 −0.028 0.497 −0.706 1.553 2.47 0.004 −0.009 0.996 0.094 0.27
6 −0.008 0.66 −0.699 1.436 2.025 0.004 −0.008 0.999 0.031 0.525

Corridor
7 0.002 0.001 0.641 0.768 1.282 0.002 0.002 −0.67 0.742 0.039
8 0.001 0.021 −0.645 1.767 1.013 0.002 0.002 −0.721 0.693 0.09

Table 5 shows the average error and average positioning time of the three methods.
Because the proposed method expands the capacity of VLAD descriptor, it takes a little
more time than the original VLAD, but it is still at a very efficient level. ORB-SLAM2 is
faster than VLAD. Compared with the original VLAD method and ORB-SLAM2, the pro-
posed method improves the positioning accuracy greatly when the illumination conditions
of the query set and the training set are different.

Table 5. Mean error and retrieval time of VLAD and the proposed method.

Method Position Mean Error,
m

Angle Mean Error,
Rad

Mean Positioning
Time, s

VLAD 2.18 0.365 0.476
ORB-SLAM2 2.076 1.530 0.209

proposed 0.69 0.129 0.591

6. Conclusions and Discussion

In this paper, we proposed a visual positioning method using RGB-D image on smart
mobile devices. In this paper, we improve the VLAD image retrieval method, which is
applied to mobile vision positioning. This method has the advantages of small memory
consumption, fast calculation speed and high accuracy. Firstly, the pose of each image
in the training set is calculated through ORB feature extraction and description, image
registration, and pose map optimization. Then, in the image retrieval stage, the training
set and the query set are clustered to generate the VLAD description vector. In order
to overcome the problem that the description vector loses the image color information
and improve the retrieval accuracy under different lighting conditions, we combined the
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color information and depth information with VLAD descriptors for image retrieval. It is
robust when the brightness condition and color condition changes. Opponent color space,
together with depth information, can enhance the robustness of image retrieval under
different lighting conditions. Finally, the 6-DOF pose of the query images are calculated by
PnP method with query image and retrieve result image. Experiments are carried out on
RGB-D data of four scenes (cafe, corridor, home and office) in LORIS dataset. The results
under different illumination conditions in indoor scenes show that the proposed method
improves the positioning accuracy compared with the original VLAD and ORB-SLAM2,
which has good computational efficiency. On the other hand, another experiment by us
shows that when using only depth information without color component, the position
estimation errors of 8 query images are 0.300, 0.552, 2.457, 0.417, 3.076, 0.497, 0.928, and
3.764. The errors are larger than those with color component.

Due to the limited time and energy of the author, it is impossible to propose a perfect
technology in indoor positioning. Therefore, there are still some research contents in
this field that need to be improved and supplemented. At present, the efficiency of the
proposed method needs to be improved. In the later research, we will try to use hierarchical
clustering instead of the existing k-means clustering to improve the efficiency. In order to
improve the accuracy, we may do some research using deep learning method. On the other
hand, we also need to study a positioning method which is less dependent on the server to
avoid wasting time in the process of network transmission.

There may be some occlusion in the query image taken by the mobile device users.
They will increase the difficulty of image retrieval to a certain extent, and also affect the
accuracy of position estimation algorithm. Therefore, in future work, we will study the
visual feature filtering algorithm in the case of occlusion, and attempt to improve the
positioning accuracy through the visual feature filtering algorithm.
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