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Abstract: The China–Pakistan Economic Corridor (CPEC) project passes through the Karakoram
Highway in northern Pakistan, which is one of the most hazardous regions of the world. The most
common hazards in this region are landslides and debris flows, which result in loss of life and severe
infrastructure damage every year. This study assessed geohazards (landslides and debris flows)
and developed susceptibility maps by considering four standalone machine-learning and statistical
approaches, namely, Logistic Regression (LR), Shannon Entropy (SE), Weights-of-Evidence (WoE),
and Frequency Ratio (FR) models. To this end, geohazard inventories were prepared using remote
sensing techniques with field observations and historical hazard datasets. The spatial relationship of
thirteen conditioning factors, namely, slope (degree), distance to faults, geology, elevation, distance
to rivers, slope aspect, distance to road, annual mean rainfall, normalized difference vegetation index,
profile curvature, stream power index, topographic wetness index, and land cover, with hazard
distribution was analyzed. The results showed that faults, slope angles, elevation, lithology, land
cover, and mean annual rainfall play a key role in controlling the spatial distribution of geohazards
in the study area. The final susceptibility maps were validated against ground truth points and
by plotting Area Under the Receiver Operating Characteristic (AUROC) curves. According to the
AUROC curves, the success rates of the LR, WoE, FR, and SE models were 85.30%, 76.00, 74.60%,
and 71.40%, and their prediction rates were 83.10%, 75.00%, 73.50%, and 70.10%, respectively; these
values show higher performance of LR over the other three models. Furthermore, 11.19%, 9.24%,
10.18%, 39.14%, and 30.25% of the areas corresponded to classes of very-high, high, moderate, low,
and very-low susceptibility, respectively. The developed geohazard susceptibility map can be used by
relevant government officials for the smooth implementation of the CPEC project at the regional scale.
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1. Introduction

The Himalayan–Karakoram Mountain (HKM) in northern Pakistan are among the
most important mountain ranges globally, with changing topographic and climatic char-
acteristics [1,2]. The irregular topography makes this region extremely vulnerable to
geohazards, including landslides, debris flow, glacial erosion, flash floods, river incision,
and periglacial action [3,4]. These geohazards cause severe damages to human lives and
infrastructure [5–8]. The China–Pakistan Economic Corridor (CPEC) project extends from
China to Pakistan through this mountain range. This project has been a driver of the recent
rapid growth of urban and rural areas in Pakistan. However, the expected development
of new infrastructure in this region faces many challenges as geological surveying and
assessment activities have been impeded by geohazards.

In particular, landslides and debris flow are the most prominent geohazards affect-
ing human lives and infrastructure in this region. These hazards are considered to be
catastrophic natural hazards with potential for causing significant damage to human
lives, infrastructure, agricultural livestock, and forest growth; thus, they have profound
effects on social activity and economic growth [9–11]. The occurrence of these geohaz-
ards varies according to different environmental settings, from mountainous to coastal
areas, tectonically active to tectonically stable and inactive regions, and very dry to humid
areas [12,13]. Therefore, identification of the spatial distribution of these geohazards is
crucial for disaster management.

Geographical Information System (GIS) and Remote Sensing (RS) approaches are
useful for determining the spatial distribution of geohazards, which facilitated the de-
velopment of susceptibility maps [14–17]. GeoHazard Susceptibility Maps (GHSMs) are
used to determine the relative probability of hazard occurrence by considering the causes
of previous events. The term susceptibility can be defined as the probability of a par-
ticular hazard in a particular area. In our case, the probability of an area to experience
landslides and debris flows occurrence [18]. In GHSMs, an area is divided into different
classes depending on the probability of events, such as slope failure and mass movements.
According to the availability of data, GHSMs can be prepared using different approaches,
including the fuzzy logic [19–21], Multi-Criteria Decision Making (MCDM) [22], Weights-of-
Evidence (WoE) [23,24], Logistic Regression (LR) [25], Support Vector Machine (SVM) [26],
neuro-fuzzy [27], Artificial Neural Networks (ANNs) [28], Frequency Ratio (FR) [29], and
Shannon Entropy (SE) models [30]. Among these listed models, LR, FR, WoE, and SE were
found to be more accurate, easy to implement, and highly reliable [31–33].

Thus far, many researchers have performed geohazard susceptibility analyses for
the development of susceptibility maps. However, only Ahmed et al. [34] have carried
out a regional-level study on the susceptibility of northern Pakistan to geohazards; they
used Weighted Overlay Model (WOM) and fuzzy logic methods. Some individual studies
have also been conducted on smaller-scale areas in this region: Derbyshire et al. [35]
studied the terrain type and geomorphic processes of a 200 km section of the Karakoram
Highway (KKH) from Gilgit to Khunjerab Pass. Kamp et al. [36] developed a Landslide
Susceptibility Map (LSM) using the Multi-Criteria Evaluation (MCE) and the Analytical
Hierarchy Process (AHP) method. Bacha et al. [37] developed a detailed LSM of Hunza-
Nagar district using WoE and FR models. Recently, Ali et al. [38] developed an LSM of the
KKH from Hassanabdal to Khunjerab pass, using AHP and WOM models. Khan et al. [39]
studied the spatial distribution of landslides and developed an LSM using the FR approach
(Haramosh Valley and Bagrote Valley).

Although geospatial techniques have shown enormous potentials for assessing haz-
ard susceptibility, their use remains relatively low in the context of the study area. In
addition, comprehensive multi-hazard (landslides and debris flows) risk management
and susceptibility mapping is lacking at a regional scale, especially in areas frequently
affected by geohazards. Previously, Ahmed et al. [35] developed an LSM for the upper
Indus basin (Pakistan) by considering elevation, slope, aspect, curvature, seismic hazards,
geological structure, precipitation (monsoon), drainage network, and Normalized Differ-
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ence Vegetation Index (NDVI). However, to generate a detailed hazard map, all factors that
control their spatial distribution of geohazards need to be considered. The addition of more
conditioning factors will improve the precision and accuracy of GHSMs. Though there
have been several studies assessing individual landslide or debris flow susceptibility in
the study area, none of the works have reported a significant role in controlling the spatial
distribution of geohazards in the case study site. The present study aims to fill this gap.
Furthermore, the implementation of only one model is not sufficient for the susceptibility
assessment of an area because every model has drawbacks.

To address these limitations, thirteen conditioning factors, namely, slope (degree),
distance to faults, geology, elevation, distance to rivers, slope aspect, distance to road,
annual mean rainfall, NDVI, profile curvature, Stream Power Index (SPI), Topographic
Witness Index (TWI), and Land Cover (LC), were considered in this study. Moreover, four
machine learning and statistical models, SE, LR, WoE, and FR, were adopted. The main
objectives of this research are (i) to analyze factors influencing the spatial distribution of
geohazards (landslides and debris flows) and (ii) to compare the performances of the four
models. The results of the study are not only relevant to other researchers in the field, but
also policymakers, in that the study provides useful insights for managing geohazards.

2. Materials and Methods
2.1. Study Area

The study area is located at 31◦0′ N–38◦0′ N longitude and 70◦0′ E–80◦0′ E latitude,
covering the upper Indus basin (Pakistan) and southwestern part of the Tashkurgan Valley
(China) (Figure 1). The transboundary study area was selected based on the importance
of the CPEC project. The main route of the CPEC project (KKH) passes through the
northern areas of Pakistan and connects to China through the Khunjerab Pass. The main-
stream channel in this area is the Indus River, which flows along the KKH, from north
to south. The river originates from the Tibetan Plateau (China), entering Pakistan in the
Dardistan region through Jammu Kashmir (Indian Territory), crossing the Himalayas, and
finally flows into the Arabian Sea. This region is highly prone to geohazards, including
debris flow and landslides, because of its uneven terrain, high seismicity, and high in-
tensity of monsoon precipitation (200–500 mm), spanning from July to mid-September
(http://www.pmd.gov.pk/en/ (accessed on 2 February 2021)).

Figure 1. Location of the study area with geohazards (GHs: geohazards).

http://www.pmd.gov.pk/en/


ISPRS Int. J. Geo-Inf. 2021, 10, 315 4 of 26

Topographically, the study area is part of the Himalaya, Hindukush, and Karakoram
(HHK) mountain ranges. The elevation of the study area ranges from 160 m to 8564 m
above sea level (a.s.l.), with an average altitude of 3500 m. Slope angles in this region range
from 0 to 87◦. The common geomorphological features in the lower reach of the valleys are
alluvial fans and flood terraces with some big debris fans, while snow and glaciers cover
the higher slopes and peaks.

The study area features different geological formations of various ages, exposed along
the Indus River and KKH (Figure 2a and Table 1). Tectonically, this region is characterized
by orogenic features that began to form with the start of the Indo-Eurasian collision
(50 million years). Active faults, crustal shorting, and subduction are ongoing processes
with an uplift rate of 7 mm/year and a convergence rate of 4–5 cm/year along the Indo–
Eurasian collision zone [40,41]. Important tectonic features of this region include the main
boundary thrust, main mantle thrust, main Karakoram thrust, Kamila Jal shear zone, Raikot
fault, and Karakoram fault (Figure 2b) [42,43]. All these tectonic features are responsible for
high seismicity, ultimately causing brittle deformation along the KKH. Over the last two
centuries, frequent earthquakes with magnitudes greater than 6.5 Mw (1897, 1905, 1934,
1950, and 2005) have been recorded in this region [44]. The geological, geomorphological,
and hydrogeological environment of the area is favorable for geohazards [34,45–47]. Valley
hills in the Indus River basin exhibit an extensive amount of mass movement, rockslide
avalanches (volumes >1 × 1010 m3), and slope failures, especially along the KKH [48–50].
Considering that the main route of the CPEC project passes through this highly active
region, susceptibility assessment of geohazards is essential.

Figure 2. (a) Geological map of the study area (http://gsp.gov.pk and http://en.cgs.gov.cn/
(accessed on 2 February 2021)) and (b) tectonic map with epicenter of earthquakes from last 10 decades (http://gsp.gov.pk
and http://en.cgs.gov.cn/ (accessed on 2 February 2021)). Ns = Neogene sedimentary rocks, Pg = Paleogene metamorphic
and igneous rocks, Q = Quaternary sedimentary rocks, Ts = Tertiary meta-sedimentary rocks, Ks = Miocene to cretaceous
batholith and plutons, Tkim = Miocene to cretaceous igneous and metamorphic rocks, Gr = Undifferentiated tertiary rocks,
Tks = Miocene to cretaceous metamorphic rocks, Mz = Jurassic and cretaceous sedimentary rocks, Jtr = Jurassic and Triassic
igneous rocks, Trcs = Lower Triassic to upper carboniferous igneous rocks, Trms = Mesozoic to Paleozoic meta-sedimentary
rocks, Mzpzi = Mesozoic and Paleozoic intrusive igneous and metamorphic rocks, Ig= Permian to carboniferous igneous
and metamorphic rocks, Pzu = Upper Paleozoic igneous rocks, Cs = Carboniferous meta-sedimentary and sedimentary
rocks, D = Devonian igneous rocks, S = Undivided Silurian rocks, Pz = Paleozoic metamorphic rocks, Cmsm = Cambrian
Sedimentary and metamorphic rocks, Ptz = Archean to Proterozoic metamorphic rocks, Pc = Undivided Precambrian.

http://gsp.gov.pk
http://en.cgs.gov.cn/
http://gsp.gov.pk
http://en.cgs.gov.cn/
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Table 1. Geological formations of the study area with major rock units and dominant lithology (http://gsp.gov.pk and
http://en.cgs.gov.cn/ (accessed on 2 February 2021)).

Map Symbol (Figure 2) Geological Age Major Rocks Dominant Lithology

Ns Neogene Sedimentary rocks Sandstone, siltstone, conglomerates
and mudstone

Pg Paleogene Metamorphic and igneous
rocks

Mostly Granite and finely foliated
gneisses

Q Quaternary Sedimentary rocks Sandstone, siltstone, conglomerates
and loess

Ts Tertiary Meta-sedimentary rocks Garnet-bearing graphitic phyllite, and
marble

Ks Miocene to cretaceous Batholith and plutons Granite, granodiorites, hornblende
gabbro

Tkim Miocene to cretaceous Igneous and metamorphic
rocks

granite, granodiorites, diorite and
granitic gneiss

Gr Tertiary Undifferentiated Granites

Tks Miocene to cretaceous Metamorphic rocks Younger tertiary Gabbros, diorite and
granite and pegmatites

Mz Jurassic and cretaceous Sedimentary rocks Sandstone, shale and limestone

Jtr Jurassic and Triassic Igneous rocks Arc-related calc-alkaline andesite and
volcanic formations

Trcs Lower Triassic to upper
carboniferous Igneous rocks Alkaline and tourmaline Granite,

Syenite with miner carbonates

Trms Mesozoic toPaleozoic Meta-sedimentary rocks Sandstone, shale quartzite, limestone,
slates, phyllite

Mzpzi Mesozoic and Paleozoic Intrusive igneous and
metamorphic rocks

Volcanic rocks, limestone, red shale,
sandstone, quartzite, conglomerate

Ig Permian to carboniferous Igneous and metamorphic
rocks

Alkaline and tourmaline granite,
syenite with miner carbonates with
medium to low grade metamorphic

rocks

Pzu Upper Paleozoic Igneous rocks Norite, Pyroxene-gabbros, dunite and
peridotites

Cs Carboniferous Meta-sedimentary and
sedimentary rocks

Slates, phyletic slates with subordinate
limestone and quartzite

D Devonian Igneous rocks Mafic and ultramafic rocks

S Undivided Silurian Metamorphic and igneous
rocks

Volcano-clast sediments
metamorphosed green schist,

interbedded slates

Pz Paleozoic Metamorphic rocks Slate, phyllite and quartzite with
gabbro, diorite and granite intrusions

Cmsm Cambrian Sedimentary and
metamorphic rocks Granite and gneisses

Ptz Archean to Proterozoic Metamorphic rocks Gneiss, quartzite and marble

Pc Undivided Precambrian Metamorphic
Rocks

Schistose to Phyllitic quartzite, schist,
slate marble

http://gsp.gov.pk
http://en.cgs.gov.cn/
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2.2. Data Collection

The first step for the development of GHSMs is the determination of causative
factors. Based on previous studies and the characteristics of geohazards in the study
area [29,34,38], NDVI, TWI, distance to faults, elevation, annual mean rainfall, slope (de-
gree), slope aspect, profile curvature, distance to rivers, distance to road, LC, geology, and
SPI were selected as conditioning factors (Figure 3). The elevation of the study area was
extracted from a Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model
(https://earthexplorer.usgs.gov/ (accessed on 2 February 2021)), and the slope, slope
aspect, profile curvature, SPI, TWI, and drainage network layers were developed from
the elevation map in the ArcGIS platform. The annual mean rainfall map was prepared
based on 27 weather stations (from 2000 to 2015) in the study area, using the Inverse
Distance Weighted (IDW) tool in ArcGIS [51,52]. Geology and faults of the study area
were collected from a regional geological map of the study area (at the scale of 1:1,000,000)
(http://gsp.gov.pk and http://en.cgs.gov.cn/ (accessed on 2 February 2021)). A brief
description of these conditioning parameters is listed in Table 2.

Figure 3. Cont.

https://earthexplorer.usgs.gov/
http://gsp.gov.pk
http://en.cgs.gov.cn/
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Figure 3. Conditioning factors used for geohazards susceptibility maps: (a) NDVI, (b) TWI, (c) Distance to faults, (d)
Elevation, (e) Annual mean rainfall, (f) Slope, (g) Slope aspect, (h) Profile curvature, (i) Distance to rivers, (j) Distance to
road, (k) Land cover, and (l) SPI.

2.3. Geohazards Inventory

A geohazard inventory map was prepared after a field visit, using the interpretation
of satellite imageries (Landsat 7 and Landsat 8: https://earthexplorer.usgs.gov/ (accessed
on 2 February 2021)) and Google Earth images. During the field survey (from 16 October to
26 October 2019), the coordinates of the geohazards were taken and these coordinate points
were digitized as polygons. The total numbers of sample points are 480, of which 240
are geohazard points (210 landslides and 30 debris flow events), and 240 are non-hazards
points (Figure 1). All these points were used as sampling points. For both landslide
and debris flow inventories, hazard pixels were assigned a value of 1, and non-hazard
pixels were assigned a value of 0. To evaluate the predictability, field verified data were
potentially used. Finally, the total hazard events were randomly divided into training
models (70%, comprising 168 hazard points) and validation models (30%, comprising 72
hazard points) [53].

https://earthexplorer.usgs.gov/
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Table 2. Description of the conditioning factors used in geohazard susceptibility analysis.

Factors Description Source/Scale/Resolution Reference

NDVI
Bare soil/rock is showing maximum exposure to

weathering agents as compared to surfaces covered
by vegetation.

NDVI = (NIR−RED)
NIR+RED

30 m×30 m

Li et al. [54],
Intarawichian and

Dasananda [55]

TWI
Higher TWI values indicate the infiltration of water
bodies into slope-forming materials and decrease the

shear strength of the slope.

TWI = log( As
β )

30 m × 30 m
Hengl and Reuter

[56]

Distance to faults

Tectonic features affect the internal cohesion of the
strata and hence reduce their strengths, weakening
the geo-mechanical properties, and facilitating the

occurrence of slope failures.

Geological survey of
Pakistan, and geological

survey of China
1:1,000,000

Peduzzi [57]

Elevation
3D topographic representative and is quite useful in
the preparation of many geomorphological variants

for hazard mapping

30 m × 30 m
mhttps:

//earthexplorer.usgs.gov
Ahmed et al. [35]

Annual mean rainfall An important environmental triggering factor of
landslides and debris flows

Pakistan Metrological
Department Hearn and Hart [58]

Slope (degrees) Slope angle has a significant importance in
influencing slope failure mechanisms.

Extracted from DEM
30 m × 30 m Kayastha et al. [59]

Slope aspect

Slope aspect has an intensified involvement in
geohazards as it affects factors such as weathering,

exposure to sunlight, snow melt water, precipitation,
soil conditions, and land cover

Extracted from DEM
30 m × 30 m Gao and Sang [60]

Profile curvature
Affects the flow pattern on a slope and influence

surficial erosion by converging or diverging the flow
of runoff down the slope at a particular location

Extracted from DEM
30 m × 30 m Kayastha et al. [59]

Distance to road

The presence of road/highway can cause many
geohazards mainly due to changes in slopes stability

and shear stress resulting from the excavation,
undercutting of the slope, changes in hydrological
conditions, and additional loads. The KKH is the

main route of the CPEC project that connects
Pakistan to China. The KKH is passing through
northern Pakistan, where the reconstruction and
re-routing are still ongoing. Therefore, only KKH

was considered for this study to prepare the distance
to the road thematic map.

Extracted from Google
earth Acharya and Lee [29]

Distance to rivers River channels affect slope stability by slope toe
erosion and saturating the lower part of the material.

Extracted from Google
earth Myronidis et al. [61]

Land cover

Forest plays a key role in minimizing hazards risk
through various mechanisms. (roots reinforce soil

layers, lowering soil moisture levels and
transpiration)

http://maps.elie.ucl.ac.
be/CCI/viewer/
download.php
300 m × 300 m

Dolidon et al. [62]
and Forbes et al. [63]

Geological map
Slope-forming materials are characterized by

lithology that affects the strength and permeability
of the slope.

Geological survey of
Pakistan, and geological

survey of China
Scale- 1:1,000,000

Dai and Lee [64]

Stream Power Index
(SPI)

The incidence of SPI shows flow conditions with a
medium degree of erosion, a feature that is linked

with abrupt topographical changes and steep slopes.

SPI = As × tanβ
30 m × 30 m

Valencia Ortiz and
Martínez-Graña [65]

mhttps://earthexplorer.usgs.gov
mhttps://earthexplorer.usgs.gov
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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2.4. Methodology
2.4.1. Multicollinearity

The Tolerance (TOL) and Variance Inflation Factor (VIF) were used to test the multi-
collinearity of all conditioning parameters, as linear collinearity among the conditioning
parameters decreases the predictive capability of a model [66]. Generally, a TOL less
than 0.10 or a VIF greater than 5.0 indicates multicollinearity among the conditioning
factors [67].

Multicollinearity analysis was performed, and the values of TOL and VIF were found
to be >0.10 and <5.0, respectively, which indicate that the variables are free from collinearity
(Table 3).

Table 3. Multicollinearity diagnosis for conditioning factors.

Factors
Collinearity Test

Factors
Collinearity Test

TOL VIF TOL VIF

NDVI 0.849 1.178 Profile curvature 0.673 1.486

TWI 0.430 2.327 Distance to rivers 0.576 1.735

Distance to faults 0.760 1.316 Distance to road 0.701 1.427

Elevation 0.462 2.163 LC 0.809 1.236

Rainfall 0.732 1.365 Geology 0.885 1.130

Slope 0.480 2.082 SPI 0.547 1.829

Slope aspect 0.892 1.121 - - -

2.4.2. Logistic Regression (LR)

LR is a multivariate statistical approach used to evaluate the association between
dependent variable and independent variables [68,69]. The advantage of this model is that
the data need not have a normal distribution and the variables can be either categorical,
continuous, or have any combination of these two [70,71]. The mathematical expression of
the LR model is given below [26]:

ρ =
1

1 + e−z =
1

[1 + e{−(l0 + l1×1 + l2×2 + . . . ln×n)}]
(1)

where ρ is the probability of hazards or non-hazards occurrence, z is the linear combination,
n represents the number of conditioning variables, xi (i = 0, 1, 2, . . . , n) are the conditioning
variables, l0 is the intercept of this model, and li (i = 0, 1, 2, . . . , n) are the regression
coefficients for the independent variables of the LR model.

2.4.3. Weights-of-Evidence (WoE)

WoE is a quantitative “data-driven” approach [72]. This method was first used in
the field of medicine [73] and then applied to the identification of mineral potential [74].
WoE is based on Bayes’ hypothesis—the concept of previous and subsequent probability
to predict the relationship between the spatial distribution of hazard affected areas and
analyzed hazard factors as reported by Bonham-Carter [75] as follows:

W+
h = ln

p
(

Bh
Ah

)
p
(

Bh
Ah

) (2)

W−h = ln
p
(

Bh
Ah

)
p
(

Bh
Ah

) (3)
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where p is the probability of occurrence of a particular event, and ln is the natural log.
Similarly, Bh denotes the presence of a potential geohazard predictive factor, Bh is the
absence of a potential geohazard predictive factor, Ah is the presence of geohazards, and
Ah denotes the absence of geohazards. In Equations (2) and (3), W+

h and W−h show the
relationship of each factor’s class to geohazard occurrence, where positive weights are
directly proportional for the occurrence of geohazards and vice-versa with negative weights.
To calculate the weights of each conditioning factor, Equations (4) and (5) were used [76]:

W+
h = ln

{( [
Npix1

][
Npix1

]
+
[
Npix2

])/

( [
Npix3

][
Npix3

]
+
[
Npix4

])} (4)

W−h = ln

{( [
Npix1

][
Npix1

]
+
[
Npix2

])/

( [
Npix3

][
Npix3

]
+
[
Npix4

])} (5)

where Npix1 is the number of pixels showing the presence of geohazards and conditioning
factors; Npix2 is the presence of geohazards and absence of conditioning factors; Npix3 is
the absence of geohazards and the presence of conditioning factors; Npix4 is the absence of
both geohazards and conditioning factors. The final weight WhC was estimated using the
following equation:

WhC =
(
W+

h
)
−
(
W−h

)
(6)

2.4.4. Frequency Ratio (FR)

FR is a widely used probability-based approach for GHSM. The FR is defined as the
ratio of the probability of an event occurrence to the probability of non-occurrence for
given attributes [75,77]. The spatial relationship between the location of geohazards and
each parameter was obtained. To obtain the FR values for each class of the conditioning
parameter, a combination between the geohazard inventory map and factors map was
established through Equation (7).

FR =
Npix(HXi)/ ∑m

i=1 Npix(HXi)

Npix
(

NXj
)
/ ∑n

j=1 Npix
(

NXj
)

∑
(7)

where FR represents the Frequency Ratio (FR) of the class i of factor j; Npix(HXi) is the
number of pixels with geohazards within class i of the conditioning factor X; Npix

(
NXj

)
is the number of pixels within the conditioning factor Xj; m is the number of classes in the
conditioning factor Xi; n is the number of factors in this area [29].

The derived frequency ratio was used to calculate relative frequency (Equation (8)).
Further, the predictive rate was calculated using Equation (9) [29].

RF =
FRij

∑m
i=1 FRij

(8)

PR =
( RFmax − RFmin )

( RFmax − RFmin )min
(9)

Finally, the GeoHazards Susceptibility Index (GHSI) was calculated using Equation (10).

GHSI = ∑(PR× RF) (10)

2.4.5. Shannon Entropy (SE)

The SE model is based on the instability, disorder, imbalance, and uncertainty of a
system. SE indicates the most favorable class of a variable in a natural environment for
hazard occurrence [78]. Entropy values were used for calculating the target weights of the
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index system. The mathematical expression of weight, Wj, was used for calculating the
information coefficient for this model (as a whole variable weight value) as follows [79]:

Pij =
FR

∑
sj
j=1 FR

(11)

where, Pij is the probability density and FR is the frequency ratio. Furthermore, based on
Equation (11), each class of the factor is divided into different ranks (Table 4).

Hj = −
sj

∑
j=1

Pij log2 Pij, j = 1, . . . .., n (12)

Hj and Hjmax represent entropy values in Equations (12) and (13)

Hjmax = log2 sj, sj− number o f classes (13)

Ij =
Hjmax − Hj

Hjmax
I = (0, 1), j = 1, . . . , n (14)

Wj = IjPj (15)

Ij represents the information coefficient and Wj is the final weight value of the variables
as a whole.

Table 4. Data used and spatial relationship between each conditioning parameter with geohazards derived using the
Logistic Regression, Weight-of-Evidence, Frequency Ratio, and Shannon Entropy models.

Factor Class Values FR PR LR
Coefficients WhC Wj (%) Ranks

NDVI
(i) −0.651–0.1 1.33

5.62 0.158
1.800

0.298
3

(ii) 0.1–0.3 0.27 −1.497 2
(iii) 0.3–0.7 0.01 −4.670 1

TWI
(i) 0.44–5 1.57

3.45 −0.494
0.761

0.164
3

(ii) 5–10 0.82 −0.418 2
(iii) 10–28 0.25 −1.483 1

Distance to
faults (m)

(i) 0–3000 0.54

1.22 −0.120

−1.026

0.372

5
(ii) 3000–6000 2.11 0.831 4
(iii) 6000–9000 1.20 0.199 1
(iv) 9000–12,000 1.82 0.647 3
(v) 12,000–15,000 1.97 0.722 2
(vi) >15,000 1.26 0.327 6

Elevation
(m)

(i) 0–1000 0.01

2.98 −0.508

−4.600

0.571

3
(ii) 1000–2000 3.88 1.618 7
(iii) 2000–3000 4.25 1.892 8
(iv) 3000–4000 1.45 0.468 6
(v) 4000–5000 0.15 −2.146 5
(vi) 5000–6000 0.04 −3.281 4
(vii) 6000–7000 0 −0.010 0
(viii) 7000–8557 0 −0.001 0



ISPRS Int. J. Geo-Inf. 2021, 10, 315 12 of 26

Table 4. Cont.

Factor Class Values FR PR LR
Coefficients WhC Wj

(%) Ranks

Rainfall
(mm)

(i) 0–250 0

2.69 −0.388

−0.010

0.186

0
(ii) 250–500 1 −0.003 4
(iii) 500–750 0.93 −0.112 7
(iv) 750–1000 1.00 −0.001 8
(v) 1000–1250 0.78 −0.283 5
(vi) 1250–1500 2.55 1.026 6
(vii) 1500–1750 0.26 −1.344 3
(viii) 1750–2157 0 −0.010 0

Slope angle
(◦)

(i) 0–15 0.17

1.84 1.243

−2.252

0.154

2
(ii) 15–30 1 0.001 4
(iii) 30–45 2 1.130 5
(iv) 45–60 2.03 0.796 3
(v) >60 1.83 0.609 1

Slope
aspect

(i) Flat 0

1.00

0 −5.631

0.049

1
(ii) North 0.94 −20.071 −0.067 2
(iii) Northeast 0.74 −0.664 −0.339 4
(iv) East 1.04 −1.457 0.040 8
(v) Southeast 1.02 −1.062 0.026 7
(vi) South 0.96 −1.254 −0.043 6
(vii) Southwest 1.31 −0.631 0.313 10
(viii) West 1.12 −0.915 0.129 9
(ix) Northwest 0.94 −0.257 −0.067 5
(x) North 1.38 −0.425 0.344 3

Profile
curvature

(i) Concave (−1) 1.54
1.99 -0.038

0.567
0.065

2
(ii) Flat (0) 0.6 −0.730 1
(iii) Convex (+1) 1.11 0.190 3

Distance to
river (m)

(i) 0–1000 5.92

2.19 0.031

2.001

0.286

5
(ii) 1000–2000 3.74 1.430 4
(iii) 2000–3000 2.22 0.844 2
(iv) 3000–4000 2.23 0.847 1
(v) 4000–5000 2.54 0.985 3
(vi) >5000 0.47 4.833 6

Distance to
roads (m)

(i) 0–1000 8.26

1.70 −0.005

2.208

0.374

5
(ii) 1000–2000 5.01 2.663 2
(iii) 2000–3000 4.86 1.630 1
(iv) 3000–4000 6.33 1.912 4
(v) 4000–5000 5.53 1.767 3
(vi) >5000 0.68 −2.177 6

LC

(i) Natural
vegetation/Shrub land 1.18

3.59

2.878 0.663

0.240

5

(ii) Forest 1.88 1.644 0.690 4
(iii) Bare land 0.42 2.256 −0.982 3
(iv) Water bodies 0 0 −0.004 0
(v) Ice/glaciers 0.13 −17.846 −2.140 2
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Table 4. Cont.

Factor Class Values FR PR LR
Coefficients WhC Wj (%) Ranks

Geology

(i) Jtr 0.93

2.89

21.561 −0.077

0.651

13
(ii) Ks 1.44 21.616 0.367 14
(iii) Mzpzi 2.20 0.926 0.984 21
(iv) Cs 0 0 −0.003 0
(v) Pz 0.13 1.368 −2.201 17
(vi) Ig 11.27 0.643 2.501 19
(vii) Tkim 0.89 2.339 −0.102 16
(viii) Pc 0.05 2.152 −2.968 12
(ix) Trcs 0 0 −0.005 0
(x) D 0.81 −0.694 −0.215 18
(xi) Pzu 6.41 0.082 2.082 20
(xii) Tks 0 0 −0.019 0
(xiii) Ts 0 0 −0.006 0
(xiv) Cmsm 0 0 −0.050 0
(xv) Trms 0 0 −0.001 0
(xvi) Pg 0 −21.675 −0.004 0
(xvii) Q 2.47 −19.821 1.124 22
(xviii) Ns 0 −20.141 −0.058 0
(xix) S 0 −18.611 −0.107 0
(xx) Gr 0 0.995 0.023 0
(xxi) Ptz 0 0 −0.042 0
(xxii) Mz 0.19 −19.569 −1.738 15

SPI

(i) <0 0.80

4.10 −0.120

−0.333

0.223

4
(ii) 0–1 0 −7.318 0
(iii) 1–2 0 −6.054 2
(iv) 2–3 0.02 −0.868 3
(v) > 3 1.22 0.559 5

2.4.6. Model Validation

In this study, derived maps were validated using geohazard inventory points, which
were split into two categories: training data (70%) and validation data (30%). The Area
Under the Receiving Operative Characteristic (AUROC) approach was adopted to evaluate
the performance of the standalone models for geohazard susceptibility assessment [80,81].

3. Results and Discussion
3.1. Application of Logistic Regression

The LR analysis revealed the most effective variables influencing the distribution of
geohazards. With sig (p) values less than 0.05, the most effective variables were found to
be distance to faults, slope, elevation, geology, LC, and rainfall (Figure 4). The remaining
conditioning factors were insignificant, with higher sig (p) (>0.05) values [26,82]. Fur-
thermore, the positive and negative coefficients of LR indicate their contribution to the
occurrence of geohazards. Based on the obtained coefficients, the probability of geohazards
was calculated using Equation (16), and the GHSM was generated accordingly.

z = −1.054 + (NDVI× 0.158) + (TWI×−0.494) + LCa+(Rainfall×−0.388)
+(Elevation×−0.508) + (Faults×−0.120) + (River× 0.031)
+(Profile curvature×−0.038) + Geologya+(Road×−0.005)

+Aspecta + (SPI×−0.120) + (Slope× 1.243)

(16)

LCa; Geologya; Aspecta are logistic regression coefficient values listed in Table 4.
Ultimately, the GHSI for LR was calculated, using Equation (16). The probability value

varies from 0 to 1 [25]. The final SI values were reclassified into five classes: very-low, low,
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moderate, high, and very-high (Figure 5), using the natural breaks method [83]. In this
model the percentage of very-high, high, moderate, low and very low susceptibility areas
are 11.19%, 9.24%, 10.18%, 39.14%, and 30.25%, respectively, as shown in Figure 6.

Figure 4. Factors controlling spatial distribution of geohazards obtained via LR, SE, and FR models.

Figure 5. Geohazard susceptibility maps developed using: (a) Logistic Regression, (b) Weight-of-Evidence, (c) Frequency
Ratio, and (d) Shannon Entropy models.
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Figure 6. Percentage of geohazard susceptibility classes from the Logistic Regression, Weight-of-Evidence, Frequency Ratio,
and Shannon Entropy models.

3.2. Application of Weights-of-Evidence

The weight and contrast were calculated for each class of conditioning variables using
the WoE model. The output of total weight indicated the significance of each factor as
shown in Table 4. In this model, distance to road, distance to faults, geology, elevation,
and slope showed higher magnitudes of WhC (Figure 7). The class of distance to road with
a distance interval of 0 to 1000 m showed high susceptibility to geohazards, followed by
the class with a distance interval of 3000 to 4000 m, with WhC values of 2.663 and 1.912,
respectively. The presence of the road can lead to frequent geohazards mainly due to
changes in slope stability and shear stress resulting from the excavation and undercutting
of fragile slopes [84,85]. In the case of distance to faults, distance intervals from 3000 to
6000 m, 9000 to 12,000 m, and 12,000 to 15,000 m showed weights (WhC) of 0.831, 0.647
and 0.722, respectively, showing a higher probability of geohazards. Elevation intervals
of 1000–2000, 2000–3000, and 3000–4000 m showed high (WhC) values of 1.618, 1.892, and
0.468, respectively. The investigation of lithological units revealed that the Ig and Pzu
groups (composed of slate, phyllite, and shale) have higher WhC values (2.501 and 2.082),
followed by the group Q, Mzpzi, and Ks groups (1.124, 0.984, and 0.367). These findings
suggest that rock units with the lowest shear strength (gneisses, phyllites, slate, and shale)
are prone to mass wasting. The derived WhC weights (−2.252 to 1.130) showed that slope
factor has a significant impact on the occurrence of geohazards, which is in line with the
findings of a previous study [70]. Slope classes of 30–45◦, and 45–60◦ showed higher WhC
weights, with values of 1.130 and 0.796, respectively. Gentle slopes are generally believed
to experience a low frequency of geohazards because of their lower shear stresses and
low gradients [86]. Distance to rivers with buffer zones of 0–1000 m and >6000 m showed
higher susceptibility to geohazards, with WhC values of 2.001 and 4.833, respectively. In
terms of profile curvature, concave surfaces (negative curvature) with high WhC values
(0.567) are more prone to geohazards, compared to convex surfaces (positive curvature).
Concave surfaces have higher WhC values than convex surfaces because surfaces with
negative curvature retain more water for longer periods after heavy rainfall than surfaces
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with a positive curvature [29]. As a result, concave surfaces have increased soil moisture
content with longer saturation periods, promoting erosion and decreasing soil stability [59].
In this model, the weights of LC, rainfall, slope aspect, SPI, TWI, and NDVI were of
less importance because of very low WhC values (0 or less than 0) (Table 4). The final
susceptibility map was divided into five classes from very low to very high (Figure 5); the
percentages of these classes are shown in Figure 6.

3.3. Application of Frequency Ratio

The Predictive Ratio (PR) was calculated from the frequency ratio and relative fre-
quency, respectively. NDVI, SPI, LC, TWI, and elevation exhibited relatively high values
of PR, followed by geology, distance to faults, and rainfall (Figure 4). Distance to rivers,
slope, profile curvature, and distance to road have a moderate impact on the prediction of
geohazard occurrence. In this model, the slope aspect was the least significant factor with a
low PR value. The PR values ranged from 1.00 to 5.62, and they were directly proportional
to susceptibility, with higher values indicating higher hazard susceptibility. Regarding
NDVI, barren surfaces showed a much high PR value of 5.62 (Table 4). Furthermore,
these areas are extremely erodible, and thus exhibit higher SPI values. Compared with
natural vegetation and shrublands, forest areas showed lower susceptibility to geohazards.
TWI reflects the relationship between the accumulation of water at any location and the
gravitational force acting on an inclined surface toward a downslope stream [56]. In this
model, TWI showed an inverse relationship with geohazards; TWI values less than five
indicate a high frequency of geohazards in this region. Decreasing distance from rivers and
roads was proportional to susceptibility, with shorter distances showing higher PR values.
River channels have significant effects on fluvial processes that influence bedrock incision
in seismically active mountain ranges [87]. In this study, we observed that most of the
geohazards in this region occurred along the main Indus River and associated tributaries,
which are in line with the study of Ahmed, Rogers and Ismail [34]. The PR values calculated
for geology and distance to faults were high. Exposed outcrops in the study area were
intensely sheared, folded, and faulted due to seismicity, resulting in high susceptibility
to geohazards. Geohazards have most frequently been observed in the Misgar Slates and
exposed outcrop of the Jijal complex along the river. Similarly, the elevation and slope
play a key role in the occurrence of geohazards. Elevations of 2000–3000 m showed higher
susceptibility. Slope angles of 45–60◦ showed the highest PR value (2.03), followed by slope
angles of 30–45◦ (2.00). After determining the PR values of all conditional factors, a GHSM
was prepared using Equation (10). The final susceptibility map was reclassified into five
classes (very-low, 20.18%; low, 25.34%; moderate, 15.97%; high, 27.16%; very-high, 11.04%)
using an expert-based classification method [26], as shown in Figures 5 and 6.
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Figure 7. Factors controlling spatial distribution of geohazards obtained via WoE model.
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3.4. Application of Shannon Entropy

We also used the SE model to minimize the imbalance between factors and obtain a
realistic status of their effect on the susceptibility of geohazards. The relationship between
the conditioning parameters and geohazards was obtained, and the most significant factors
affecting the occurrence of hazards were also identified. The summarized results are listed
in Table 4. According to the SE results, geology, elevation, distance to road, distance
to faults, NDVI, and distance to rivers are the most significant factors controlling the
occurrence and distribution of geohazards in this region (Figure 4). Therefore, these
conditioning factors can better indicate the occurrence and distribution of geohazards in
the study area. A GHSM was developed using the following equation [88]:

Wj = (NDVI × 0.298) + (TWI × 0.164) + (LC× 0.240) + (Rain f all × 0.186)
+(Elevation× 0.571) + (Faults× 0.372)
+(Rivers× 0.286) + (Pro f ile curvature× 0.065)
+(Geology× 0.651) + (Road× 0.374) + (Aspect× 0.049)
+(SPI × 0.223) + (Slope× 0.154)

(17)

Based on the SE model (Equation (11)), each class of conditional factors was divided
into different ranks (Table 4). The SE-GHSM was divided into five classes from very-low to
very-high susceptibility classes as shown in Figures 5 and 6.

Figure 8 shows a comparison of various results from field observations, aerial im-
ageries, and the LR model. A, B, C, and D areas show very-high susceptibility to geohazards.
In the Hunza valley, an area indicated ground subsidence and shallow landslides, which
is attributable to underlying and overlying unconsolidated sediments (slate formations).
The historical landslide in Attabad–Hunza blocked river flow and submerged 19 km of the
KKH, developing a natural dam. Moreover, the undercutting of slopes for the reconstruc-
tion of KKH has increased the susceptibility of the region to geohazards. The entire city of
Gilgit is located on a large debris fan. This section is characterized by hot and dry valleys
with low precipitation rate, and some old and large debris fans were observed during the
field visit. The Nanga Parbat Haramosh massif (western syntaxes) is the most susceptible
area of this region, with high tectonic influence and an uplift rate of 1 cm/year [40,89,90].
The dominant tectonic features are MMT and the Raikot fault, which are responsible for
the high seismicity and brittle deformation of bedrocks, ultimately leading to mass move-
ment. The Dasu section along the KKH is strongly influenced by rainfall compared to the
elevated areas.

3.5. Validation of Geohazards Susceptibility Maps

The AUROC curve was used for validating the obtained results. Success and predic-
tion rate curves were plotted to compare the results of GHSMs for existing hazard sites.
The performance of the models was evaluated by plotting AUROC curves for success rate
(Figure 9a). The LR, WoE, FR, and SE models showed AUROC values of 85.30%, 76.00%,
74.60%, and 71.40%, respectively (Figure 9a). In terms of prediction rate, the AUROC values
of LR, WoE, FR, and SE were 83.10%, 75.00%, 73.50%, and 70.10%, respectively (Figure 9b).
The findings revealed that the GHSM prepared using the LR model had better predictive
capability than those from the other three models. Other studies have also reported that the
LR model has higher performance and is more suitable for susceptibility analysis compared
to FR and WoE [68,70]. Our findings are in line with those of Rasyid et al. [70] in that
a standalone LR model has high precision and is appropriate for hazard susceptibility
assessment. Moreover, Polykretis and Chalkias [68] carried out landslide susceptibility by
comparing WoE, LR, and ANN models and found that success and predication rate of LR
model performed better (LR = 0.928 and 0.836, ANN = 0.912 and 0.780, WoE = 0.893 and
0.847). In another study, Benchelha et al. [91] found that the success and predication rate
of LR is higher (91.8% and 91.1%) than ANN model (88.6% and 87.7%). Therefore, it is
concluded that the LR model is the best option for mapping hazard potential under similar
settings.
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Figure 8. Comparison of ground truth data and field observation with Logistic Regression model results. (A) Overview of
Hunza valley: (A.i) ground subsidence and shallow landslides, (A.ii) Attabad–Hunza, (A.iii) undercutting of slopes, (A.iv)
aerial view of Hunza valley. (B) Gilgit section: (B.i) aerial view (Google earth imagery), (B.ii) debris fan. (C) Nanga Parbat
Haramosh massif (western syntaxes), and (D) Dasu section.

Figure 9. Comparison of area under the receiver operating curves of geohazard susceptibility maps.
(a) Models training and (b) testing AUROC curve.
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3.6. Model’s Results Comparison

The model results were compared to assess variations between the results of each
GHSM. The parameters can be primarily interpreted based on the absolute value of the
correlation coefficient as follows: very weak similarities 0–20%, weak to low similarities
20–40%, moderate similarities 40–70%, strong similarities 70–90%, and very strong similari-
ties 90–100% [92]. The similarity coefficient of LR vs. WoE was 57.70%, and those of LR
vs. FR and LR vs. SE maps were 47.40%. This indicates moderate similarities of LR with
WoE, and low similarities of LR with FR and SE maps (Table 5). The value of 0.898 shows a
strong correlation between FR and SE (89.80%). This correlation suggests that the maps
developed using the LR and WoE methods have moderate similarities, and those using the
FR and SE models have a strong similarity.

Table 5. Correlation coefficients derived from the Logistic Regression, Weight-of-Evidence, Frequency
Ratio and Shannon Entropy models for geohazard susceptibility maps.

Susceptibility Maps LR WoE FR SE

LR 1 57.70% 47.40% 47.40%

WoE - 1 75.00% 81.90%

FR - - 1 89.80%

SE - - - 1

3.7. Pixel-Wise Spatial Distribution of Susceptibility Class Comparison

To compare geohazard susceptibility maps, classified maps were ranked into five
groups, i.e., very low, low, moderate, high, and very high. Then, they were compared with
each of the constructed maps using a two-dimensional multiplication matrix [93,94]. The
study found that the matrix’s diagonal elements represent the same spatial distribution
of susceptibility classes for both maps (LR–WoE, LR–FR, LR–SE, WoE–FR, WoE–SE, and
FR–SE). For example, Figure 10a indicates that 39.21% of areas have been occupied by the
same hazard intensity for the two susceptibility maps, e.g., susceptibility maps developed
from LR and WoE. Meanwhile, 60.79% spatial distributions show dissimilarities in which
31.03% (upper elements of a diagonal matrix) distributions show the higher categories
of susceptibility by the geohazard susceptibility map constructed using the WoE model.
A total of 29.76% (lower elements of a diagonal matrix) distributions show the lower
categories compared to the constructed map using the LR model (Figure 10a). Further, the
comparison results for other models are summarized in Figure 10b–f. These differences are
mainly due to the influence of factors in controlling the spatial distribution of geohazards in
standalone models (Figures 4 and 5) and the proposition of the susceptibility map class [95].

The LR, WoE, FR, and SE models all indicated the significance of the causative factor
on the occurrence of geohazards. In the LR model, distance to faults, slope angle, elevation,
geology, LC, and precipitation were the most significant factors. The results of these
analyses are supported by the findings of previous studies on this region. Ahmed, Rogers
and Ismail [34] reported that geology, faults, slope angle, and rainfall are the most important
factors for the occurrence of geohazards in the upper Indus basin. Rahim et al. [96] found
that geology, faults, slope angle, and LC have the greatest impact on geohazards in this
region. According to the WoE model, the distance from faults with distance intervals of
3000–6000 m, 9000–12,000 m, and 12,000–15,000 m have weights (WhC) of 0.831, 0.647 and
0.722 respectively, indicating a positive correlation with the occurrence of geohazards.
Slope classes of 30–45◦, 45–60◦, and >60◦ have WhC weights of 1.130, 0.796, and 0.609,
respectively. The geological investigation suggested that the Ig, Pzu, Q, Mzpzi and ks
groups, mainly comprising gneisses, phyllites, slate, and shale, are the most susceptible
lithological units. Altitudes of 2000–3000 m showed high WhC (1.892). The results are in
agreement with the findings of other studies [37,97]. According to the FR model, NDVI,
SPI, LC, TWI, elevation, geology, and distance to faults are important factors controlling
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geohazards in this region. The significance of these factors has also been reported by
previous studies [29,38]. According to the SE model, geology, elevation, distance to road,
faults, NDVI, and rivers are the most important factors. These findings are in line with
those of previous studies [29,34,38]. Furthermore, AUROC curves verified that the LR
model has a higher performance than the other three models, suggesting that the LR model
is the most suitable for regional-level analysis of geohazards under settings similar to those
of the study area. Similarities in the influencing factors of geohazard occurrence among
the developed maps were assessed. The LR and WoE models provided maps of moderate
similarity, whereas the FR and SE models provided highly similar maps.

Figure 10. Comparison of susceptibility maps using a two-dimensional multiplication matrix: (a) LR vs. WoE, (b) LR vs.
FR, (c) LR vs. SE, (d) WoE vs. FR, (e) WoE vs. SE, and (f) FR vs. SE. VL: very low, L: low, M: moderate, H: high, and VH:
very high.
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4. Conclusions

In this study, regional level geohazard susceptibility mapping from the Punjab plains
(Pakistan) to the Tashkurgan Valley (China) was conducted. Thirteen conditioning factors
were considered and their TOL and VIF values were calculated to verify the absence of
multicollinearity for each variable. Four models, LR, WoE, FR, and SE, were used to develop
geohazard susceptibility maps, and the suitability of each model was validated through
AUROC curves. Furthermore, model results were analyzed to determine the statistical
importance of the coefficients and the spatial association between geohazards and each
class of the conditioning factors. The main conclusions of the study can be summarized
as follows:

1. The LR results suggested that distance to faults, slope, elevation, geology, LC, and
rainfall are the most significant parameters controlling geohazards occurrence in the
study area.

2. According to the AUROC curve, the LR model showed the highest accuracy with
an AUROC value of 85.30%, closely followed by the WoE model (76.00%), FR model
(74.60%), and SE model (71.40%). Likewise, the prediction rate of the LR model
was 83.10%. Thus, the LR model can be considered more accurate than the other
three models.

3. According to the LR model, 30.25%, 39.14%, 10.18%, 9.24%, and 11.19% of the area
have very low, low, moderate, high, and very high susceptibility to
geohazards, respectively.

Areas susceptible to geohazards, visualized in the hazard susceptibility maps, rep-
resent important sites for geohazard assessment in the study area. The GHSM prepared
using the LR model can be considered to be more realistic and suitable because of its
reliability and higher accuracy. Therefore, the developed map can provide useful infor-
mation for the local communities to recognize and avoid hazardous areas as well as for
associated government authorities to enforce preventive measures in areas of high to
very-high susceptibility.

Further, we believe that this paper will be of interest to the international readership
because the developed maps and the approach will be used by relevant individuals or
organizations involved in major construction projects in areas susceptible to geological
disasters. One of our study’s main limitations is the lack of historical geohazard infor-
mation. The advanced machine-learning algorithms require a large number of training
datasets. Therefore, we will consider advanced machine-learning and data-driven models
for susceptibility mapping with more detailed datasets in a future study.
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