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Abstract: Maize (Zea mays L.), one of the most important agricultural crops in the world, which
can be devastated by lodging, which can strike maize during its growing season. Maize lodging
affects not only the yield but also the quality of its kernels. The identification of lodging is helpful
to evaluate losses due to natural disasters, to screen lodging-resistant crop varieties, and to opti-
mize field-management strategies. The accurate detection of crop lodging is inseparable from the
accurate determination of the degree of lodging, which helps improve field management in the
crop-production process. An approach was developed that fuses supervised and object-oriented
classifications on spectrum, texture, and canopy structure data to determine the degree of lodging
with high precision. The results showed that, combined with the original image, the change of the
digital surface model, and texture features, the overall accuracy of the object-oriented classification
method using random forest classifier was the best, which was 86.96% (kappa coefficient was 0.79).
The best pixel-level supervised classification of the degree of maize lodging was 78.26% (kappa
coefficient was 0.6). Based on the spatial distribution of degree of lodging as a function of crop variety,
sowing date, densities, and different nitrogen treatments, this work determines how feature factors
affect the degree of lodging. These results allow us to rapidly determine the degree of lodging of
field maize, determine the optimal sowing date, optimal density and optimal fertilization method in
field production.

Keywords: unmanned aerial vehicles (UAVs); digital surface model; lodging level; object-oriented
classification; color and texture features

1. Introduction

Maize (Zea mays L.) is the most planted crop in the world and plays an important role
in ensuring China’s national food security [1]. Lodging, which can devastate maize crops
at any time in the growing season, mostly occurs from the tasseling stage to the filling
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stage [2]. The relentless pursuit of yield of modern agriculture leads to vigorous growth of
maize and dense planting, which makes for long, thin maize stalks that can easily fall victim
to maize lodging through heavy storms and rains in occurring in China mainly during the
growth stages from tasseling to filling [2]. Maize lodging causes mechanical damage to the
maize stalk and leads to various degrees of bending, which reduces nutrient absorption
and transport, affects the synthesis of organic matter and the normal development of maize,
and ultimately destroys the canopy structure, thereby decimating the grain yield and
quality [3]. It is thus vital to obtain timely and accurate information on maize lodging after
such disasters not only to help agricultural production authorities take remedial measures
quickly and reduce losses but also to help insurance companies estimate losses quickly and
accurately and thereby provide reasonable compensation after such disasters. In addition,
such an approach would allow us to select lodging-resistant crop varieties and improve
field-management strategies.

Obtaining data on the maize lodging through ground investigation and actual mea-
surement is time-consuming and inefficient. However, the recent development of remote-
sensing technology now offers a convenient way to rapidly obtain crop-lodging data [4,5].
Recent years have seen the development of remote-sensing technology based on unmanned
aerial vehicles (UAVs), which are able to capture RGB images with higher spatial and tem-
poral resolution than is possible with satellite remote-sensing technology [6]. In addition,
UAVs offer high scalability and can carry a variety of optical sensors, all with lower op-
erating costs and complexity than was previously possible [7]. As a result, UAV remote
sensing is gaining in popularity for acquiring crop spectral and structural data [8].

When crops grow normally, canopy leaves play a major role in reflectance; however,
once lodging occurs, the spectral information comes mainly from crop stems [9], so different
degrees of lodging lead to different reflectance spectra. Because the separation between
plants decreases as the degree of lodging increases, maize stems contribute more to canopy
reflectance as the degree of lodging increases [10]. In a UAV remote-sensing experiment,
Li et al. [8] obtained RGB images of maize lodging at the filling stage, selected color
and texture features of normal and lodged maize, and then extracted data on the maize
lodging area. The results show the most accurate classification is based on mean texture
features (minimum error is 0.3%, maximum error is 6.9%). This method produces minimal
experimental error, so the area extracted is classified relatively accurately, thereby providing
a basis for estimating crop lodging based on UAV remote sensing. In previous work on
this subject, Liu et al. [11] combined RGB and thermal infrared imaging to establish a
comprehensive recognition model for the rice lodging based on particle swarm optimization
and the SVM algorithm. Their model enhanced the temperature difference between lodging
and non-lodging rice, which improves the accuracy of lodging identification. Han et al. [12]
analyzed RGB and multispectral images to extract potential characteristic factors and
thereby predict maize lodging. They also formed a nomogram, calculated the risk and
protection factors related to maize lodging, and calculated the probability of the maize
lodging given different prediction variables. The results show that the canopy structure is
the main factor affecting maize lodging. Chu et al. [13] used a UAV system equipped with
RGB and near-infrared cameras to obtain RGB images of maize at different growth stages,
which, when combined with structure-from-motion technologies, served to construct a
three-dimensional canopy structure and digital surface model (DSM), from which the
change in elevation is obtained before and after lodging. Elevation estimates from this
method are consistent with ground measurements. Sun et al. [14] combined texture features
with the vegetation index to classify different feature images by maximum likelihood
classification and extracted four degrees of lodging. The comprehensive accuracy of the
method combining texture features with the vegetation index is 86.61%, with a kappa
coefficient of 0.8327.

At present, detecting crop lodging based on remote sensing mainly uses the single-
element features of a single sensor to obtain pixel-level supervised classification. Few
studies are available on high-precision classification based on the combination of spectra,
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texture, canopy structure, and other information, and the classification results rarely
provide the degree of lodging. For instance, Guo et al. [15] used UAVs RGB images to
construct the vegetation indexes, which they combined with texture features to classify
crops. Research shows that classification based on the vegetation index and texture is
clearly superior to single-factor classification. Wang et al. [16] constructed a normalized
vegetation index based on the UAV remote-sensing images in the visible range separated
into red, green, and blue bands. With the appropriate threshold, they extracted healthy
green vegetation with an accuracy of over 90%.

Precise detection of crop lodging is thought to be inseparable from an accurate de-
scription of degree of lodging, which is helpful for targeted field management in the later
stages of maize growth. In addition, although the traditional pixel-based classification
methods are suitable for low- and medium-resolution satellite remote-sensing images,
confusion arises with high-resolution images [17]. To overcome this problem, object-
oriented classification, also known as object-based image analysis (OBIA), was used for
high-spatial-resolution remote-sensing imaging. This method divides the image into adja-
cent, homogeneous regions and then identifies ground objects through a comprehensive
analysis of various image features (spectra, geometry, textures, and context) to improve
classification accuracy. The method offers high precision and high efficiency, so it is cur-
rently receiving a large share of attention among the remote-sensing information-extraction
methods [18]. However, with this approach, the noise generated by pixel-level supervised
classification is difficult to eliminate via filtering algorithms, which seriously affects the
accuracy of the image classification results. Given the shortcomings of previous research,
one focus of the present research is to classify maize lodging grades and with better accu-
racy by combining multiple feature factors and object-oriented classification methods. A
similar approach was used by Jing et al. [19], who extracted data on aquatic vegetation in
constructed wetland by using the RGB vegetation index and object-oriented classification,
improving the classification accuracy from 53.7% for the traditional method to 91.7%. The
results show that the object-oriented classification method significantly reduces noise and
improves the classification accuracy.

The present study integrates multiple feature factors into the image-object layer
and uses object-oriented classification to classify experimental maize fields via different
experimental processes. The goal is to reduce salt-and-pepper noise in the traditional pixel-
level supervised classification method and thereby improve the classification. In addition,
the factors that determine the degree of lodging are analyzed based on the high-precision
classification from the various experimental processes. The research results are helpful for
screening lodging-resistant varieties, determining the critical growth period for lodging,
and improving the level of field management.

2. Materials and Methods
2.1. Study Area and Design of Field Experiments

The experimental site was in the southwest corner of the Xinxiang comprehensive
experimental base of the Chinese Academy of Agricultural Sciences in the north of Henan
Province (35◦7′51.6′′ N, 113◦45′58′′ E, altitude 75 m). Xinxiang County is west of the
central part of the North China Plain and has a temperate continental monsoon climate,
with four distinct seasons. The annual average temperature, the temperature difference,
solar insolation potential, frost-free period, and precipitation are 14.3 ◦C, 16.5 ◦C, 2407 h,
191 days, and 560.6 mm, respectively. Seventy-five percent of the annual precipitation is
concentrated between June and September.

The total planting area of summer maize was 3.43 ha, which was split into five experi-
mental areas: sowing experiments (A-1), variety experiments (A-2), density experiments
(A-3), nitrogen experiments (operations research) (A-4) and nitrogen experiments (gradi-
ents research) (A-5). The maize varieties FK139, JNK728, and ZD958, which are widely
planted in North China, were used in the sowing experiments (A-1). The three varieties
were planted at intervals, with the first sowing date to the eighth sowing date planted from
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north to south with passages between each plot, as shown in Figure 1. The first sowing
was done on 24 April 2020, and the subsequent sowing was done at subsequent 10-day
intervals. The sixth sowing date (24 June 2020) was the same as the sowing dates of the
other experiments in areas A-2–A-5. For the variety experiments (A-2), 98 maize varieties
were planted over an area of 3 m× 10 m with different genotypes and resistance to lodging.
The A-3 density experiments were distributed on the west, north, and south sides of area
A-2 (see Figure 1); on the north and west sides were planted the varieties XY335, ZD958,
and ND108 at densities of 105,000, 90,000, 75,000, 60,000, and 45,000 ha−1.The varieties
JNK728, XY335, ZD958, and ZD909 were planted to the south of area A-2 at densities of
75,000, 75,000, and 105,000 ha−1. Figure 1 shows the spatial distribution. For the density
experiments, wide sowing was used. A planting density of 75,000 ha−1 was used for
experimental areas A-1, A-2, A-4, and A-5, with a row spacing of 60 cm and a plant spacing
of 23 cm. To the south of the test field were the nitrogen operation and gradient experi-
ments (A-4 and A-5). The operation experiment used maize varieties JNK728 and ZD958,
with a total of 11 nitrogen application methods. Figure 1 shows the spatial distribution
of nitrogen application modes. The gradient experiment used maize variety JNK728 and
involved four nitrogen treatments denoted N100, N200, N300, and N400.Urea (CH4N2O)
was used as nitrogen source. Figure 1 shows the spatial distribution of nitrogen application
modes in area A-5. For the nitrogen treatment, urea (CH4N2O), superphosphate (P2O5),
and potassium oxide (K2O) were mixed into the soil before the experimental sowing date
for areas A-1, A-2, and A-3, and the base fertilizer was applied a single time as per the
normal local field management. Table 1 lists the nitrogen application methods for areas
A-4 and A-5.

Table 1. Nitrogen treatment application methods.

1A A-4 Nitrogen Operations Research

Nitrogen fertilization
(kg/hm2) CK N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Base fertilizer 150 150 150 150 150 150 150

V5–V6 100 100 100 150 150 150

V11–V12 100 100 100 100 100

R1 silking 100 100 100 100 100

1B A-5 Nitrogen Gradients Research

Nitrogen fertilization
(kg/hm2) CK N100 N200 N300 N400

Base fertilizer 0 60 120 180 240

V11–V12 0 40 80 120 160

2.2. UAV-RGB Image Acquisition

Before and after 3 August 2020, heavy rain accompanied by strong winds (force level
5 to 6, speed 8 to 13.8 m/s) swept through Xinxiang County and led to different degrees of
lodging in the various maize test areas. The growth stages of each test were obtained on
this date by field investigation (see Table 2). Most of the plots were in the growth stage VT
(tasseling) or V14 except for the sowing-date experiment (area A-1). The UAV-RGB images
were obtained at 12:00 on 3–4 August 2020, the day after the lodging stage. The clear and
windless weather minimized the impact of shadows caused by the solar altitude angle on
the RGB image quality.



ISPRS Int. J. Geo-Inf. 2021, 10, 309 5 of 29
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 5 of 31 
 

 

 
Figure 1. Distribution of experimental plots A-1, A-2, A-3, A-4, A-5. 

Table 1. Nitrogen treatment application methods.
1A A-4 Nitrogen Operations Research 

Nitrogen fertilization 
(kg/hm2) CK N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

Base fertilizer  150 150 150 150 150 150 150    

V5–V6    100   100 100  150 150 150 
V11–V12    100  100  100 100  100 
R1 silking     100  100 100  100 100 

1B A-5 Nitrogen Gradients Research 
Nitrogen fertilization 

(kg/hm2) CK N100 N200 N300 N400 

Base fertilizer 0 60 120 180 240 
V11–V12 0 40 80 120 160 

Figure 1. Distribution of experimental plots A-1, A-2, A-3, A-4, A-5.

Table 2. Investigation details of growth period during maize lodging.

Experimental Category Growth Stage

Sowing experiments

Sowing date 1 R5
Sowing date 2 R4
Sowing date 3 R3
Sowing date 4 R2
Sowing date 5 R1
Sowing date 6 VT
Sowing date 7 V14
Sowing date 8 V10

Variety experiments VT
Density experiments V14

Nitrogen experiments (operations research) VT
Nitrogen experiments (gradients research) VT
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The UAV with a CMOS sensor was loaded to obtain high-resolution RGB images
in a DJI matrix 210 RTK V2 (DJI Innovations Co., Ltd., Shenzhen, China). Because the
RTK mode uses the carrier phase dynamic real-time difference method, the elevation was
determined to centimeter-level accuracy, which helps us reconstruct the surface of the
maize canopy. The specific parameters of the drone, route planning, and camera are given
in Table 3. The camera was set to prioritize the shutter speed by auto-adjusting the ISO.
RGB images were acquired at a frequency of 1 Hz by using an intervalometer to control
the camera. To obtain more accurate data on plant height and to apply geometric image
corrections, 26 red markers fixed along the road external to the test areas were used as
ground control points (GCPs), and their positions were determined by the GPS receiver.
The GCPs were combined with the RGB images acquired by the camera to determine a
simple relationship between camera (sensor), image, and the ground platform and to derive
the correction formula and produce accurate orthophotos. The geometric displacement
of the pixels at different positions within the image can be calculated given the position
of the remote sensing platform, the scanning range of the remote sensor, and the type of
projection used. The purpose of geometric correction is to correct image deformation caused
by systematic and nonsystematic factors so as to realize the geometric integration with
standard image or image. Combined with our research, images without ortho rectification
will exhibit different deformation characteristics at different positions, which in turn affects
the accuracy of the extracted lodging level. Thus, orthorectification is used to reduce the
geometric error to the extent possible.

Table 3. Details of the unmanned aerial vehicle (UAV) platform and its settings for image acquisition
of maize lodging.

Parameter Version or Information

UAV type DJI matrix 210 RTK V2
Flying area 3.43 ha

Total number of photos 770
Route planning DJI GS Pro (Version 2.0.13)

Height above ground 30 m
Flight speed 2 m/s
Flight time 30 min each time

Camera orientation Vertical down
Front overlap ratio 85%
Side overlap ratio 75%

Camera type Zenmuse X4S (Pan tilt camera)
Ground resolution 0.8 cm
Image resolution 5472 × 3648

Focal length 24 mm

2.3. Field-Survey Data Acquisition and Lodging Type

Accurate classification of the various degree of lodging is vital for evaluating loss due
to lodging and the resistance to lodging of the different maize varieties. The centimeter-
scale image is helpful to distinguish different degrees of lodging of maize. Previous
studies have proposed a variety of methods to classify the degree of lodging of maize. For
example, Tian et al. [20] proposed a three-tier categorization system based on the angle
between the upper stem and the main stem, with the tiers being the stem lodging, the
root lodging, and the rhizome composite lodging. Combined with previous research and
ground investigations, the lodging of maize in the present study area was divided into
three degrees: non-lodging (NL), light lodging (LL), and severe lodging (SL), as shown
in Figure 2 in the NL plot, the maize remains upright, which means that and the angle
between the maize plant and its lodging varies from 60◦ to 90◦. For LL, the angle between
the maize plants before and after the lodging is 30◦ to 60◦. Finally, for SL, the plant is close
to or completely on the ground, the stem is completely exposed but not completely broken.
After lodging, some leaves wither.
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Figure 2. Different degrees of lodging: (a) non-lodging (NL), (b) light lodging (LL), (c) severe lodging (SL). The photos were
taken on the experimental plot on August 4.

A grid of 2.5 m × 2.5 m was drawn on the maize experimental field and selected
116 grids, which covered all experimental categories evenly as quadrats (45 NL quadrats,
49 LL quadrats, and 22 SL quadrats). The number of quadrats, the GPS coordinates of the
central point of each quadrat, and the degree of lodging of each quadrat (Figure 3) was
recorded. All quadrats were used to analyze the characteristic factors associated with the
different degrees of lodging and to evaluate the accuracy after lodging classification. In the
process of classification, 60% of the samples were used as training samples, and 40% of the
samples were used as validation samples.
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2.4. UAV-RGB Image Preprocessing

First, the RGB aerial images obtained as per Section 2.1 were preprocessed, which
included the following main steps (Figure 4):

(1) Image filtering: To reduce the number of images and ensure good image quality, poor-
quality images were deleted, such as those acquired during UAV takeoff and landing.
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(2) Image mosaic: To get the structural point cloud of the sparse scene, the GPS coordi-
nates and the inertial navigation system attitude parameters recorded by the drone
flight control system were combined, and Agisoft PhotoScan (Agisoft LLC, Saint
Petersburg, Russia, version 1.4.5) was used to match the input image data based on
the structure from motion algorithm (SfM) algorithm. Dense reconstruction then
produced a dense point cloud. Next, the discrete three-dimensional points were
connected to the polygonal mesh surface by surface reconstruction, and the texture
was mapped to the surface to generate a realistic three-dimensional model. The final
digital image served as the DSM [21–23]. Next, the ground control points obtained as
per Section 2.2 served to make fine geometric corrections to the image of the study
area. GCS_WGS_1984 served as the geographical coordinate system of the stitched
RGB image, and the image was composed of red, green, and blue channels with
each color containing eight bits (so the color value ranged from 0 to 255). The spatial
resolution was 0.8 cm, and the image was stored in TIFF format.

(3) Image clipping: ArcGIS 10.3 (Esri, USA) was combined with images and field-planting
maps to outline the experimental types on the images, and cutting tools were used
to remove parts that fell outside the study area, only the part of maize coverage is
reserved, such as the base map in Figure 3.
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2.5. Technical Process of Study

The characteristic factors such as spectral reflectance, vegetation indexes, canopy
coverage, and digital surface model depend on the maize lodging status. By combining
these characteristic factors with the traditional pixel-level supervised classification method
or object-oriented classification method, the maize lodging can be classified. The accuracy
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of the classification is evaluated by using the confusion matrix of validation samples. To
better compare the advantages and disadvantages of the various classification methods, the
experiment uses the same training samples and evaluation samples regardless of whether
it uses pixel-level traditional supervised classification or object-oriented classification at
the image object layer to extract lodging level.

This work uses the traditional classification method at the pixel level and tests and
selects the best method to ensure that the best classifier is used in object-oriented clas-
sification. Under object-oriented conditions, only the combination of different feature
factors is selected to determine the optimal classification combination. Combining the
lodging-level classification maps with the highest classification accuracy from the various
experimental research areas produces the spatial distribution of lodging, based on which
the lodging-resistant maize varieties can be determined. In addition, this approach allows
us to determine the risk of lodging as a function of planting density and nitrogen conditions.
Figure 4 summarizes the process for classifying maize lodging.

2.6. Extraction of Maize Lodging
2.6.1. Extraction of Characteristic Factors for Different Degrees of Lodging of Maize

Three different maize lodging plots were selected from within the 116 plots in the RGB
image (see Section 2.3). The spectral characteristics, texture characteristics, and differences
in canopy surface, vegetation coverage differences, and other characteristic factors were
calculated and statistically analyzed. The characteristic factors that proved useful for
distinguishing between the different degrees of lodging of maize were filtered out, and the
degree of lodging was classified based on these factors.

(1) Separation of soil background and extraction of canopy coverage

Although most of the canopy was in the VT (tasseling) or V14 stage of maize, the
images show that the canopy coverage and leaf distribution pattern still depended strongly
on the degree of lodging. For one thing, the soil affects the spectral reflectance, thus
affecting the vegetation index. In addition, the distribution pattern of soil gaps or leaves
can reflect the degree of lodging of maize.

The spatial distribution of HSV (hue, saturation, value) color served to separate soil
background, and its components are usually used as feature vectors for image classification
and image recognition [24]. Note that the HSV color space is a subjective space where H
represents hue, S represents saturation, and V represents value. Thus, for this paper, the
image was transformed from RGB color space to HSV color space. Compared with the
RGB color space, color segmentation of the image in HSV space produces more intuitive
brightness and hue, which allows the naked eye to detect differences between colors by
inspection. The specific conversion formulas are as follows [25,26]:

H1 = cos−1

 0.5[R− G + (R− B)]√
(R− G)2 + (R− B)

, (1)

H =

{
H1

360◦ − H1

ifB ≤ G
ifB > G

, (2)

S =
max(R, G, B)−min(R, G, B)

max(R, G, B)
, (3)

V =
max(R, G, B)

255
. (4)

Once the image was transformed into HSV space, H, S and V color histograms were
extracted and their color features analyzed. The ranges of H, S, and V determine the pixel
color. After numerous experiments, the intervals of the three components of H, S, and V for
green were determined to be [26~34], [43~255], and [46~255]. Pixels in this interval were
classified as vegetation pixels, and pixels not in this interval were classified as gap elements.
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The extracted vegetation coverage layer was used to mask the original image to
obtain RGB images with soil background removed, such as Figures 4 and 5a, where
Figures 5a and 4 is before (after) lodging. The images of different degrees of lodging
after lodging differ significantly from those before lodging. Figures 4 and 5c shows
the result of vegetation coverage before (after) lodging. Combining Figure 5b with the
classification results after lodging shows that the distribution of vegetation coverage in SL
images exhibits a clear directionality, and the vegetation coverage increases significantly.
The images without lodging show a clear and obvious canopy structure, and the gap
distribution of vegetation is relatively uniform. Therefore, the data on vegetation coverage
can be used as a feature factor for lodging classification.

(2) Construction of digital elevation model and generation of digital surface model

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 31 
 

 

 
Figure 5. Results of vegetation-coverage extraction (because the image is too large, only the image 
near the variety is displayed). (a) Image before lodging and after removing the soil background. (b) 
Image after removing soil background. (c) Vegetation coverage before lodging. (d) Vegetation cov-
erage after lodging. The colors on the map are the superposition of the later classification results. 
The vegetation coverage of the seriously lodged plots increases significantly, and the distribution is 
oriented in a certain direction. 

(2) Construction of digital elevation model and generation of digital surface model 
In step 2 of Section 2.4, the generation of orthophoto in the study area allowed us to 

create a DSM before and after lodging based on the three-dimensional point cloud recon-
structed by using the structure-from-motion algorithm. The DSM shows how the ground 
height fluctuates in the study area. However, because no digital elevation model of the 
bare land (i.e., before planting) was available, the absolute height of the maize plant could 
not be obtained, so the relative elevation was used to describe the fluctuation of canopy 
height. The original DSM was masked with the plot boundary drawn before so that the 
DSM after the mask includes only the changes in the maize canopy (i.e., before and after 
lodging) but does not include the height of the land. For the maize canopy model under 
different lodging conditions without the soil height, a fuzzy degree of membership was 
used to normalize the original DSM to (0, 1). Here, a linear classification function was 
used. By applying the same method, the 1 August (pre-lodging) and 4 August (post-lodg-
ing) digital surface models were obtained. These images show that the terrain on the west 
side of the study area is higher than that on the east side, which indicates that fluctuations 
in absolute elevation will seriously affect the lodging classification based on a DSM  
(Figure 6a,b). Therefore, differences between the pre- and post-lodging data were calcu-
lated to obtain the relative changes in the digital surface model due to lodging. Consistent 
with the previous operation, membership ambiguity served to normalize the change of 
this elevation to (0, 1), as shown in Figure 6. 

Figure 5. Results of vegetation-coverage extraction (because the image is too large, only the image
near the variety is displayed). (a) Image before lodging and after removing the soil background.
(b) Image after removing soil background. (c) Vegetation coverage before lodging. (d) Vegetation
coverage after lodging. The colors on the map are the superposition of the later classification results.
The vegetation coverage of the seriously lodged plots increases significantly, and the distribution is
oriented in a certain direction.

In step 2 of Section 2.4, the generation of orthophoto in the study area allowed us
to create a DSM before and after lodging based on the three-dimensional point cloud
reconstructed by using the structure-from-motion algorithm. The DSM shows how the
ground height fluctuates in the study area. However, because no digital elevation model of
the bare land (i.e., before planting) was available, the absolute height of the maize plant
could not be obtained, so the relative elevation was used to describe the fluctuation of
canopy height. The original DSM was masked with the plot boundary drawn before so
that the DSM after the mask includes only the changes in the maize canopy (i.e., before
and after lodging) but does not include the height of the land. For the maize canopy model
under different lodging conditions without the soil height, a fuzzy degree of membership
was used to normalize the original DSM to (0, 1). Here, a linear classification function
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was used. By applying the same method, the 1 August (pre-lodging) and 4 August (post-
lodging) digital surface models were obtained. These images show that the terrain on
the west side of the study area is higher than that on the east side, which indicates that
fluctuations in absolute elevation will seriously affect the lodging classification based
on a DSM (Figure 6a,b). Therefore, differences between the pre- and post-lodging data
were calculated to obtain the relative changes in the digital surface model due to lodging.
Consistent with the previous operation, membership ambiguity served to normalize the
change of this elevation to (0, 1), as shown in Figure 6.

(3) Construction of vegetation indices

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 31 
 

 

 
Figure 6. Digital surface model (a) before and (b) after lodging. (c) To eliminate the influence of topography on plant 
height, the difference between pre-lodging and post-lodging digital surface models is used. The three images are normal-
ized to [0,1] by using the membership ambiguity. 

(3) Construction of vegetation indices 
The vegetation indices can enhance the interpretation of remote-sensing images by 

linearly or nonlinearly combining two or more characteristic bands, which allows it to 
play a significant role in crop-growth detection and fine classification. Several commonly 
used vegetation indices were selected to enhance the gap between different levels of maize 
after lodging. The results showed that the green and blue bands increased more with in-
creasing degree of lodging. Therefore, a vegetation index constructed from the blue and 
green bands was devised to detect the difference between the degrees of lodging. Previ-
ous studies also showed that the green band correlates more closely with the physical and 
chemical parameters of vegetation [27].The excess green index (EXG) and excess green 
minus excess red index (EXGR) are two common visible vegetation indices. Woebbecke 
(1995) [28] found that EXG provides a near-binary intensity image outlining a plant region 
of interest, and that the vegetation data can be extracted by threshold segmentation. The 
color index of vegetation extraction (CIVE) integrates the information in the red, green, 
and blue bands to enhance the vegetation information. In addition, the green-red ratio 
index (GRRI), green ratio vegetation index (GRVI), modified green-red vegetation index 
(MGRVI), visible atmospherically resistant index (VARI), and Woebbecke index (WI) 
changed the linear exponential form into the ratio form to enhance the difference between 
degrees of lodging. The soil-adjusted vegetation index (SAVI) is less sensitive to soil than 
the traditional vegetation index, thereby reducing the impact of soil. The formulas for 
these nine vegetation indices are given in Table 4. 

Table 4. Characteristic bands or vegetation indices used in this experiment. 

Abbreviation Full Name Formula Reference 
r  Normalized red intensity r = R / (R + G + B)  Kawashima et al., (1998) [29]  
g  Normalized green intensity g = G / (R + G + B)  Kawashima et al., (1998) [29]  
b  Normalized blue intensity b = B / (R + G + B)  Kawashima et al., (1998) [29] 

GRRI Green-red ratio index GRRI = G / R  Gamon et al., (1999) [30]  
GRVI Green ratio vegetation index GRVI = (g - r) / (g + r)  Tucker et al., (1979) [31]  

SAVI  Soil adjusted vegetation index ( ) ( )
, 0.5

G - R
SAVI = 1 + L L

G + R + L
× =  Li et al., (2010) [32]  

MGRVI Modified Green Red Vegetation index 2 2 2 2( ) / ( )MGRVI g r g r= − +  Bendig et al., (2015) [33]  
VARI Visible atmospherically resistant index VARI = (g - r) / (g + r - b)  Gitelson et al., (2002) [34]  

WI Woebbecke index WI = (g - b) / r - g  Woebbecke et al., (1995) [35]  

CIVE Color index of vegetation extraction CIVE = 0.441r - 0.811g + 0.385b + 18.78745  Kataoka et al., (2003) [36]  
ExG Excess green index  ExG = 2g - r - b  Woebbecke et al., (1995) [35]  

ExGR  Excess green min us excess red ExGR = ExG - 1.4r - g  Guijarro et al., (2011) [37]  

(4) Statistics and analysis of texture features 
The ground features on the high-precision lodging maize plots obtained by drones 

have a single category, and the difference in waveband information and RGB vegetation 

Figure 6. Digital surface model (a) before and (b) after lodging. (c) To eliminate the influence of topography on plant height,
the difference between pre-lodging and post-lodging digital surface models is used. The three images are normalized to
[0, 1] by using the membership ambiguity.

The vegetation indices can enhance the interpretation of remote-sensing images by
linearly or nonlinearly combining two or more characteristic bands, which allows it to
play a significant role in crop-growth detection and fine classification. Several commonly
used vegetation indices were selected to enhance the gap between different levels of maize
after lodging. The results showed that the green and blue bands increased more with
increasing degree of lodging. Therefore, a vegetation index constructed from the blue and
green bands was devised to detect the difference between the degrees of lodging. Previous
studies also showed that the green band correlates more closely with the physical and
chemical parameters of vegetation [27].The excess green index (EXG) and excess green
minus excess red index (EXGR) are two common visible vegetation indices. Woebbecke
(1995) [28] found that EXG provides a near-binary intensity image outlining a plant region
of interest, and that the vegetation data can be extracted by threshold segmentation. The
color index of vegetation extraction (CIVE) integrates the information in the red, green, and
blue bands to enhance the vegetation information. In addition, the green-red ratio index
(GRRI), green ratio vegetation index (GRVI), modified green-red vegetation index (MGRVI),
visible atmospherically resistant index (VARI), and Woebbecke index (WI) changed the
linear exponential form into the ratio form to enhance the difference between degrees
of lodging. The soil-adjusted vegetation index (SAVI) is less sensitive to soil than the
traditional vegetation index, thereby reducing the impact of soil. The formulas for these
nine vegetation indices are given in Table 4.

(4) Statistics and analysis of texture features

The ground features on the high-precision lodging maize plots obtained by drones
have a single category, and the difference in waveband information and RGB vegetation
index under different lodging levels is limited, but from the change in canopy coverage, the
texture characteristics are quite obvious. The texture characteristics of the ground objects
in the image can be obtained by processing with different texture filters. This method
can better treat the problem whereby foreign objects produce the same spectrum, thereby
improving the accuracy of classification.
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Table 4. Characteristic bands or vegetation indices used in this experiment.

Abbreviation Full Name Formula Reference

r Normalized red intensity r = R/(R + G + B) Kawashima et al., (1998) [29]
g Normalized green intensity g = G/(R + G + B) Kawashima et al., (1998) [29]
b Normalized blue intensity b = B/(R + G + B) Kawashima et al., (1998) [29]

GRRI Green-red ratio index GRRI = G/R Gamon et al., (1999) [30]
GRVI Green ratio vegetation index GRVI = (g− r)/(g + r) Tucker et al., (1979) [31]
SAVI Soil adjusted vegetation index SAVI = (1 + L)× (G−R)

G+R+L , L = 0.5 Li et al., (2010) [32]
MGRVI Modified Green Red Vegetation index MGRVI = (g2 − r2)/(g2 + r2) Bendig et al., (2015) [33]
VARI Visible atmospherically resistant index VARI = (g− r)/(g + r− b) Gitelson et al., (2002) [34]

WI Woebbecke index WI = (g− b)/|r− g| Woebbecke et al., (1995) [35]
CIVE Color index of vegetation extraction CIVE = 0.441r− 0.811g + 0.385b + 18.78745 Kataoka et al., (2003) [36]
ExG Excess green index ExG = 2g− r− b Woebbecke et al., (1995) [35]

ExGR Excess green min us excess red ExGR = ExG− 1.4r− g Guijarro et al., (2011) [37]

The gray level co-occurrence matrix (GLCM) provides a comprehensive analysis of
the local features and a pixel-based arrangement. It reflects the distribution of the image
gray level and presents repeated, alternating, or specific spatial rule changes, which is the
basis for obtaining image texture features [38]. It also describes the probability that a pair
of pixels separated by d pixels in the direction θ had gray level i and j, so the element can be
denoted P (i, j | d, θ) or, when θ and d are selected, as Pi, j. The red, green, and blue bands
are standardized, so the RGB vegetation indices (VARI, MGRVI, SAVI, and GRVI) were
used from Section 2.6.1 to do texture filtering by calculating the gray level co-occurrence
matrix. This gives us the mean, variance, homology, contrast, dissimilarity, entropy, second
moment, correlation, etc. (there are 56 texture features altogether) [14]. The window for
the second-order probability filter is set as 7 × 7, the transform components of the spatial
correlation matrix X and Y are 1 and 1, and the gray quality level is 64.

To select high-quality texture features, the mean and variance of the texture features
of 45 NL, 49 LL, and 22 SL samples are counted, from which we calculated their respective
coefficients of variation and the different coefficient of LL and SL relative to NL (see
calculation in Appendix A). The calculation is as follows [15]:

V =
D
M
× 100%, (5)

Dw =
S1 − S2

S2
× 100%, (6)

where D is the variance, V is the coefficient of variation, M is the sample mean, Dw is the
difference coefficient, and S1 and S2 are the mean values of samples 1 and 2, respectively.
Here the strategy of the texture feature factor was used to choose the degree of lodging
with a high degree of internal aggregation and of dispersion between degrees of lodging;
in other words, larger difference coefficients and smaller coefficients of variation provide
better results.

2.6.2. Extraction Lodging from Maize Field with Different Degrees of Lodging

(1) Classification of Maize Lodging by Pixel-Level Supervised Classification

Pixel-level supervised classification selects the sample pixels of the confirmed category,
uses the sample pixels to train the discriminant function, and then compares the other
pixels with the trained discriminant function to classify them into the most similar sample
class according to various rules. First, three classical classification methods were selected to
classify the RGB images after separating out the soil background. The maximum likelihood
classification assumes that each class of statistics in each band is normally distributed.
The likelihood of a given pixel belonging to a certain training sample was calculated,
and then the pixels were merged into the maximum-likelihood category [39]. The K-
nearest-neighbor method classifies images according to Euclidean distance between the
data to be classified and the training-area elements in n-dimensional space. The number
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of object attributes obtained during classification was denoted N. Compared with the
traditional nearest-neighbor method, the K-nearest-neighbor method produces smaller
sensitive outliers and noise data sets and thus obtains more accurate classification results.
It automatically determines to which category pixels most likely belong [40]. Random
forest classification (RFC) integrates multiple trees by using ensemble learning [41]. Its
basic unit is the decision tree, and each decision tree is a classifier. For an input sample, n
trees will have n classification results. RFC integrates all the classification voting results
and specifies the category with the greatest number of votes as the final output, thereby
improving the classification accuracy [42].

To obtain the classification, we first remove the small patches from the classification
results and smooth the boundary to clarify the classification. Next, 70 of 116 sample cells
were used (i.e., 60%) as training samples and 46 (40%) as validation samples to evaluate the
results. The method most used to evaluate the classification accuracy of remote-sensing
images is to establish the confusion matrix for statistical analysis. This matrix can be used
to calculate the producer’s accuracy, the user’s accuracy, the commission error, and the
omission error for each category, as well as the overall accuracy and the kappa coefficient
of the entire classification result. This work uses high overall representative accuracy
and kappa coefficient as evaluation indexes. Overall accuracy reflects the probability of
consistency between the classification results and the real ground results, and the kappa
coefficient serves as an index to judge whether the two images are consistent. The Kappa
coefficient ranges from −1 to 1, but it is usually between 0 and 1. The closer the Kappa
coefficient is to 1, the higher the classification accuracy.

(2) Classification of Maize Lodging by Object-Oriented Classification

Section 2.6.1 discusses the extraction of the vegetation index, texture characteristics,
digital surface model (DSM), and vegetation canopy coverage under different degrees of
lodging. These characteristic bands and object-oriented classification methods were com-
bined to classify the degree of the maize lodging. Due to the high resolution of the acquired
images, the traditional supervised classification method increases the fragmentation of the
classification result at the pixel-level, which complicates the boundary. The object-oriented
classification method can greatly improve this situation by segmenting the image and
establishing classification rules. Image segmentation is affected by both the segmentation
scale and the segmentation algorithm, and the results of segmentation directly affect the
accuracy of object-oriented classification.

3. Results
3.1. Extraction of Multi-Feature Factors from RGB Images

After removing the soil background and marking the vegetation-covered pixels with
one and the remaining pixels with zero, the binary image was obtained as explained in
Section 2.6. Next, the percent accumulation histogram shown in Figure 7 combines the
116 sample plots with three lodging levels. The ratio of area covered by vegetation to total
area is the fractional vegetation cover (FVC), which is also considered as the part with
the value of one on the binary image, and the ratio of the remaining area (i.e., the area
not covered by vegetation) to total area is the gap fraction (GF), which is the part with
the value of zero on the binary image. The sum of the vegetation coverage and clearance
rate in each area is unity, and the vegetation coverage increases with increasing degree
of lodging. Compared with the day before lodging, the vegetation coverage of NL areas
decreased slightly on the day of lodging, which may be due to cloud-induced shadows
appearing when the image was collected on the day after lodging.

Like the method used to evaluate vegetation coverage, the digital canopy model of
116 sample plots before and after lodging was statistically analyzed to understand the
changes caused by lodging. Figure 8 shows the histogram of the elevation of different
lodging plots as determined by the DSM, where the vertical axis gives the number of
pixels for each height on the horizontal axis. Figure 8a shows the results for NL, LL,
and SL, and Figure 8b shows the difference between the two DSMs, which can also be
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divided into the change due to lodging for NL, LL, and SL (denoted ∆NL, ∆LL, and ∆SL).
The terrain factors produce an irregular multi-peak distribution in the gray histogram.
Subtracting the difference ∆DSM0804 between the two images (before and after lodging)
reveals a single-peak distribution or double-peak distribution in the gray histogram. With
increasing degree of lodging, the peak shifts toward lower elevations. Combining this
result with the image in Figure 6c shows that ∆DSM also offers unique advantages for
describing crop lodging. However, the disadvantage is poor accuracy, which arises because
the error is amplified by flight weather and absolute terrain fluctuations. In general, the
change produced in the DSM due to lodging can also be a good characteristic factor. A
reasonable threshold segmentation of ∆DSM0804 can provide the classification result for
degree of maize lodging. Combining the peak and segmentation of the gray histogram of
∆DSM0804 under different degrees of lodging produces final classification elevations of
0.35 and 0.52. The accuracy of the classification results is evaluated together with the other
classification methods.
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The reflectance is modified as a function of the degree of lodging of maize. This section
discusses the characteristic factors related to the degree of lodging from the perspective of
the reflectance spectrum. First, the orthorectified RGB data was standardized: 116 sample
cells were used to produce the gray histogram of the three bands for the different degrees
of lodging (Figure 9). The number of pixels in the red, green, and blue bands from the NL
plot is basically the same before and after lodging (Figure 9a,b). For SL, the peak value of
the blue band is lower than the red band, and the peak value of the red band is much lower
than the green band. With increasing degree of lodging, the peaks of the three bands shift
to higher gray values; that is, the reflectivity changes, and the gray value of the green band
increases significantly. According to the histogram of the mean change for the different
degrees of lodging (Figure 10), the reflectivity of each band increases by 8.49–17.95% for
moderate lodging, and by 21.91–38.99% for SL.
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Figure 11 shows the histogram of each vegetation index calculated for the sample
plot with different degrees of lodging. The abscissa gives the vegetation index, and the
ordinate gives the number of pixels. The gray histograms of the vegetation indexes for
different degrees of lodging show the distribution of the single peak. With increasing
degree of lodging, the peak of the histograms of the GRRI, GRVI, MGRVI, SAVI, EXGR,
and VARI all shift to the lower values, whereas the peak value of the WI shifts to higher
values. Combining these results with the change in the average pixel value for each degree
of lodging (Figure 12) shows that the CIVE and GRRI remain relatively unchanged as
the degree of lodging increases. As with the change ∆DSM0804 from the digital surface
model, the trends of GRVI, MGRVI, SAVI, EXGR, and VARI correlate negatively with
degree of lodging, whereas WI correlates positively with degree of lodging. The change
in EXG increases first and then decreases. Furthermore, the change in ExG is inconsistent
with the increasing degree of lodging, and the different levels in the histogram of WI and
EXGR cross each other so that the distributions of these indices in their histograms are not
centralized. Therefore, GRVI, MGRVI, SAVI, and VARI are chosen as characteristic factors
for classifying the degree of lodging.
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Figure 11. Histograms of nine vegetation indices for different degrees of lodging. The green solid curve corresponds to 
the NL plot after lodging and is basically consistent with the histogram of the plot before lodging (gray dotted curve). The 
yellow curve corresponds to LL and red to SL land. With increasing degree of lodging, some vegetation indexes peak at 
higher values, whereas others peak at lower values. 
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Figure 12. Change in average vegetation index due to various degrees of lodging. 

About the selection of texture features, first, they were arranged in reverse order ac-
cording to the relative difference coefficients of LL and SL with respect to NL. Features 

Figure 11. Histograms of nine vegetation indices for different degrees of lodging. The green solid curve corresponds to the
NL plot after lodging and is basically consistent with the histogram of the plot before lodging (gray dotted curve). The
yellow curve corresponds to LL and red to SL land. With increasing degree of lodging, some vegetation indexes peak at
higher values, whereas others peak at lower values.

About the selection of texture features, first, they were arranged in reverse order
according to the relative difference coefficients of LL and SL with respect to NL. Features
with difference coefficients greater than 25% were selected and then sorted by the coefficient
of variation of NL, LL, and SL. The results show that green_mean and green_homogeneity
produce the most accurate classifications, with the results of mgrvi_variance, vari_variance,
and vari_contrast producing slightly less accurate but still acceptable classifications. Thus,
these five texture features were used as the optimal feature factors to classify the degree
of lodging.
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Figure 11. Histograms of nine vegetation indices for different degrees of lodging. The green solid curve corresponds to 
the NL plot after lodging and is basically consistent with the histogram of the plot before lodging (gray dotted curve). The 
yellow curve corresponds to LL and red to SL land. With increasing degree of lodging, some vegetation indexes peak at 
higher values, whereas others peak at lower values. 
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3.2. Classification of Each Degree of Lodging by the Various Classification Methods

The supervised classification tool of ENVI 5.3 (Exelis, Broomfield, CO, USA) was used
to achieve pixel-level classification. In addition to RFC, the two classification methods
adopt default parameters. For the RFC method, the random forest classification tool in
ENVI extension tool was used to implement [42].The specific parameter settings are as
follows: the number of trees is 50; the number of features adopts the default “square root”
method, that is, number of features = sqrt (NB), where NB is the number of bands of the
input image to be classified; minimum number of samples to stop splitting is 5; minimum
integrity to stop splitting is 0.Of the three pixel-level supervised classification methods,
RFC is the most accurate. Its overall accuracy is 78.26%, and the kappa coefficient is 0.6098,
RFC was used to classify images after removing the soil background.

For object-oriented classification, firstly, the optimal segmentation scale can be de-
termined by using the estimation-of-scale parameters algorithm [43], which iteratively
segments images from bottom to top on multiple scales and calculates the local variance
(LV) between objects for each image-object layer. The rate of change in LV (ROC-LV) is
then used to magnify the mutation of LV, and the maximum ROC-LV reflects the candidate
values for the best segmentation scale, as shown in Figure 13 By using these candidate
values, the optimal segmentation scale is determined to be Since the digital surface model
∆DSM0804 has been normalized, we give it a weight of 20 for its participation in seg-
mentation and weight the other feature bands as Considering the edge smoothness and
compactness of the segmentation object, the smooth compactness parameter is set as 0.5
to obtain the segmentation result. In the process of object-oriented extraction of maize
with various degrees of lodging, the basic classification unit is the object with various
attributes generated after image segmentation. This differs from the pixel in traditional
image-supervised classification, which provides a higher-level classification. RFC, which
is the best pixel-level supervised classification method, was chosen to use object-oriented
classification in the image layer in this section.

Then, this study used eCognition Developer (Definiens Imaging, Germany, version
9.0) to achieve the object-oriented classification. The selection of classifier is RFC, the
depth of tree is 20, the number of trees is 50, and other parameters use default parameters.
Different band combinations were selected for classification, with the results shown in
Figure 14 RFC produces the best classification of the three pixel-level classification methods.
The maximum likelihood classification and K-nearest-neighbor method caused a certain
degree of misclassification for LL and SL. The former underestimates the fraction of
NL, and the latter does not detect LL. The fraction of LL in the hierarchical distribution
obtained by threshold segmentation using ∆DSM increases significantly, which is due
to the poor horizontal and vertical accuracy of ∆DSM. The results of object-oriented
classification show that the combination of ∆DSM, FVC, VI, and texture improves the
classification results, and the fragmentation and noise in the classification results can be
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significantly improved. Different classification results are evaluated combined with the
accuracy evaluation method in Section 2.6.2. Table 5 lists the overall accuracy and the
kappa coefficient of the classification. The comprehensive classification of images indicates
that the best vegetation index is VARI and the best texture feature is the green_mean. In
addition, the highest classification accuracy is with the original RGB image, ∆DSM, and
the green_mean. The overall classification accuracy is 86.96% and the kappa coefficient
is 0.7931.
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Figure 13. Segmentation scale for algorithm for estimating scale parameters. 
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Table 5. Classification accuracy for various classification methods and combinations of characteristic bands.

Classification Method Characteristic Band
Combination

Overall
Accuracy

Kappa
Coefficient

Threshold segmentation ∆DSM 78.26% 0.63

Pixel-level supervised classification
RGB (max likelihood classification) 60.87% 0.43

RGB (RFC) 78.26% 0.63
RGB (K nearest neighbor) 56.52% 0.33

Object oriented
classification

Based on spectral data RGB 45.65% 0.28
RGB+∆DSM 82.61% 0.72

Based on canopy
structure data ∆DSM+FVC 80.43% 0.68

Based on vegetation
index

RGB+∆DSM+GRVI 82.61% 0.72
RGB+∆DSM+MGRVI 80.43% 0.69

RGB+∆DSM+SAVI 65.22% 0.47
RGB+∆DSM+VARI 86.96% 0.79

Based on texture
features

RGB+∆DSM+green_homogeneity 80.43% 0.68
RGB+∆DSM+green_mean 86.96% 0.79

RGB+∆DSM+w_mgrvi_variance 84.78% 0.75
RGB+∆DSM+vari_contrast 80.43% 0.68
RGB+∆DSM+vari_variance 86.96% 0.78

Without original RGB
image

∆DSM+Best_VI 86.96% 0.78
∆DSM+Best_Texture 84.78% 0.74

∆DSM+Best_VI+Best_Texture 84.78% 0.75

3.3. Mechanism behind Degree of the Maize Lodging

Based on the classification results from Section 3.2, the object-oriented classification
method (RFC classifier) provides the most accurate classification of the combined features of
RGB images, ∆DSM, and green_mean. To determine which factors most strongly influence
maize lodging, the fraction of surface area that underwent lodging was calculated for
each different maize variety, as well as for the different sowing dates, nitrogen treatment
methods, and planting densities in the experimental field.

Figure 15 superimposes the degree of lodging onto the experimental plots. Green,
yellow, and red plots correspond to NL, LL, and SL, respectively. The spatial distribution
of maize with different degrees of lodging reveals a certain amount of lodging aggregation.
The LL areas represent the smallest fraction of lodging type and are distributed along the
boundaries between the NL and SL areas.

We applied a regional statistical analysis to the map of Figure 15 combined with the
map of the maize variety to calculate the fraction of each maize variety that undergoes
some degree of lodging. The top three varieties most resistant to lodging were Liaodan585,
LP68, and Zhongdan909 (Figure 16). Figure 17 maps the top 20 varieties in terms of lodging
resistance. Most of the maize varieties with zero lodging were located on the edge of the
field, although a few were distributed in the center, such as Fuer5152 and Zhengyuenyu432,
which indicates that these maize varieties offer superior resistance to lodging.

In the sowing-date experiment, the aisles or gaps between plots lead to a lodging
fraction and degree of lodging that is far less than in the other experimental plots. These
plots experienced only a small amount of LL and a small amount of SL. The lodging
resistance of the three varieties remains essentially the same over the eight sowing dates.
The fifth, sixth, and seventh stages are lodging-prone (i.e., R1, VT, and V14; see Figure 18).

Figure 19 compares the maize lodging under different nitrogen treatments. The results
of nitrogen gradient treatment indicate that increasing the total nitrogen amount improves
the lodging resistance of maize and decreases the fraction of SL. However, no significant
change occurs in the range of NL.
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Figure 16. Statistical analysis of degree of lodging of different maize varieties. Note: The fractions of NL, LL, and SL for 
each maize variety are indicated by green, yellow, and red, respectively. The three varieties most resistant to lodging are 
Liaodan 585, LP68, and Zhongdan909, respectively. 

 
Figure 17. Spatial distribution of the 20 maize varieties most resistant to lodging. 

In the sowing-date experiment, the aisles or gaps between plots lead to a lodging 
fraction and degree of lodging that is far less than in the other experimental plots. These 
plots experienced only a small amount of LL and a small amount of SL. The lodging re-
sistance of the three varieties remains essentially the same over the eight sowing dates. 
The fifth, sixth, and seventh stages are lodging-prone (i.e., R1, VT, and V14; see Figure 18). 

Figure 19 compares the maize lodging under different nitrogen treatments. The re-
sults of nitrogen gradient treatment indicate that increasing the total nitrogen amount im-
proves the lodging resistance of maize and decreases the fraction of SL. However, no sig-
nificant change occurs in the range of NL. 

Figure 16. Statistical analysis of degree of lodging of different maize varieties. Note: The fractions of NL, LL, and SL for
each maize variety are indicated by green, yellow, and red, respectively. The three varieties most resistant to lodging are
Liaodan 585, LP68, and Zhongdan909, respectively.

The results of the operational experiment indicate that the fraction of NL of JNK728
and ZD958 was highest under nitrogen treatments N8–N Table 1 indicates that treatments
N8–N10 are applied with base fertilizer in V5 and V6, N8 and N10 consisted of topdressing
in stages V11 and V12, and N9 and N10 consisted of topdressing in the R1 silking stage. The
results show that reasonable fertilization in the middle and late stages of maize vegetative
growth is helpful to improve the lodging resistance of maize.
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Figure 16. Statistical analysis of degree of lodging of different maize varieties. Note: The fractions of NL, LL, and SL for 
each maize variety are indicated by green, yellow, and red, respectively. The three varieties most resistant to lodging are 
Liaodan 585, LP68, and Zhongdan909, respectively. 

 
Figure 17. Spatial distribution of the 20 maize varieties most resistant to lodging. 

In the sowing-date experiment, the aisles or gaps between plots lead to a lodging 
fraction and degree of lodging that is far less than in the other experimental plots. These 
plots experienced only a small amount of LL and a small amount of SL. The lodging re-
sistance of the three varieties remains essentially the same over the eight sowing dates. 
The fifth, sixth, and seventh stages are lodging-prone (i.e., R1, VT, and V14; see Figure 18). 

Figure 19 compares the maize lodging under different nitrogen treatments. The re-
sults of nitrogen gradient treatment indicate that increasing the total nitrogen amount im-
proves the lodging resistance of maize and decreases the fraction of SL. However, no sig-
nificant change occurs in the range of NL. 
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Figure 19. Distribution of different degrees of lodging in nitrogen-experimental field. The nitrogen experimental field with 
the gradient treatment (operational treatment) is on the left (right). The numbers on the bar charts indicate the percent of 
the given degree of lodging in the experimental cell. 

The results of the operational experiment indicate that the fraction of NL of JNK728 
and ZD958 was highest under nitrogen treatments N8–N Table 1 indicates that treatments 
N8–N10 are applied with base fertilizer in V5 and V6, N8 and N10 consisted of topdress-
ing in stages V11 and V12, and N9 and N10 consisted of topdressing in the R1 silking 
stage. The results show that reasonable fertilization in the middle and late stages of maize 
vegetative growth is helpful to improve the lodging resistance of maize. 

Figure 20 shows the fraction of NL, LL, and SL for various maize varieties at different 
planting densities. Combining these results with the degree-of-lodging map and the map 
of planting density reveals that a higher planting density reduces the fraction of NL. Both 
the density (gradient) and the density (variety) experiments shown that maize varieties 
JNK728 and XY335 have the worst lodging resistance. Varieties JNK728, ZD909, XY335, 
and ZD958 at 5K density were also tested, and the results show that ZD909 and ZD958 
are more resistant to lodging. The proportion of LL and SL increases strongly with in-
creasing planting density. Therefore, future research should focus on how to determine 
the planting density to best ensure stability, high yield, and lodging resistance. 

Figure 18. Lodging resistance of three maize varieties sowed at different dates. The histograms show the fraction of NL
area, and the two curves show the lodging resistance to LL and SL for the different sowing dates. The fraction of SL is
almost zero, and LL mainly occurs in R1, VT, and V14.
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Figure 19. Distribution of different degrees of lodging in nitrogen-experimental field. The nitrogen experimental field with 
the gradient treatment (operational treatment) is on the left (right). The numbers on the bar charts indicate the percent of 
the given degree of lodging in the experimental cell. 

The results of the operational experiment indicate that the fraction of NL of JNK728 
and ZD958 was highest under nitrogen treatments N8–N Table 1 indicates that treatments 
N8–N10 are applied with base fertilizer in V5 and V6, N8 and N10 consisted of topdress-
ing in stages V11 and V12, and N9 and N10 consisted of topdressing in the R1 silking 
stage. The results show that reasonable fertilization in the middle and late stages of maize 
vegetative growth is helpful to improve the lodging resistance of maize. 

Figure 20 shows the fraction of NL, LL, and SL for various maize varieties at different 
planting densities. Combining these results with the degree-of-lodging map and the map 
of planting density reveals that a higher planting density reduces the fraction of NL. Both 
the density (gradient) and the density (variety) experiments shown that maize varieties 
JNK728 and XY335 have the worst lodging resistance. Varieties JNK728, ZD909, XY335, 
and ZD958 at 5K density were also tested, and the results show that ZD909 and ZD958 
are more resistant to lodging. The proportion of LL and SL increases strongly with in-
creasing planting density. Therefore, future research should focus on how to determine 
the planting density to best ensure stability, high yield, and lodging resistance. 

Figure 19. Distribution of different degrees of lodging in nitrogen-experimental field. The nitrogen experimental field with
the gradient treatment (operational treatment) is on the left (right). The numbers on the bar charts indicate the percent of
the given degree of lodging in the experimental cell.
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Figure 20 shows the fraction of NL, LL, and SL for various maize varieties at different
planting densities. Combining these results with the degree-of-lodging map and the map
of planting density reveals that a higher planting density reduces the fraction of NL. Both
the density (gradient) and the density (variety) experiments shown that maize varieties
JNK728 and XY335 have the worst lodging resistance. Varieties JNK728, ZD909, XY335,
and ZD958 at 5K density were also tested, and the results show that ZD909 and ZD958 are
more resistant to lodging. The proportion of LL and SL increases strongly with increasing
planting density. Therefore, future research should focus on how to determine the planting
density to best ensure stability, high yield, and lodging resistance.
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4. Discussion

In this study, we developed a method to extract the degree of maize lodging based on
multi-feature factors obtained from consumer UAVs and by applying an object-oriented
classification method. In the following, we discuss in detail the basis for selecting charac-
teristic factors, the evaluation of classification results, the factors that affect the degree of
lodging, and the improvements of our experiment over previous work.

Regarding the selection of classification features, extracting feature factors for classi-
fication currently suffers from low accuracy in the early and late stages of maize growth,
which may be due to the lower green-leaf coverage rendering the classification susceptible
to soil, weeds, and field background [44]. However, extracting the green based on HSV
color space can separate the above-ground objects from the maize, which produces good
classification accuracy for degree of lodging. In addition, to improve classification accuracy,
the vegetation index and texture index of the separated soil images can be used to enhance
the difference between images with different degrees of lodging. Previous studies used a
variety of sensors such as thermal infrared [11], LiDAR [45], and multispectral [14] to obtain
various types of data with high sensitivity to different degrees of lodging. Furthermore,
the different types of data enhance the differences between lodging and non-lodging crops.
By applying classification algorithms that detect these differences, the lodging areas of
different crops can be extracted.

However, the use of image features and object-oriented classification based on the orig-
inal bands in UAV-RGB images produce a similar classification accuracy at a significantly
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lower cost. At the same time, Figure 7 shows that an increased degree of lodging results in
increased canopy coverage. In addition, the vegetation canopy cover image obtained after
the soil background separation is used as the characteristic layer, combined with the digital
surface model to classify the degree of lodging, and the classification accuracy reaches
80.43%. This shows that the detection of lodging is more the detection of changes in the
canopy structure, and we can achieve this goal by obtaining the information of the canopy
structure more conveniently [12]. This conclusion shows that no matter what type of sensor
is used (spectrum, lidar, and thermal infrared), the main target of feature selection is to
extract the feature factors sensitive to canopy structure so that different degrees of lodging
stand out significantly. Therefore, in future research, we will try to fuse different types of
data to improve our ability to accurately identify crops with different lodging grades.

Extracting the key factors from images after separating out the soil background is
vital for simplifying the detection of the maize lodging. Figures 11 and 12 show that the
GRVI, MGRVI, SAVI, and VARI indexes constructed based on the green and red bands
provided clear advantages in extracting the degree of maize lodging. The results indicate
that combining data from the green and red bands allows the degree of lodging to be
monitored with precision. With increasing degree of lodging, the proportion of stem and
vegetation index increased. This is because the reflectivity of each waveband increased
to varying degrees after lodging [10]. Furthermore, the texture features are extracted by
using the gray level co-occurrence matrix of the RGB image and several vegetation indexes,
following which the optimal texture features are selected by applying a statistical analysis
combined with the variation coefficient and the difference coefficient (see Appendix A) [15].
Moreover, some image feature factors in the image are strongly correlated. Choosing too
many feature factors cannot improve the accuracy of the classification model.

Based on the classification results, the object-oriented classification is significantly
more accurate than traditional pixel-level supervised classification, but also better than
the results of threshold segmentation when relying only on ∆DSM. The reason for the low
accuracy of the former is the high spatial resolution of the image obtained at low altitude,
which leads to high image fragmentation after removing the soil background. In addition,
the color of maize exposed to different degrees of lodging remains unchanged, so the low
accuracy of ∆DSM is caused by the low accuracy of the digital surface model itself. Note
that object-oriented classification using RFC combined with ∆DSM and vegetation coverage
provides the best classification accuracy based on color features, which suggests the spatial
distribution of degree of lodging may be obtained by relying only on high-precision canopy
structure information. This is consistent with the results of Wilkes et al. [45], who combined
the UAV canopy height model with the objective threshold method to obtain a quantitative
expression of lodging rate and intensity. This result is also consistent with our conclusion
in feature selection, which once again emphasizes the importance of obtaining canopy
structure. In addition, the analysis of the canopy coverage obtained by removing the soil
background and the texture features constructed by the vegetation index shows that the
non-lodging maize is more evenly distributed, with fewer “gaps” or “holes,” and more
homogeneous; the lodging maize has a clear directionality (pointing in one direction),
and the length of the maize stalk displayed on the edge plots of the lodging part and the
non-lodging part reflects the degree of lodging. However, this work still uses an object-
oriented method to classify maize lodging by combining multiple feature factors on the
image object layer. In future research, we will use this edge detection method to construct a
look-up table in combination with varieties, nitrogen treatment, growth period, and other
indicators to identify lodging-grade boundaries.

A major part of this research concerns the statistical analysis of maize with different
degrees of lodging and under different field-management conditions. In addition, factors
that affected the degree of lodging were also analyzed. Previous studies on the detection
of lodging focused on single growth stages, and the experimental treatments, varieties,
and cultivation methods were basically similar. For example, Wang et al. [10] studied the
sensitivity of the vegetation index during the heading stage to obtain the degree of the
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maize lodging and used a dual-threshold division strategy to define a threshold to classify
the severity of maize lodging. Since maize ears and grains begin to fill in the grain-filling
stage, the vegetative growth basically stops, and, given the frequent summer storms, the
grain-filling stage is prone to lodging. Li et al. [2] also studied how growth stage and
type of lodging affected dry-matter accumulation, yield, and yield components of summer
maize, and quantitatively evaluated the yield loss caused by lodging. In addition, they also
proved that the stem lodging during the filling stage strongly affects maize yield. Therefore,
this is also an important period for lodging detecting. The use of different sowing dates
in the present study allows us to determine the growth stage that is the most prone to
lodging. From other experimental plots, the optimal nitrogen-application strategy was also
determined, as well as the optimal planting density and the most lodging-resistant variety.

The RGB images in this study have a higher spatial resolution and required a longer
acquisition time than in previous studies. In future work, we will first obtain images with
different resolutions and from different heights and then classify the degree of lodging by
using the same method for optimizing UAV flight height and image resolution. Second,
a more concise and comprehensive index was constructed in this work by combining
different feature factors to monitor the degree of maize lodging. Finally, regarding the
statistics of degree of lodging in different test regions, the maize lodging was affected not
only by different treatments but also by the location at which the maize was planted, the
distribution of fields, and the width of the aisles between plots.

In conclusion, maize lodging results from a host of environmental variables. Wen
et al. [46] used a mobile wind machine to determine the lodging resistance of maize.
However, the present method provides the true expression of lodging resistance of maize
because the lodging classification under conditions of strong wind reflect the natural field
conditions, which is consistent with the real environment in which crops grow. Of course,
given a real experimental environment, many external factors are inevitable, such as the site
terrain, the distribution of wind speed, and the width of the corridor in the experimental
area. In future experiments, we must therefore evaluate traits that lead to real resistance
of maize to lodging and comprehensively consider the external factors to determine the
causes of maize lodging. This will help us better evaluate maize-lodging disasters and
identify lodging-resistant maize varieties.

5. Conclusions

This paper uses UAV-RGB images with high spatial resolution and analyzes the spec-
tral data before and after lodging. The vegetation index, texture features, canopy coverage,
digital surface model, and characteristic spectral bands are constructed from visible bands
and for different degrees of lodging. The combination of high-quality characteristic bands
served as the basis for supervised classification and object-oriented classification methods
to extract, with high precision, the degree of lodging. Based on experiments with different
varieties, nitrogen treatments, densities, and sowing dates, the degree of lodging was di-
vided into different regions. Finally, the factors that affect the maize lodging were analyzed
from different directions according to the statistical results and spatial distribution of the
degree of lodging. The results lead to the following conclusions:

(1) The maize lodging modifies to varying degrees the original reflectance spectrum,
vegetation index, texture characteristics, canopy coverage, digital surface model,
and other characteristic factors. A statistical analysis of these characteristic factors
allows us to select the optimal vegetation index from GRVI, MGRVI, SAVI, and VARI
and the best texture feature from green_mean, green_homogeneity, mgrvi_variance,
vari_variance, and vari_contrast.

(2) When using the supervised classification method to classify the degree of the maize
lodging, although the samples are relatively independent of each other, the low
discrimination of lodging maize on the pixel scale translates into a large number of
non-green parts in the sample area, which leads to misclassification at the pixel level,
resulting in a serious “salt-and-pepper phenomenon.” Even a posteriori removal of
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small patches does not significantly improve the classification results. In addition,
supervised classification provides poor classification accuracy, which means that
supervised classification methods applied to high-spatial-resolution images with
significant differences in the category structure and similar color are valid only for
general classification schemes.

(3) When the object-oriented classification method is used, the input layers should first
be segmented. This step fully extracts the spatial information in the image. At
the same time, by exploiting the attributes of the segmented objects, we classify the
objects according to the classification method by using the random forest classification
method, which avoids the misclassification of pixels due to pixel-level classification
of unified ground objects, thereby reducing the salt-and-pepper phenomenon. The
result is clearer boundaries between the different degrees of lodging and improved
classification accuracy.

(4) Combined with the original image, digital surface model, and texture features, the
overall accuracy of object-oriented classification method combined with random forest
classification is 86.96%, and the kappa coefficient is 0.7931, which is the highest values
of several classification methods. These results show that the method of extracting
the degree of lodging of maize using UAV-RGB images combined with the derived
feature factors is feasible and can be used to obtain greater classification accuracy.

Combining the results of the various experiments discussed herein indicates that
maize is the most prone to lodging in R1, VT, and V14 stages, and that the degree of the
maize lodging increases with increasing nitrogen application. In addition, the lodging
resistance of maize also increases if fertilizer is applied in the middle and later stages of
maize vegetative growth. These results reveal the three maize varieties most resistant to
lodging are Liaodan 585, LP68, and Zhongdan909.

These experimental results provide an accurate delineation of degree of lodging, which
should aid in detecting disaster losses. A better understanding of the factors that determine
the degree of lodging can help us select lodging-resistant maize varieties, improve nitrogen
treatments, and optimize planting density and sowing time.
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Appendix A

Table A1. Coefficient of variation and coefficient of difference for various degrees of lodging.

Characteristic Index
Non-Lodging (NL) Light Lodging (LL) Severe Lodging (SL)

AVG SD CV AVG SD CV CDNL AVG SD CV CDNL

red_mean 15.13 6.49 0.43 19.60 5.74 0.29 0.30 22.68 4.81 0.21 0.50
red_variance 77.16 52.51 0.68 69.36 42.16 0.61 0.10 71.36 45.08 0.63 0.08

red_homogeneity 0.31 0.20 0.63 0.23 0.10 0.42 0.27 0.22 0.09 0.41 0.31
red_contrast 80.42 62.14 0.77 63.61 47.39 0.75 0.21 74.50 60.38 0.81 0.07

red_dissimilarity 5.79 2.36 0.41 5.56 1.92 0.35 0.04 5.89 2.20 0.37 0.02
red_entropy 3.27 0.86 0.26 3.67 0.32 0.09 0.12 3.72 0.27 0.07 0.14

red_second moment 0.11 0.19 1.79 0.04 0.05 1.52 0.67 0.03 0.05 1.50 0.71
red_correlation 0.49 0.23 0.47 0.54 0.21 0.39 0.10 0.48 0.26 0.53 0.02

green_mean 19.80 8.49 0.43 26.54 7.00 0.26 0.34 29.35 5.66 0.19 0.48
green_variance 101.70 66.72 0.66 87.66 58.55 0.67 0.14 83.93 60.37 0.72 0.17

green_homogeneity 0.31 0.20 0.64 0.23 0.10 0.41 0.25 0.22 0.09 0.41 0.28
green_contrast 98.45 72.09 0.73 77.86 61.45 0.79 0.21 86.84 76.82 0.88 0.12

green_dissimilarity 6.35 2.53 0.40 5.96 2.21 0.37 0.06 6.10 2.47 0.41 0.04
green_entropy 3.28 0.86 0.26 3.67 0.32 0.09 0.12 3.71 0.27 0.07 0.13

green_secondmoment 0.11 0.19 1.80 0.04 0.05 1.51 0.66 0.03 0.05 1.49 0.70
green_correlation 0.53 0.23 0.43 0.56 0.21 0.38 0.06 0.48 0.26 0.54 0.08

blue_mean 14.91 6.89 0.46 21.05 6.89 0.33 0.41 25.57 5.96 0.23 0.71
blue_variance 85.72 58.03 0.68 93.50 56.15 0.60 0.09 96.54 54.38 0.56 0.13

blue_homogeneity 0.30 0.20 0.68 0.20 0.09 0.46 0.31 0.19 0.09 0.46 0.37
blue_contrast 87.70 65.65 0.75 84.10 62.55 0.74 0.04 99.03 77.20 0.78 0.13

blue_dissimilarity 6.21 2.56 0.41 6.45 2.21 0.34 0.04 6.90 2.46 0.36 0.11
blue_entropy 3.29 0.86 0.26 3.70 0.32 0.09 0.12 3.75 0.26 0.07 0.14

blue_second moment 0.10 0.19 1.81 0.03 0.05 1.56 0.67 0.03 0.05 1.56 0.71
blue_correlation 0.49 0.23 0.47 0.55 0.22 0.39 0.11 0.49 0.25 0.51 0.00

vari_mean 5.43 2.00 0.37 5.61 1.55 0.28 0.03 4.44 1.02 0.23 0.18
vari_variance 12.01 7.76 0.65 8.20 5.46 0.67 0.32 4.98 3.08 0.62 0.59

vari_homogeneity 0.40 0.13 0.32 0.40 0.09 0.23 0.02 0.46 0.10 0.21 0.14
vari_contrast 17.67 11.93 0.68 12.16 9.02 0.74 0.31 7.33 5.14 0.70 0.59

vari_dissimilarity 2.81 0.96 0.34 2.39 0.82 0.34 0.15 1.84 0.63 0.34 0.35
vari_entropy 3.15 0.60 0.19 3.34 0.26 0.08 0.06 3.13 0.31 0.10 0.00

vari_second moment 0.09 0.13 1.50 0.05 0.03 0.61 0.48 0.06 0.03 0.55 0.33
vari_correlation 0.27 0.21 0.79 0.28 0.20 0.72 0.05 0.28 0.22 0.76 0.06
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Table A1. Cont.

Characteristic Index
Non-Lodging (NL) Light Lodging (LL) Severe Lodging (SL)

AVG SD CV AVG SD CV CDNL AVG SD CV CDNL

mgrvi_mean 23.18 8.14 0.35 25.71 5.72 0.22 0.11 21.23 3.99 0.19 0.08
mgrvi_variance 169.15 82.47 0.49 125.70 64.31 0.51 0.26 80.55 39.26 0.49 0.52

mgrvi_homogeneity 0.23 0.17 0.74 0.15 0.07 0.43 0.33 0.17 0.07 0.40 0.26
mgrvi_contrast 239.50 117.66 0.49 186.71 107.09 0.57 0.22 118.68 67.19 0.57 0.50

mgrvi_dissimilarity 10.54 2.97 0.28 9.59 2.80 0.29 0.09 7.70 2.21 0.29 0.27
mgrvi_entropy 3.47 0.67 0.19 3.79 0.18 0.05 0.09 3.79 0.18 0.05 0.09

mgrvi_secondmoment 0.07 0.13 1.78 0.03 0.03 0.98 0.65 0.03 0.03 0.98 0.65
mgrvi_correlation 0.29 0.22 0.75 0.27 0.21 0.75 0.04 0.28 0.22 0.80 0.04

savi_mean 12.59 4.77 0.38 13.86 3.54 0.26 0.10 11.02 2.29 0.21 0.12
savi_variance 57.66 31.07 0.54 46.37 25.24 0.54 0.20 26.72 13.86 0.52 0.54

savi_homogeneity 0.28 0.16 0.57 0.22 0.07 0.34 0.20 0.26 0.08 0.30 0.06
savi_contrast 82.43 44.09 0.53 69.12 41.02 0.59 0.16 39.72 23.56 0.59 0.52

savi_dissimilarity 6.25 1.91 0.30 5.83 1.79 0.31 0.07 4.39 1.33 0.30 0.30
savi_entropy 3.41 0.66 0.19 3.71 0.19 0.05 0.09 3.66 0.20 0.05 0.07

savi_secondmoment 0.08 0.13 1.73 0.03 0.03 0.89 0.62 0.03 0.03 0.83 0.60
savi_correlation 0.28 0.21 0.76 0.27 0.20 0.75 0.04 0.27 0.22 0.80 0.04

grvi_mean 12.55 4.75 0.38 13.82 3.54 0.26 0.10 10.98 2.28 0.21 0.13
grvi_variance 57.53 31.01 0.54 46.33 25.24 0.54 0.19 26.67 13.86 0.52 0.54

grvi_homogeneity 0.28 0.16 0.57 0.22 0.07 0.34 0.20 0.26 0.08 0.30 0.05
grvi_contrast 82.33 44.11 0.54 69.11 41.07 0.59 0.16 39.68 23.58 0.59 0.52

grvi_dissimilarity 6.25 1.91 0.31 5.82 1.80 0.31 0.07 4.39 1.33 0.30 0.30
grvi_entropy 3.41 0.66 0.19 3.71 0.19 0.05 0.09 3.65 0.20 0.05 0.07

grvi_secondmoment 0.08 0.13 1.73 0.03 0.03 0.89 0.62 0.03 0.03 0.83 0.60
grvi_correlation 0.28 0.21 0.76 0.27 0.20 0.75 0.04 0.27 0.22 0.80 0.04

AVG: Average value; SD: Standard deviation; CV: Coefficient of variation; CDNL: Coefficient of difference with non-lodging.
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