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Abstract: Benggang is a typical erosional landform in southern and southeastern China. Since
benggang poses significant risks to local ecological environments and economic infrastructure, it
is vital to accurately detect benggang-eroded areas. Relying only on remote sensing imagery for
benggang detection cannot produce satisfactory results. In this study, we propose integrating high-
resolution Digital Orthophoto Map (DOM) and Digital Surface Model (DSM) data for efficient
and automatic benggang discovery. The fusion of complementary rich information hidden in
both DOM and DSM data is realized by a two-stream convolutional neural network (CNN), which
integrates aggregated terrain and activation image features that are both extracted by supervised deep
learning. We aggregate local low-level geomorphic features via a supervised diffusion-convolutional
embedding branch for expressive representations of benggang terrain variations. Activation image
features are obtained from an image-oriented convolutional neural network branch. The two sources
of information (DOM and DSM) are fused via a gated neural network, which learns the most
discriminative features for the detection of benggang. The evaluation of a challenging benggang
dataset demonstrates that our method exceeds several baselines, even with limited training examples.
The results show that the fusion of DOM and DSM data is beneficial for benggang detection via
supervised convolutional and deep fusion networks.

Keywords: benggang; deep learning; fusion; CNN; DOM; DSM

1. Introduction

Benggang is a Chinese word for a typical gully erosional landform [1]. Roughly trans-
lated, benggang means “slope collapse” or “collapsing gully” in English. Benggang can
be found in hilly areas covered by weathered granite crusts in southern and southeastern
China. Similar to gullies, the development of benggang is caused by collective impacts
of gravity and runoff water, involving complex processes of sediment collapsing and
transport [2]. Apart from natural factors, anthropogenic activities that destroy vegetation
cover also contribute to the development of benggang [3]. Typically, continuous benggang
erosions at gully heads result in chair-like forms with fragmented landscapes. Many studies
have investigated the geographical distributions, development mechanisms, and erosion
patterns of benggang landscapes [2–5].

In 2015, the United Nations (UN) released the 2030 Agenda for Sustainable Devel-
opment and introduced 17 global Sustainable Development Goals (SDGs). Goal 15 is
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about the protection of land ecosystems, aiming to promote environmental awareness and
encourage ecological conservation across the world [6]. Within the framework of SDGs, the
UN has defined the concept of Land Degradation Neutrality (LDN) and encouraged the
international community to combat land degradation [7]. With a fast-developing erosion
mechanism, benggang pose significant risks to local ecological environments and economic
infrastructure, as they may destroy forests, fertile lands, roads, and human habitats [8].
In order to achieve LDN and related SDGs, necessary and immediate management and
planning actions should be taken to reverse land degradation and restore benggang areas.
Before we take appropriate preventive or control measures, it is vital to accurately detect
benggang-eroded areas. Traditionally, the primary method to identify benggang is to con-
duct field surveys, which are costly in terms of resources and time. Recently, researchers
have adopted various remote sensing technologies for benggang monitoring, including
three-dimensional laser scanning [4] and Unmanned Aerial Vehicle (UAV) photogramme-
try [9]. However, benggang are usually of small scales and covered with vegetation in the
middle and late development stages, making it challenging to identify the boundary of
benggang only based on remote sensing data. Without field investigation, they are very
difficult to recognize from remote sensing images by manual interpretation. The current
benggang investigation practices mostly start with manual identification of potential beng-
gang areas from remote sensing imagery and are then followed by field surveys to localize
benggang units. The entire workflow is time-consuming and error-prone, calling for a
robust and automatic benggang discovery approach, especially for large areas. Still, since
benggang are widely distributed and characterized by fast development, automatic and
accurate detection of benggang areas remains a challenge.

Based on high-resolution remote sensing images, researchers have applied various
machine learning methods to detect and monitor specific land deformation phenomena.
Recent breakthroughs of deep learning in computer vision have offered many innovative
methods and tools for remote sensing image understanding [10]. Among them, convo-
lutional neural networks (CNNs) are the most widely used architecture for high-level
image feature representation. Remarkable classification and detector performance has been
achieved by either fine-tuning pretrained CNNs [11], modifying CNN frameworks [12],
defining novel objective functions [13], or constructing multiple network ensembles [14].
Being powerful deep learning models in computer vision, CNNs have demonstrated their
advantages in slope failure detection [15], landslide susceptibility evaluation [16], and land-
slide mapping [17,18]. It is also beneficial to integrate different machine learning methods
for detecting land deformation phenomena. For example, using different earth observation
data (satellite images and Digital Elevation Models), Piralilou et al. combined a multi-
layer perceptron neural network and random forest for landslide detection [19]. Ye et al.
leveraged a deep belief network and logistic regression classifier to detect landslides using
hyperspectral remote sensing images [20]. As these studies adopted loosely coupled mod-
els, we conjecture that integrating different data and models into an end-to-end learning
framework may be beneficial for complex landform detection. Some studies have modified
vanilla deep learning models to account for specific landform characteristics, such as an
improved U-Net model for post-earthquake landslide extraction [21], a progressive CNN
training scheme to promote generalization performance [22], and a cascaded deep learning
model that accounts for landslide features from limited samples [23]. Compared with
common natural or human-made objects, benggang is not a well-defined concept, with
large intra-class appearance variations. Benggang comprises complex terrain landscapes
without clear boundaries and distinct texture features. Directly applying deep learning
detectors for benggang discovery may not achieve satisfactory performance. Therefore,
we contend that an effective detection model should account for particular landscape
characteristics of benggang.

Other sources of geospatial data such as high-resolution Digital Surface Model (DSM)
data can provide complementary information to remote sensing image data. High-resolution
DSM data contains rich information on terrain elevation capable of describing fine-grained
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characteristics of complex terrains and abrupt edge changes. Despite deep learning-based
feature fusion being explored for remote sensing image understanding, most studies focus
on visual feature fusion using different feature descriptors [24] or features extracted from
multispectral images [25]. In this study, we propose integrating high-resolution Digital
Orthophoto Map (DOM) and DSM data for efficient and automatic benggang detection
with an integrated end-to-end learning model. We believe this fusion of multi-source
monitoring data has the benefits of high detection precision, low cost, and robustness
to landform variations, which are favorable for large-scale benggang investigation and
studies on the mechanism of benggang erosion.

To the best of our knowledge, we are the first to discover benggang areas using deep
learning-driven fusion based on DOM and DSM data. This study makes the following con-
tributions:

(1) We propose using a two-stream CNN framework to integrate aggregated terrain and
image features for benggang discovery using high-resolution DOM and DSM data;

(2) We develop a supervised, diffusive convolutional encoding scheme that aggregates
local geomorphic features, yielding expressive terrain representations for benggang;

(3) The developed deep fusion model is evaluated with a challenging benggang dataset.
Supervised by limited training samples, our approach achieves satisfactory detec-
tion performance.

Similar erosional gully-like landforms can also be widely found in other countries,
such as “lavaka” in Madagascar [26,27], “vocoroca” in Brazil [28] and “calanchi” in
Italy [29,30]. Cost-effective monitoring of these gullies is critical for environmental pro-
tection in these countries. However, the current practices are largely limited to manual
interpretation of remote sensing images and field surveys which hinge on the domain
knowledge of individual experts and the data quality of the images. Machine learning
methods have been used to extract specific types of land deformation phenomena (e.g.,
landslides) based on remote sensing images [15–17,21], but their utilities in detecting com-
plex gully-like landforms are limited because they largely rely on visual features while
ignoring terrain features that are specific to gully landforms. We believe the proposed
detection approach can also be used in other areas of the Earth, helping local authorities
and residents to better monitor and manage erosional gully landscapes.

2. Materials and Methods
2.1. Study Region and Data Description

The proposed approach was tested and evaluated with a DOM and a DSM dataset.
The two datasets were produced from a set of aerial images, which were collected in 2018
over a hilly region of Deqing County, Guangdong Province, China. The study region
has a subtropical monsoon climate, with a large solar altitude angle, strong radiation,
high year-round temperature, and abundant rainfall, which provides sufficient external
driving forces for the occurrence of benggang. Mountain soils are formed mainly by the
weathering of granite that consists of crystals of quartz and feldspar. The weathered crust
is loose and is prone to collapse under the influence of gravity. The original aerial images
were acquired with three bands: blue, green, and red. The data were automatically pre-
processed by INPHO, including aerial triangulation, image dense matching (for the DSM),
and differential correction (for the DOM).

The DOM and DSM data have a spatial resolution of 0.2 and 0.5 m per pixel, respec-
tively. The study region is partitioned by a regular grid with a resolution of 26 pixels,
resulting in a cell size of 13 m× 13 m. We chose this resolution for the grid because it is well
suited for providing fine-grained image and terrain information for detecting benggang
areas, which have a minimum size of 50 m × 150 m. In both the training and test datasets,
benggang areas were manually annotated by experts who have rich field experience in the
study region. The labeled benggang areas were also validated by field observations. In field
trips, we paid particular attention to areas that were covered by vegetation and difficult to
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interpret based on the DOM data. The data contain complex benggang landscapes that are
well representative of the benggang detection problem (Figures 1 and 2).

Figure 1. Study region. Benggang areas present heterogeneous structures and appearances (many
have been covered with vegetation), making it challenging to detect the base in one single modality
of data. The samples used in the first and the second experiments are marked with red and blue
rectangles, respectively.

Figure 2. 3D view of a benggang area (produced by ArcScene using DOM and DSM data).
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2.2. Detection Approach

Upon the availability of semantically rich feature representations, the benggang dis-
covery task can be casted as a classical object detection problem, which has been extensively
researched over the past several decades [31]. The deep fusion-driven benggang discovery
framework is shown in Figure 3. The study region was partitioned into regular grid cells,
each of which was used as the basic unit for feature extraction and representation. First, we
learned a CNN to extract the abstracted image features supervised by detected benggang
areas using high-resolution DOM data. The activation of the last hidden layer of the CNN
was used as the high-level representation DOM features for the task. Meanwhile, DSM
data were used to build a CNN-based high-level encoding scheme that aggregated local
low-level geomorphic features. This encoding scheme relies on a diffusive convolutional
neural network [32], helping construct high-level geomorphic descriptors, which are also
supervised by detected benggang training samples. Upon the availability of the two types
of high-level features, we used a two-stream CNN to integrate terrain descriptors and
activation image features for benggang detection and localization. With a gated fusion
network, both the DOM and DSM features were jointly embedded into a latent semantic
space which had much better discriminative capabilities than each type of feature alone.
Then, benggang areas could be discovered by a classification model, such as fully connected
networks using the binary cross entropy loss function.

Figure 3. The proposed benggang discovery framework.

2.2.1. Extracting High-Level DOM Features

In computer vision tasks, it has been shown that CNN models trained with a huge
amount of data are able to extract deep visual features. Therefore, the VGG network [33]
trained with the ImageNet dataset was used to extract representative high-level DOM
features in our approach. We used the VGG network to derive 512-dimensional activation
feature vectors for DOM images.

2.2.2. Constructing Aggregated DSM Features

Terrain features are critical for benggang recognition and analysis. However, orig-
inal terrain features are inadequate for complex scene interpretation. In this study, we
propose constructing aggregated DSM features based on a diffusive convolutional neural
network [32] which is trained by labeled benggang data. The diffusive convolutional
neural network has the benefit of extracting semantically meaningful high-level terrain
representations. A diffusive convolution was defined to simulate the process of benggang
erosion. We considered each grid cell as a graph node. Given a graph G with N nodes, a
transition tensor Tr ∈ RN×H×N can be built that encodes the probability of moving from
one node to another one within H hops. G can be described by a terrain feature tensor
X ∈ RN×F, where F is the size of the feature dimensionality. Our task is then to encode
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informative terrain features with diffusive convolutional embeddings for all nodes. For the
node i during the tth hop, the output representation can be written as

h(t)
i = f

[
W(t) � (Tr(t)i X

)
] (1)

where h(t)
i ∈ R(t)×F, W(t) ∈ R(t)×F is a learnable weight tensor, Tr(t)i ∈ R(t)×N denotes the

transition matrix for the tth hop, and � denotes the Hadamard product. To enable the
computation of h(t)

i , we needed to construct aggregated terrain feature vectors X for all
graph nodes and derive transition tensor Tr.

Based on DSM data, we could extract multi-dimensional terrain feature vectors at the
granularity of the grid cells. For each node, a 75-dimensional vector was constructed by
concatenating the following features:

(1) Average elevation over all pixels in a grid cell;
(2) Average elevation slope over all pixels in a grid cell;
(3) Maximum elevation difference between pixels;
(4) Maximum slope difference between pixels;
(5) Average gradient orientations;
(6) Maximum elevation from the centroid to four corner points and four edge mid-points;
(7) Average elevations over pixels with the same horizontal coordinates (26 dimensions);
(8) Average slope over pixels with the same horizontal coordinates (26 dimensions);
(9) A 16-dimensional vector that encodes gradient statistics based on the gradient mag-

nitudes and orientations of all pixels. For each pixel, its gradient is weighted by the
inverse of the distance between the pixel and the centroid. The 360-degree range
of orientation is equally divided into 16 bins. The weighted gradients are accumu-
lated into these 16 orientation bins according to their gradient orientations. After
obtaining all the 16 elements, we reset the maximum accumulated gradient as the
first element and arranged the rest of the accumulated gradients in clockwise order
(16 dimensions);

(10) The normal orientation, which is recorded as the serial number of bin (0–15) that has
the maximum accumulated gradients.

The inter-node transition tensor can be computed as follows:

(1) Compute the transition distances between the centroid of each node and the cen-
troids of its eight nearest neighboring nodes (queen-based neighbors) (Figure 4). The
transition distance between node o and o′ can be calculated as

do→o′ =

√
(∆h)2 +

(
dop→o′

)2
(2)

where ∆h is the difference of the average elevation between centroids o and o’ (i.e, ho−
ho′) and dop→o′ is the projected distance between the two centroids;

(2) The transition distances are labeled as positive or negative, depending on whether
the destination node has a higher average elevation than the origin node. Positive
(negative) distances indicate that the origin node is higher (lower) than the destina-
tion nodes;

(3) Signed distances are further weighted according to the angle α between the transition
link and the normal orientation. The weights are inversely proportional to the range
of the angle;

(4) The inter-node transition probabilities of the first hop T(1)
o are calculated as the inverse

of the signed transition distance:

T(1)
o→o′ = Sign(∆h) ∗ poo′ ∗

1
do→o′

(3)
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poo′ =


1−

αoo′ − π
2

π
, αoo′ ∈ [0, π)

αoo′ − π
2

π
, αoo′ ∈ [π, 2π)

(4)

where poo′ is a weight to measure the effect of the angle α on transition probability
and Sign (∆h) returns 1 if ∆h > 0; otherwise, it returns −1;

(5) For the tth hop, the transition probabilities T(t)
o can be simply computed by mul-

tiplication over all probability matrices of the previous hops, and T(t)
o = T(t−1)

o ∗
T(1)

o =
[
T(1)

o

]t
.

Figure 4. Transition distance calculation.

Upon the availability of the H-hop diffusive convolutional neural network embeddings
h(H)

i based on Equation (1), we could use them as the aggregated DSM features and fuse
them with the DOM features using the labeled benggang data. The workflow of extracting
diffusive convolutional embeddings is illustrated in Figure 5.

Figure 5. Diffusive convolutional embedding.

2.2.3. Fusing DOM and DSM Features

Following the gated multimodal unit model (GMU) [34], we integrated the extracted
high-level image and terrain features in a supervised learning scheme. Linear transforma-
tions were applied to two feature tensors, resulting in two vectors with the same dimension
for each node. The fusion was performed by a gated unit that combined information from
the two modalities. For each node, the resultant fusion vector h fi is regulated by a gate z:

hfi = z ∗ tan h
(

h(I)
i

)
+ (1− z) ∗ tanh

(
h(H)

i

)
(5)

z = σ
(

Wz·
[
h(I)

i , h(H)
i

])
(6)

where [,] is a vector concatenation operation and Wz is the trainable gate weight, initialized
from a uniform distribution [35]. We use h(I)

i to denote the high-level DOM feature vector
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for the ith node. Note that h(H)
i and h(I)

i need to be reshaped into one-dimensional vectors
before being used for fusion.

A fully connected layer is used as the classification model to supervise the fusion
training, using the binary cross entropy loss function:

L = − 1
N

N

∑
i=1
{yi log[σ(θhfi)] + (1− yi) log[1− σ(hfi)]} (7)

where yi is a binary classification label (benggang or non-benggang) and θ is a learnable vector.
During testing, the trained image and terrain feature extraction methods were applied

to the gridded DOM and DSM data, respectively. The trained GMU model was used to
produce fusion node vectors, which were fed into a binary classifier (e.g., a fully connected
neural network) to obtain the benggang detection results.

2.3. Implementation Details

To extract the DOM features, before being fed into the DOM stream convolutional
network, all training and test images were cropped and scaled to patches of 224× 224 pixels
by maintaining the original aspect ratio. The DOM stream is based on the VGG network [33].
The VGG network comprises 13 convolutional layers (with 3 × 3 convolutional filters),
5 max-pooling layers (with a kernel size of 2 × 2 pixels), and 3 fully connected layers. The
learning rate was set to 0.0001.

For constructing aggregated DSM features, the diffusive convolutional neural network
consisted of a diffusive convolutional activation layer and a fully connected layer, and the
activation functions for the two layers were ReLu and Softmax, respectively. The learning
rate was set to 0.05.

As for feature fusion, the fusion training needed at least 10 epochs and reached
convergence after the loss remained under 0.01. Using the Adam optimizer [36], the
model was trained with a batch size of 32. Before being used for training, the nodes were
completely reshuffled. The learning rate was decayed by 0.1 for every 5 epochs.

2.4. Experimental Setting

We conducted three experiments to evaluate the proposed benggang detection ap-
proach on two datasets, each of which contained both DOM and DSM data for five samples
of rectangular areas (Figure 1). The summaries of the two datasets are given in Table 1. The
configurations and results of the three experiments are presented in the following.

Table 1. Summary of the datasets used in the experiments.

No. of Benggang Grid
Cells

No. of Non-Benggang
Grid Cells Total

Dataset 1

Area 1 163 269 432
Area 2 216 216 432
Area 3 119 313 432
Area 4 167 265 432
Area 5 151 281 432

Total 816 1344 2160

Dataset 2

Area 1 130 302 432
Area 2 120 312 432
Area 3 54 378 432
Area 4 0 432 432
Area 5 0 432 432

Total 304 1856 2160
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All experiments were conducted on a desktop machine with an Intel® i7-8700K (3.7 GHz)
CPU and a NVIDIA GeForce RTX 2080Ti GPU. The entire feature extraction and fusion
method was implemented using PyTorch on a Microsoft Windows 10 operating system.

In the first test, we evaluated the proposed approach by a fivefold cross validation
scheme on five continuous benggang areas from the first dataset. Each area consisted of
432 (i.e., 24 × 18) cells. For each run, one area was used as a test set and evaluated by
the trained model using data from the other four areas. The average performance results
over five runs are reported in Table 2. We used the precision, recall, and F1-score as the
performance metrics to compare the proposed approach against the following baselines:

(1) VGG-DOM: a classification model based on the VGG network [33] using only DOM
data. VGG16 is a widely used deep convolutional neural network with 13 convolu-
tional layers and small-sized (3 × 3) convolution filters. The DSM data were not used
in this baseline, and no data fusion was performed;

(2) DCNN-DSM: a diffusive convolutional neural network (DCNN) [32] using only
DSM data. Supervised by the labeled data, the DCNN model can learn integrated
representations via diffusive convolutions that leverage both local attribute and graph
structure information. Similar to VGG-DOM, only one type of data was used, and no
data fusion was performed;

(3) SimpleDSM: a variant of the proposed method using raw terrain features (without
using aggregated terrain features that are learned by the diffusive convolutional
neural network). Therefore, only the DOM convolutional network is used in the
original two-stream CNN model;

(4) Concat-Fusion: a variant of the proposed method using a simple fusion method that
is based on feature concatenation. The two-stream CNN architecture was used, but
the gated feature fusion was replaced with simple concatenation;

(5) Linear-Fusion: a variant of the proposed method using another simple fusion method
that is based on linear summation of the DOM and DSM features. Equal weights
are used for the summation of the two modalities. In other words, linear feature
summation was used as the fusion method rather than the gated feature fusion in the
full model.

Table 2. Comparison of cross-validation performance. The means and standard deviations of the
three metrics are presented.

Model
Precision Recall F1-Score

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

VGG-DOM 0.858 0.075 0.848 0.050 0.849 0.026
DCNN-DSM 0.729 0.106 0.595 0.158 0.634 0.073
SimpleDSM 0.830 0.064 0.873 0.046 0.847 0.018

Concat-Fusion 0.877 0.081 0.861 0.051 0.868 0.058
Linear-Fusion 0.886 0.052 0.864 0.051 0.875 0.050

Ours 0.912 0.024 0.876 0.034 0.894 0.027

The precision was computed as the ratio between the number of correctly detected
benggang cells and the total number of cells classified as benggang. The recall was com-
puted as the ratio between the number of correctly detected grid cells and the total number
of benggang cells. The F1-score is the geometric mean of the precision and recall.

3. Results
3.1. Comparison with Baselines

Table 2 shows that the proposed deep fusion-based approach achieved better detection
performance over the compared baselines. The variations of our approach over different
test examples were also relatively small. The empirical improvements over VGG-DOM and
DCNN-DSM could be attributed to the fusion of both DOM and DSM information. The
performance gain of the proposed approach over SimpleDSM indicates the advantage of
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using diffusive convolutional neural networks in training aggregated terrain features. The
use of the gated fusion model in the proposed approach was beneficial, as demonstrated
by the improvements of the performance metrics over the other two fusion methods (i.e.,
Concat-Fusion and Linear-Fusion).

The second experiment was to compare the performance of the proposed approach
with the other baselines for another five examples in the second dataset (see Figure 1). The
five tested examples contained three benggang areas and two non-benggang areas. The
tested model was trained using the first dataset. Table 3 indicates that our approach was
superior to the other baselines over the three performance metrics. The other baselines
incorrectly classified some grid cells as benggang in the two non-benggang areas, but our
approach could avoid these mistakes.

Table 3. Performance comparison of benggang and non-benggang samples.

Model Precision Recall F1-Score

VGG-DOM 0.721 0.809 0.763
DCNN-DSM 0.474 0.569 0.517

Concat-Fusion 0.834 0.859 0.846
Ours 0.835 0.931 0.880

In the last experiment, we used different numbers of training samples from the first
dataset and tested over the rest of the samples in the first and second datasets with the goal
to evaluate the generalization capabilities of the proposed approach. Table 4 shows that
the performance gains of our approach over the other two baselines were more prominent
when using a small amount of training data, implying that our approach could generalize
well using limited training samples.

Table 4. Detection performance (F1-score) using different numbers of training samples.

Model 1 2 3 4

VGG-DOM 0.751 0.774 0.797 0.807
Concat-Fusion 0.774 0.797 0.831 0.825

Ours 0.824 0.842 0.833 0.843

3.2. Qualitative Results

Figure 6 presents the detection results of some examples, showing that the proposed
approach could distinguish contiguous benggang areas from complex backgrounds. The
proposed approach was also robust for complex non-benggang backgrounds. The two
areas in Figure 6 contain a mixed set of different landscapes, including forests, roads, and
farmland. The proposed approach was able to distinguish them from benggang areas.
The VGG-DOM method tends to produce false positive results, since it is not able to
distinguish non-benggang areas with similar texture patterns to benggang areas. DCNN-
DSM performed the worst, indicating merely relying on terrain features is not robust and
should be integrated with image features. Figure 6b shows that the Concat-Fusion method
frequently labeled non-benggang areas as benggang since it treated the DOM and DSM
equally and may not have chosen the most discriminative local features.
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Figure 6. Comparison of detection results for two benggang areas. (Top left) The proposed approach.
(Top right) Concat-Fusion. (Bottom left) VGG-DOM. (Bottom right) DCNN-DSM. TP: true positive
(benggang cells are correctly detected); FP: false positive (non-benggang cells are incorrectly classified
as benggang); TN: true negative (non-benggang cells correctly classified as non-nenggang); and FN:
false negative (benggang cells incorrectly classified as non-benggang).

3.3. Parameter Selection

We investigated the impacts of one parameter on the detection performance: the
number of diffusive hops when constructing aggregated terrain features, following the
same setting as the first experiment.

Table 5 shows that when h = 3, the model achieved the best and most stable perfor-
mance. We attribute this optimal selection to the sizes of the benggang in the studied
region. The sizes of the benggang areas ranged from 50 m × 150 m to 150 m × 350 m,
meaning that three hops (i.e., 26~55 m in transition distance) were suitable for capturing
the change patterns of the elevation variations across the benggang boundaries or within
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the benggang areas. The cell size and hop number could be adjusted when given different
image resolutions and benggang sizes.

Table 5. Performance comparison of different diffusive hops. Means and standard deviations of the
three metrics are presented.

Hop
Number

Precision Recall F1-Score
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0
1

0.886
0.900

0.053
0.030

0.866
0.886

0.055
0.037

0.874
0.893

0.038
0.032

2 0.877 0.051 0.870 0.037 0.873 0.039
3 0.912 0.024 0.876 0.034 0.894 0.027
4 0.892 0.030 0.871 0.050 0.881 0.036
5 0.884 0.041 0.877 0.041 0.880 0.035

3.4. Computational Effiency

We compared the training and testing time cost of the proposed method and three
baselines for the second experiment. Table 6 shows that our approach had approximately
similar time costs to VGG-DOM and Concat-Fusion. The DCNN-DSM model performed
much faster at both the training and testing stages because it only handled DSM data. The
time costs were practically acceptable for the benggang detection task.

Table 6. Comparison of time costs.

Model Training Time (s) Test Time (s)

VGG-DOM 316.3 13.7
DCNN-DSM 55.9 7.2

Concat-Fusion 274.1 14.9
Ours 295.9 13.8

4. Discussion

Since benggang areas are surrounded by similar landforms in mountainous southern
and southeastern China, it is challenging to detect them by manual inspection or relying on
one single source of earth observational data. If benggang areas are covered with vegetation,
DOM data may not provide sufficient texture information for benggang detection. Without
other sources of information, bare lands or farm lands after harvest would confuse the
DOM-based classifier. On the other hand, the development of a benggang is driven by
consistent erosion on its gully head, causing significant elevation variations along its
boundary. The gully bottom and deposition area have relatively mild elevation changes.
Therefore, DSM data can be of help in benggang detection. However, since the spatial
resolution of DSM data is usually much lower than that of DOM data, using only DSM
data may not produce satisfactory results, as indicated by our tests. The integration of
DOM and DSM data thus allowed us to examine three-dimensional landscape models with
high-resolution texture, which provided much richer feature information than either DOM
or DSM data. We proposed integrating DOM and DSM data under a deep gated fusion
framework, taking advantage of the most effective discriminative capabilities of image and
terrain features.

To compensate the coarse resolution in the DSM data, we used diffusive convolutions
to extract aggregated meaningful terrain features that were able to preserve the variation
patterns of elevation for benggang areas. We note that the benggang boundaries have dis-
tinct feature vectors from non-benggang areas because they are characterized by significant
elevation variations. The diffusive convolutional features thus can capture such variations
to facilitate the discovery of benggang boundaries. We used t-SNE [37] to visualize the
feature embeddings of the compared detection approaches in 2D space. Figure 7 shows
that the proposed deep fusion approach could learn two embedding clusters that could be
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easily separated, whereas other baselines failed to distinguish benggang and non-benggang
cells since the learned embeddings were significantly overlapped.

Figure 7. Visualization of feature embeddings for each grid cell using t-SNE for area 1 in dataset 1.
(a) Our deep fusion approach. (b) VGG-DOM. (c) DCNN-DSM. (d) Concat-Fusion.

Being totally data-driven, the gated fusion mechanism facilitates the interpretation
of the most informative integrated features based on DOM and DSM features. According
to Equation (5), the gate activations z regulates the influences of DOM and DSM data on
benggang detection. Thus, we could use the averages of z to see which data modality had
greater effects on the test results. Figure 8 shows the quantitative scores that describe which
data modality was more influential for each detected cell for two areas. The grid cells with
a blue (red) color show that DSM (DOM) data played a more important role in the fusion
model. According to the two samples, we can see that the terrain features were more useful
in detecting benggang areas or identifying non-benggang areas if they had similar image
features to those of benggang areas (e.g., farmlands to the right side of Figure 8a). Image
features are more helpful when we try to distinguish non-benggang areas from benggang
areas if these areas present distinct texture features (e.g., roads in Figure 8b).
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Figure 8. Visualization of the effects of DOM and DSM on detection results. (Top left) Influential
score for each grid cell (0–100, with higher scores indicating large influences of DOM features). (Top
right) Corresponding image showing the boundaries of benggang areas. (Bottom left) Shaded relief
map. (Bottom right) Slope map.

5. Conclusions

This study explores the possibility of combining DOM and DSM data for detecting
benggang, a common erosional landform in southern and southeastern China. Diffusive
convolutional neural networks are used to extract representative terrain features, which are
then integrated with CNN-derived image features to label benggang landscapes. We have
demonstrated that the proposed detection approach achieved performance superior to
several baselines, showing that the fusion of DOM and DSM data is beneficial for benggang
detection via supervised convolutional and deep fusion networks. Future work will focus
on the detection of different development stages of benggang and the evaluation of erosion
risk for the surrounding environments. We also plan to collect DOM and DSM data
from other areas in southern China and perform extensive evaluations on the proposed
fusion-based detection approach.
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