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Abstract: Change detection based on bi-temporal remote sensing images has made significant
progress in recent years, aiming to identify the changed and unchanged pixels between a registered
pair of images. However, most learning-based change detection methods only utilize fused high-level
features from the feature encoder and thus miss the detailed representations that low-level feature
pairs contain. Here we propose a multi-level change contextual refinement network (MCCRNet)
to strengthen the multi-level change representations of feature pairs. To effectively capture the
dependencies of feature pairs while avoiding fusing them, our atrous spatial pyramid cross attention
(ASPCA) module introduces a crossed spatial attention module and a crossed channel attention
module to emphasize the position importance and channel importance of each feature while simul-
taneously keeping the scale of input and output the same. This module can be plugged into any
feature extraction layer of a Siamese change detection network. Furthermore, we propose a change
contextual representations (CCR) module from the perspective of the relationship between the change
pixels and the contextual representation, named change region contextual representations. The CCR
module aims to correct changed pixels mistakenly predicted as unchanged by a class attention
mechanism. Finally, we introduce an effective sample number adaptively weighted loss to solve the
class-imbalanced problem of change detection datasets. On the whole, compared with other attention
modules that only use fused features from the highest feature pairs, our method can capture the
multi-level spatial, channel, and class context of change discrimination information. The experiments
are performed with four public change detection datasets of various image resolutions. Compared to
state-of-the-art methods, our MCCRNet achieved superior performance on all datasets (i.e., LEVIR,
Season-Varying Change Detection Dataset, Google Data GZ, and DSIFN) with improvements of
0.47%, 0.11%, 2.62%, and 3.99%, respectively.

Keywords: image change detection; attention mechanism; multi-level feature fusing; pixel contex-
tual representation

1. Introduction

Change detection aims to distinguish differences in multi-temporal remote sensing
images, which plays an important role in understanding land surface change, global re-
source monitoring, land use change, disaster assessment, visual monitoring, and urban
management—forming a significant part of remote sensing image intelligent interpreta-
tion [1]. Common change detection methods feed the registered bi-temporal images into a
corresponding model and output the predicted change intensity map with the same size as
the original image pair, in which each pixel is predicted to be changed or unchanged.

1.1. Change Detection

Up to now, many methods have been proposed, including traditional ways and
learning-based ways.
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1.1.1. Traditional Methods

Traditional ways can be divided into algebraic-based, statistical-based, and feature-
classification-based [2]. Algebraic-based methods measure the change by exploiting the
absolute difference or ratio of pixel values such as change vector analysis [3] (CVA), which
primarily determines the changed or unchanged area by comparing the vector values
between bi-temporal images; however, this method has an excessive calculation interval
for high-resolution remote sensing images. Statistical-based methods use region-level
statistical information to build change features, which are then optimized iteratively by
statistical probability theory to get the final result. Traditional models include Gaussian
mixture model (GMM) and generalized statistical region merging (GSRM) [4] are generally
adopted. Feature classification-based methods utilize feature mapping (e.g., support vector
machine), dimension reduction (e.g., principal component analysis), and ensemble learning
(e.g., decision tree) to predict the feature classification results.

1.1.2. Learning-Based Methods

Learning-based methods rely on the rapid development of deep learning algorithms.
Many image classification and recognition algorithms based on convolution neural net-
works (CNN) give satisfactory results for remote sensing image tasks [5]. As change detec-
tion can be regarded as a pixel-level prediction task, almost all deep neural network models
comply with the encoder–decoder structure to predict the change map. Daudt et al. [6] first
designed three Siamese convolutional network models based on a U-net structure. Subse-
quently, an enhanced version of U-Net was also applied to remote sensing image change
detection [7] and achieved better results. Fang et al. [8] proposed a Siamese framework
according to dual learning-based domain transfer mechanism and put forward a combined
loss function for solving the class im-balanced problem. Chen and Shi [9] proposed STANet,
which innovatively established the spatial–temporal relationship between multi-temporal
images through a self-attention mechanism, and was applied to optical remote sensing
images with a Siamese network structure. However, this method was based on metric
learning, thus requiring a long training iteration time, so we improved it by proposing a
classification-based method. Zhang et al. [10] pointed out that current change detection
methods based on deep learning have some limitations in terms of deep feature fusion and
supervision, and they improved the ability to discriminate differences by inserting a spatial
attention module (SAM) and channel attention module (CAM) into various level feature
layers, which greatly ignored the relationship between different feature layers. Our model
thus cascaded the feature pairs refined by the cross-attention module from a high layer to a
bottom layer, thereby facilitating the full utilization of multi-level difference discrimination
features. Meanwhile, to fully explore the relationship between a pixel and its surrounding
region, we proposed a change contextual representation (CCR) module.

Change detection methods based on deep learning are mainly divided into two cate-
gories, one based on metric learning [11–14] and another based on classification [15–22].
The former regarded the change information as the similarity of feature pairs and then
pulled samples belonging to the same class in the embedding space closer while simultane-
ously pushing samples belonging to different classes further away. DASNet [23] used a
dual attention module to enhance the generalization of the extracted bi-temporal features.
Finally, a metric module was adopted to predict the result by thresholding the L2-norm
distance with a change map. In addition, a weighted double margin contrastive loss was
put forward on the basis of a universal contrastive function. The abovementioned are
metric-based methods, which are suitable for most regular change detection datasets in
most cases, especially for street view images. However, they are not applicable for high-
resolution bi-temporal remote sensing images, due to the difficulty of designing a more
appropriate threshold in the decision module. Recently, most change detection networks
based on semantic segmentation models have performed slightly better than these methods.
PGA-SiamNet [24] introduced a global co-attention mechanism to emphasize the impor-
tance of correlation between the input feature pairs, thus making up the displacement of
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buildings in orthoimages. Adopting an identical framework, it also enhanced the post-
fused bi-temporal features extracted by shared feature extraction backbone. In the decoder,
multi-level features were fused as final change discriminating information. DTCDSCN [25]
divided semantic segmentation and change detection into two subnetworks to make up
for the lack of a boundary in the latter task and proposed improved focal loss to solve
the problem of imbalanced samples. Based on the UNet++ [26] structure, DifUnet++ [27]
simultaneously fused the concatenated and absolute difference features of bi-temporal
images. In particular, the researchers adopted a multiple side-outs fusion strategy to reset
the loss weight of different scales. Although this network structure fully utilized the fused
information of the original bi-temporal images, including absolute information on the
difference between feature pairs and the sum of feature maps, the experimental results
were not significant due to the lack of an effective correlation between feature pairs and
the context between pixels. Our attention modules greatly improved the accuracy of the
corresponding datasets.

1.2. Attention Mechanism

An attention mechanism has the ability to capture long-range dependencies, so it is
widely used in natural language processing, image classification, semantic segmentation,
and object detection. SENet [28] first proposed a channel attention module to adaptively
correct the weight ratio between channels, which simply captures channel-level long-range
dependencies. By utilizing non-local theory from a global point of view, Non-local Net [29]
made the receptive field no longer limited to the fixed size of the local area. That means
that the model merely requires calculating the interactions between any two locations
to capture long-range dependencies directly. DANet [30] proposed a position attention
module and channel attention module to learn a spatial attention map and a channel
attention map. The former aggregates and updates all positions by weighting on the spatial
position of one feature. The latter applies attention weights to the channel dimension. In
addition, DANet proved that the sum fusion of the two attention modules can further
improve feature representations, which contributes to more accurate results. Different
from the above, ACFNet [31] utilizes class context information instead of spatial context
information as the attention weight. Specifically, it first calculates the class center by using
coarse segmentation result and a feature map. Then, it corrects the pixels based on incorrect
predicted results. ACFNet first introduced a class attention mechanism.

As mentioned above, methods that are based on classification perform better than
metric-based ones in most cases. Based on the encoder–decoder structure, we proposed a
multi-level change contextual refinement net (MCCRNet), which extracts multi-level fea-
ture pairs by a shared VGG16 [32] backbone. The extracted feature pairs are subsequently
modified and strengthened through four atrous spatial pyramid cross-attention (ASPCA)
modules. The decoder was constructed in the manner of coarse-to-fine, which means
that the modified feature pairs with their output from the previous upsampling layer are
concatenated, and the fused feature is then forwarded to the next layer to gradually restore
the original image resolution. Different from other self-attention operations used in existing
methods, the ASPCA module designed by us no longer takes the fused single feature as
the input but uses the original multi-level feature pairs instead. Concretely, each of the
feature pairs were fed into both the atrous spatial pyramid cross spatial attention (ASPCPA)
module and the atrous spatial pyramid cross-channel attention (ASPCCA) module, thus
establishing an interactive relationship of sharing information between dual features and
simultaneously keeping the primitive dual-branch features in a steady state. Compared
to the pyramid spatial–temporal attention module proposed by [6], which partitioned the
image scale in a uniform manner, our pyramid structure was in the manner of atrous spatial
pyramid pooling [33] (ASPP), which proved to be more effective for semantic segmentation,
image classification, and object detection. Compared to the research in [29], which only en-
hanced dual-branch features by dual attention modules but ignored the fusing information
of multi-level features, our method solved this by gradually cascading the updated feature
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pairs with the upsampled feature from the previous upsampling layer. To fully make use
of the multi-level feature differences discrimination contextual information, we designed a
change contextual representational (CCR) module, which utilized position attention and
class attention mechanisms to capture the change region representations, the pixel-change
region relation, and change region contextual representations. CCR first introduced the
correlation between pixels and their context into change detection algorithms. This motiva-
tion came from the fact that the pixels around the changed pixels are also most likely to
change. In Figure 1, the black dots represent changed pixels, and small white dots represent
unchanged pixels; the rectangle represents the changed area, and the large circle represents
the unchanged area. A pixel prefers to belong to the same class as its surrounding con-
text region, which means that the class label assigned to one pixel is the category of the
region/object that the pixel belongs to. We aimed to augment the change representation of
one pixel by exploiting the representation of the change region of the corresponding change
class, which was realized by triple operations of self-attention in this work. By fusing the
upsampled features and then forwarding them into this module, the change feature could
be made more robust and discriminative. The experiments proved that the ASPCA and
CCR modules effectively improved the results of the change detection. In addition, to solve
the problem of imbalanced change detection samples, we used the idea of cost-sensitive
learning [34–36] to assign an adaptive weight for changed samples and unchanged sample
loss. Specifically, a mathematical formula for the effective number of samples in [37] was
adopted, which preferred to assign higher weights to changed pixels’ loss. Focal loss was
combined to form the final effective sample number adaptively weighted loss (EAWLoss),
which confirmed the effectiveness of the pixel-level binary classification task and can be
extended to a multiclass task such as semantic change detection [38–40].
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Our contributions can be summarized as follows:

(1) We proposed a novel end-to-end framework called a multi-level change contextual
refinement net (MCCRNet) for the change detection of bi-temporal remote sensing
images. Compared to other methods, MCCRNet would be capable of capturing more
intensive change information between bi-temporal images.

(2) We proposed a change contextual representation (CCR) module to take advantage
of changed region context. CCR first utilized the relationship between change pixels
and their context through multiple self-attention operations.

(3) We proposed an effective sample number adaptively weighted loss for solving the
sample class-imbalanced problem.
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2. Materials and Methods

In this section, we describe the details of the proposed method. Firstly, we present
our network multi-level change contextual refinement net (MCCRNet) in Section 2.1;
then, in Section 2.2, we introduce the experimental datasets in our work and propose the
effective sample number adaptively weighted loss in Section 2.3. Finally, we describe the
experimental implementation details in Section 2.4.

2.1. Methods

In this subsection, the multi-level change contextual refinement net (MCCRNet)
pipeline is presented, then the designed atrous spatial pyramid cross attention and change
contextual representation (CCR) modules are described in detail.

2.1.1. Network Overview

Like most binary change detection methods, the network input comprised two reg-
istered bi-temporal images expressed as I1, I2 with a size of C × H ×W, where C is the
number of channels, and produced a change map whose width and height are the same as
that of the input image except that the channel number turns into 1. For each pixel of the
change map, 1 usually means changed and 0 means unchanged.

The overall architecture of the multi-level change contextual refinement net (MC-
CRNet) is shown in Figure 2, which consists of an encoder (Section 2.1.2), a decoder
(Section 2.1.3), and a final change contextual representation module (Section 2.1.4), where
Conv Blocks 1–4 indicate the convolution blocks of the VGG16 backbone layers, except the
last one, and ConvTransposed Block indicates the usual deconvolution, batchnorm, and
dropout operations. The multi-level feature pairs extracted by the encoder were separately
forwarded to the ASPCA module from the top layer to the bottom layer, then the dual
features updated by ASPCA were concatenated with upsampled features from the upper
layer, which served as the input of the next layer. Especially for the first layer, we forwarded
the absolute difference of feature pairs from Conv Block 4 as extra change representation
information. By mapping the features four times in the decoder, we could get feature maps
twice the size of the original feature pairs, which were finally forwarded into the CCR
module to predict the results. The optimization of our model in the training phase was to
minimize the loss between the output and the ground truth.
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2.1.2. Feature Extractor

With the rapid development of CNN, more and more feature extraction networks
have shown strong feature extraction ability. Many of them can be applied to existing
computer vision tasks such as object detection [41], land-cover classification [42–44], and
image matching [45–47]. For change detection tasks that may be regarded as pixel-level
classification problems, a fully convolutional layer rather than a fully connected layer could
achieve this [48]. Considering the speed and GPU memory capacity, we chose VGG16 [32]
as our feature extractor backbone.

As shown in Figure 2, we had two main aims: (1) avoiding the loss of image details
and abundant upsampling stages in decoder and (2) reducing the calculating complexity of
the model as far as possible while extracting strong representations. The first four shared
blocks of VGG16 were used to extract multi-level features of bi-temporal images. The
channels of the extracted features are 64, 128, 256, and 512, respectively, while the scales
are 1/2, 1/4, 1/8, and 1/16 of the original image pairs.

2.1.3. Decoder

After obtaining the feature sets of the bi-temporal images, they were not fused directly
like the current methods but were forwarded into an atrous spatial pyramid cross-attention
(ASPCA) module to strengthen the representation ability between feature pairs at the same
level. As mentioned above, the ASPCA module was also realized based on self-attention
theory shown in Figure 3. The subgraphs in the third column represent the dual spatial
features and dual channel features refined by ASPCPA and ASPCCA, respectively. Unlike
most attention-based works that forward a concatenated single feature into the attention
module and output a single weighted feature, our module utilized dual features without
fusing or adding operations.
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The ASPCA module comprises an atrous spatial pyramid cross-position attention
(ASPCPA) module and an atrous spatial pyramid cross-channel attention (ASPCPA) mod-
ule, both of which accept dual features of the same size from the same level of feature
extraction layers. The former captured the long-range spatial–temporal interdependencies,
while the latter captured the long-range channel–temporal interdependencies. Although
there are many operations to fuse spatial attention features and channel attention features
such as concatenating or cascading in parallel, the experiments indicated that they were
not suitable for this task, so a summing operation was employed. It is worth noting that
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the updated image feature of the previous time (expressed as f (1) ′) and that the updated
image feature of the latter time (expressed as f (2) ′) equaled the element-wise summation
of the spatial attention feature and channel attention feature in the form of crossover. The
mathematical expression is as follows:

f (1) ′ = f (1)s + f (1)c , f (2) ′ = f (2)s + f (2)c (1)

where f (1) ′, f (2) ′ denote the feature pairs updated by the ASPCA module for a certain layer;
f (1)s , f (2)s denote the output bi-temporal features from the ASPCPA module, and f (1)c , f (2)c
denote the output bi-temporal features from the ASPCCA module.

The structure of the ASPCPA module is shown in Figure 4. The green boxes represent
the atrous convolution with rates of 1, 6, 12, and 18, respectively and 1 × 1 Conv represents
the convolution of kernel size 1 × 1, BatchNorm, and ReLU. We referred to the idea of
atrous spatial pyramid pooling (ASPP) in [49]; the dual features were forwarded into an
atrous spatial pyramid module containing four atrous convolution operations with ratios of
1, 6, 12, and 18, respectively, and then these output features were concatenated in channel
dimension. To increase the nonlinear capability of the model, a convolution with kernel
size 1 × 1 operation was performed; we kept the number of channels the same in our
work. Given the dual features fused by the atrous spatial pyramid block (denoted as f (1)asp

and f (2)asp , respectively), where f (1)asp ∈ C × H ×W and f (2)asp ∈ C × H ×W (C denotes the
channel number, and H×W indicates the spatial size), two parallel 1× 1 convolutions were
applied to f (1)asp and f (2)asp , respectively, which produced Query ∈ C′ × H ×W (expressed as
Q) and Key ∈ C′×H×W (expressed as K), where C′ is the channel number. Generally, C′ is
reduced to 1/4 or 1/8 of C for saving memory, but here we kept them the same. Meanwhile,
we forwarded f (1)asp , f (2)asp into another two convolution layers to generate corresponding
value features Value ∈ C × H ×W (expressed as V1 and V2, respectively), which were
reshaped into V′1 ∈ C × N, V′2 ∈ C × N, where N = H ×W. Simultaneously, we also
reshaped Q and K into C′ × N. To capture the spatial contextual relationships of feature
pairs, we calculated an attention map with forward and backward directions. For the
forwarded = direction (“T1 to T2”), Q is permuted to N × C′, while K kept the original
size; thus, we constructed the forward energy matrix Λ ∈ N × N, formulated as Λ = QTK,
where the element at (i, j) of Λ is the sum product of the ith row elements of Q and the
jth column elements of K and measures the similarity between ith position in f (1) and jth
position in f (2). Λ then performed the normalization by Softmax operation and matrix
multiplication with V′1, as mentioned above, where the former is calculated as follows:

Π(i,j)
1→2 =

exp
(

Λ(i,j)
)

∑N2
j=1 exp

(
Λ(i,j)

) (2)

where Λ(i,j) indicates the element at position (i, j), and N2 indicates columns of Λ. Similar
to this, another energy matrix of the backward direction (“T2 to T1”) is formulated as
Ω = KTQ, which means the matrix multiplication of K after transposed and Q. We also
applied Softmax to Ω as follows:

Π(i,j)
2→1 =

exp
(

Ω(i,j)
)

∑N1
i=1 exp

(
Ω(i,j)

) (3)
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Slightly different from the above, a backward direction attention map was used to
measure the similarity between the jth position in f (2) and the ith position in f (1). N1 is
the rows of the Ω matrix. The bidirectional similarity measurements contributed more
comprehensive spatial change context between dual features. Finally, we obtained the
updated spatial attention map of f (1) named f (1)s by adding f (1)asp to the weighted V′1:

f (1)s = f (1)asp + ∂V′1, (4)

where
V′1 = V1Π(i,j)

1→2
T (5)

and ∂ is a model parameter with an initial value of 1, leveraging the dissimilarity im-
portance of f (1) compared to f (2). Conversely, an argument spatial attention map of f (2)

named f (2)s was generated by adding f (2)asp to the weighted V′2:

f (2)s = f (2) + βV′2 (6)

and
V′2 = V2Π(i,j)

2→1 (7)

The model parameter β was also initialized to 1, which leverages the dissimilarity
importance of f (2) compared to f (1).

In a word, long-range spatial independencies form two directions, both with a strength-
ened change representation ability for bi-temporal features.

The ASPCCA module was designed to capture long-range channel independencies
between f (1) and f (2). As shown in Figure 5, the atrous spatial pyramid and bidirectional
structures are identical to ASPCPA except that the latter has to produce K, Q, V1 and V2
by four 1 × 1 convolution layers before calculating attention maps. Here, we performed
matrix multiplication of the original concatenated features directly. Given dual multi-scale
features f (1)asp ∈ C× H ×W and f (2)asp ∈ C× H ×W mapped by four atrous convolutions
at rates of 1, 6, 12, and 18, respectively, we reshaped both of them into C × N, where
N = H ×W. For the forward direction (T1 to T2), the transposed f (1)asp performed matrix
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multiplication with f (2)asp formulated as Φ = f (1)asp f (2)asp
T to generate forward energy map

Φ ∈ C× C. Φ was also normalized by a Softmax operation to get an attention map:

T(i,j)
1→2 =

exp
(

Φ(i,j)
)

∑C
j=1 exp

(
Φ(i,j)

) (8)ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 26 
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Finally, the augmented channel attention map of f (1) could be calculated as follows:

f (1)c = f (1)asp + δ f (1)asp
′ (9)

where
f (1)asp
′ = T(i,j)

1→2 f (1)asp (10)

and δ is a model parameter like ∂; here, f (1)c models the channel context from f (1) to f (2).
In the same way, a backward energy map T(i,j)

2→1 was calculated by Y = f (2)asp f (1)asp
T and

normalized as follows:

T(i,j)
2→1 =

exp
(

Y(i,j)
)

∑C
j=1 exp

(
Y(i,j)

) (11)

Thereby, the augmented channel attention map of f (2) was obtained:

f (2)c = f (2)asp + ρ f (2)asp
′ (12)

where
f (2)asp
′ = T(i,j)

2→1
T f (2)asp (13)

and ρ is a model parameter with an identical initial value like δ; f (2)c models the channel
context from f (2) to f (1).
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Whether in the ASPCPA module or the ASPCCA module, a norm layer comprising
1 × 1 convolution, BatchNorm, and a ReLU activation function was separately applied
to f (1)s , f (2)s , f (1)c , and f (2)c , which ensured that the channel number of the input remains
unchanged after being updated by ASPCA. As shown in Figure 2, the decoder gradu-
ally restored the change feature map resolution by forwarding concatenated f (1) ′, f (2) ′

and abs( f (1) ′ − f (2) ′) (where abs denotes absolute operation) into the upsampling block
ConvTransposed from high layers to bottom layers. For each ConvTransposed block, the
first two ConvTransposed2d layers are used for dimension reduction, while the other one
aims to upsample the doubled spatial size. The specific parameters and feature sizes are
shown in Table 1.

Table 1. The architectural details for our ConvTransposed layers. ConvTransposed2d, BatchNorm2d, and Dropout2d
indicate transposed convolution, batch normalization, and dropout operations, respectively; the next subcolumn gives the
corresponding parameters.

ConvTransposed
Layers Operations and Parameters Input Size Output Size

ConvTransposed
Block 4

ConvTransposed2d 3 × 3, stride 1, padding 1 1536 × 16 × 16 1024 × 16 × 16
BatchNorm2d & Dropout2d affine true, p 0.2 1024 × 16 × 16

ConvTransposed2d 3 × 3, stride 1, padding 1 1024 × 16 × 16 512 × 16 × 16
BatchNorm2d & Dropout2d affine true, p 0.2 512 × 16 × 16

ConvTransposed2d 3 × 3, stride 2, padding 1,
output_padding 1 512 × 16 × 16 512 × 32 × 32

ConvTransposed
Block 3

ConvTransposed2d 3 × 3, stride 1, padding 1 1024 × 32 × 32 512 × 32 × 32
BatchNorm2d & Dropout2d affine true, p 0.2 512 × 32 × 32

ConvTransposed2d 3 × 3, stride 1, padding 1 512 × 32 × 32 256 × 32 × 32
BatchNorm2d & Dropout2d affine true, p 0.2 256 × 32 × 32

ConvTransposed2d 3 × 3, stride 2, padding 1,
output_padding 1 256 × 32 × 32 256 × 64 × 64

ConvTransposed
Block 2

ConvTransposed2d 3 × 3, stride 1, padding 1 512 × 64 × 64 256 × 64 × 64
BatchNorm2d & Dropout2d affine true, p 0.2 256 × 64 × 64

ConvTransposed2d 3 × 3, stride 1, padding 1 256 × 64 × 64 128 × 64 × 64
BatchNorm2d & Dropout2d affine true, p 0.2 128 × 64 × 64

ConvTransposed2d 3 × 3, stride 2, padding 1,
output_padding 1 128 × 64 × 64 128 × 128 × 128

ConvTransposed
Block 1

ConvTransposed2d 3 × 3, stride 1, padding 1 256 × 128 × 128 128 × 128 × 128
BatchNorm2d & Dropout2d affine true, p 0.2 128 × 128 × 128

ConvTransposed2d 3 × 3, stride 1, padding 1 128 × 128 × 128 64 × 128 × 128
BatchNorm2d & Dropout2d affine true, p 0.2 64 × 128 × 128

ConvTransposed2d 3 × 3, stride 2, padding 1,
output_padding 1 64 × 128 × 128 64 × 256 × 256

The multi-scale features up-sampled by the four ConvTransposed blocks contain
abundant change discriminatory information with different levels, which means that high
layers contain rich abstract semantic information, while low levels represent detailed
texture information.

2.1.4. Change Contextual Representational Module

The multi-level features updated by the ASPCA module in Section 2.1.3 only capture
the long-range interdependencies between pixels of feature pairs. This subsection proposes
a change contextual representational (CCR) module, which captures pixel-change region
relation and change region contextual representations by exploiting representations of
change regions that the pixels belong to. In Figure 6, ×8, ×4, and ×2 represent bilinear
interpolation to 8, 4, and 2 times the original size, respectively, and Conv2d, in the green
box, represents a general 1 × 1 convolution while Conv in the green box represents
1× 1 conv→ BatchNorm→ ReLU . The features outputted from the four ConvTransposed
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blocks were resized to be the same as the output from ConvTransposed Block 1, then
the fused feature was forwarded into a linear activation layer called Conv to get the
pixel representations. Meanwhile, an auxiliary output from a fully convolution layer
contributed to the coarse change detection result, which was supervised by an auxiliary
loss. Given pixel representations P ∈ C×H×W and coarse change regions O ∈ 2×H×W,
where 2 indicates the change class and unchanged class, both P and O were separately
reshaped to P′ ∈ C× N (to reduce calculation complexity, C means 512 in this work) and
O′ ∈ 2× N. Then the change region representations fc ∈ C × 2 could be obtained by a
matrix multiplication between regularized O′ and P′ formulated as follows:

fc = (so f tmax(O′T)P′)
T

(14)
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Similar to the attention map in ASPCA, the pixel-change region relation fatt was
calculated by:

fatt = so f tmax(σ( fc)
Tφ(P′)) (15)

where σ and φ were both implemented as 1× 1 conv→ BatchNorm→ ReLU and
fatt ∈ 2 × N. Then the matrix multiplication of change region representations fc and
attention map fatt. were calculated as follows:

fcontext = ρ(δ( fc) fatt), (16)

where δ and ρ are also transform functions like σ and φ, but it is worth noting that σ, φ,
and δ are all dimension reduction transformation (512 to 256 in this work), while ρ denotes
1 × 1 conv from 256 channel to 512. For reusing the pixel representations, fcontext was
first reshaped to f ′context ∈ C× H ×W and then concatenated with P to generate change
region contextual representations, updated by a Conv layer to restore the original channel
dimensions. Finally, a pixel-level convolution predicted the change intensity map.

2.2. Datasets

In this work, we experimented with four public remote sensing image change detection
datasets of different resolutions, namely LEVIR-CD [9], Season-Varying Change Detection
Dataset (CCD) [7], Google Data GZ [50], and DSIFN [10].

The attributes are shown in Table 2. The LEVIR-CD dataset contains 637 very-high-
resolution Google Earth (GE) image patch pairs with a size of 1024 × 1024 pixels, covering
20 different regions in Texas, USA. Most image pairs belonging to building change involve
man-made structures and date from 2002 to 2018. The Season-Varying Change Detection
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Dataset (CCD) also originated from Google Earth but the spatial resolution ranges from
3 to 100 cm/pixel. Different from the first one, this dataset is more focused on changes
corresponding to the appearance and disappearance of objects, but ignores changes due to
seasonal differences, brightness, and other factors. Google Data GZ is a large-scale VHR
change detection satellite image dataset obtained from 2006 to 2019, covering suburban
areas of Guangzhou City, China. Google Data GZ contains 19 season-varying VHR images
pairs with three bands, which mainly focus on building changes. The last DSIFN dataset
is collected from Google Earth, covering many Chinese cities such as Beijing, Chengdu,
Shenzhen, Chongqing, Wuhan, etc. In the training stage, all datasets were cropped into
256 × 256 patches.

Table 2. Datasets’ attributes. VHR indicates very high resolution.

Datasets Resolution
(m/Pixel)

Scale
(Pixel) Type Training:Validation:Testing

LEVIR-CD 0.5 1024 × 1024 VHR 445:64:128
CCD 0.03–0.1 256 × 256 Low-resolution 10,000:3000:3000

Google Data GZ 0.55 4936 × 5224 VHR 9:6:4
DSIFN 2 512 × 512 VHR 3600:340:48

2.3. Loss Design

To solve the sample class-imbalanced problem in change detection, we proposed an
effective sample number adaptively weighted loss. The point of this is to associate each
sample with a small neighboring region instead of a single point. From [37], it can be
realized that a newly sampled pixel either inside a previously sampled changed region
with the probability of p or an outside, unchanged region with the probability of 1 − p,
which means the effective number of samples is the expected volume of samples, so the
loss was designed to capture the hidden marginal benefits by using more data points of a
class. Following the mathematical formulation of effective number, the effective sample
number adaptively weighted loss (EAWLoss) was defined as follows:

LEAW(y, ŷ) =


1−β

1−βn1 L(y, ŷ), y = 1
1−β

1−βn0 L(y, ŷ), y = 0
(17)

where n1 and n0 indicate the number of changed pixels and unchanged pixels in ground
truth, respectively; L(y, ŷ) represents the standard cross entropy loss or focal loss [51]
between the label and the predicted result. β controls the proportion of effective sample
number; in this work, it was set to 0.5 as the change detection task only contains two
classes, where β = 0 means no reweighting and β→ 1 means reweighting by inverse
class frequency. To keep the experiments identical, we also used EAWLoss as the auxiliary
supervision loss. So, the total loss was expressed as follows:

Lsum(y, ŷout, ŷaux) = LEAW(y, ŷout) + λLEAW(y, ŷaux) (18)

where y, ŷout, ŷaux are ground truth, final prediction, and auxiliary prediction, and λ is the
weight factor and was set to 0.4.

2.4. Implementation Details

To verify the effectiveness of the proposed method, five evaluation metrics were
utilized to quantify the experiment’s performance, defined in Section 2.4.1. The training
details of the experiments and model configuration are given in Section 2.4.2.
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2.4.1. Evaluation Metrics

In this work, we utilized overall accuracy (OA), mean intersection over union (mIoU),
precision (precision), recall (recall), and F1-score (F1) as performance metrics, the definitions
of which are as follows:

OA =
TP + TN

TP + FP + TN + FN
(19)

mIOU =
TP

FP + FN + TP
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2 · Precision · Recall
Precision + Recall

(23)

where true positive (TP) indicates the number of pixels predicted correctly as changed;
true negative (TN) represents the number of pixels predicted correctly as unchanged; false
positive (FP) denotes the number of pixels predicted incorrectly as changed, and false
negative (FN) means the number of pixels predicted incorrectly as unchanged. Generally,
high precision or high recall is only suitable for specific applications. F1 combines the
characteristics of the two measurements, creating a benchmark.

2.4.2. Experiment Details

Our work was implemented by PyTorch with two Telsa GPUs with 12 GB memory.
In the training phase, we cropped the image pairs of the above datasets into
256 × 256 nonoverlapping patches before forwarding them to the model. The VGG16
backbone of the model was initialized with an ImageNet-pretrained [52] weight, and the
initial learning rate was 0.0001. We chose cosine annealing as the learning rate decay
mode. The value decreased slowly during the first 50 epochs, then increased over the next
50 epochs. Adam solver was used [53] as the model optimizer with β1 = 0.5 and β2 = 0.99.
Random crop, random flip, and random rotation from −30◦ to 30◦ were utilized to increase
the generalization of the model.

3. Results

In this section, we present quantitative comparisons and visualization results of our
method. The ablation experiment results are described in Section 3.1. The evaluation metric
comparison with other related methods is given in Section 3.2.

3.1. Ablation Study

To assess the effectiveness of the proposed ASPCA module and the CCR module, we
experimented with different modules, comparing them to the baseline on CCD dataset.
Specifically, the baseline was built without any attention module, but a basic encoder–
decoder structure, including a VGG16 backbone and four ConvTransposed blocks. In
addition, the effective sample number adaptively weighted loss was compared with usual
cross entropy loss. All the experiments show that our ASPCA module, the CCR module,
and loss improved the performance. The complete ablation results are shown in Table 3.

Table 3. Ablation study of different modules on CCD dataset. The bold type indicates the best results.

Method Precision Recall F1 mIOU OA

Baseline 97.25 89.47 93.20 92.68 98.42
+ASPCA 97.36 91.39 94.28 94.22 98.67

+CCR 97.46 93.92 95.66 95.34 98.96
+ASPCA + CCR 97.52 95.32 96.41 96.07 99.25
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Compared to the baseline, we outperformed 0.49 points of the F1-score and 1.04 points
of the mean intersection over union with only the ASPCA module, while the CCR module
outperformed by 1.95 points the F1-score and by 2.16 points the mean intersection over
union. The combination of both proposed modules achieved the best results, as seen in
the last row of Table 3: it outperformed by 3.19 points the F1-score and by 2.74 points the
mean intersection over union. The visual comparison results of the ablation experiment are
shown in Figure 7, wherein black indicates unchanged pixels predicted correctly and white
indicates changed pixels predicted correctly. Red indicates unchanged pixels predicted in
error, and green indicates ignored changed pixels. The ASPCA module slightly improved
the ability to capture the interdependencies of pixels, thus migrating the holes in enormous
areas. The CCR module strongly corrected pixels predicted in error compared to the
baseline and preferred to continuously refine for specific shapes or texture regions. The
model with both modules had the best performance and effectively solved the problem of
ignored change pixels.
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Our designed loss is also crucial for the experiment’s performance. Table 4 gives
the ablation study of our proposed effective sample number adaptively weighted loss
(EAWLoss) on the CCD dataset.

Table 4. Ablation study of proposed loss on CCD dataset. CE means cross-entropy loss. The bold
type indicates the best result.

Method F1

Baseline (with CE) 92.42
Baseline (with EAW) 93.71

+ASPCA (with CE) 92.17
+ASPCA (with EAW) 94.28

+CCR (with CE) 93.88
+CCR (with EAW) 95.66

+ASPCA + CCR (with CE) 94.59
+ASPCA + CCR (with EAW) 96.41
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For each item, the performance with EAWLoss was better than the cross-entropy loss.
The visual ablation result is shown in Figure 8. To further verify the robustness of our
method, we listed the results of different scenarios. The first four columns in Figure 8 are
based on large buildings or roads, and the latter four are based on small vehicles. It can be
seen that our designed EAWLoss effectively solved the class-imbalanced problem.
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To measure the computational efficiency of the proposed model, the comparisons of
GFLOPs and parameter size are given in Table 5. As can be seen, the proposed modules
improved the performance while modestly increasing the computational complexity.

Table 5. Comparisons of computational efficiency.

GFLOPs (G) Parameters (M)

Baseline 410.97 42.88
+ASPCA 438.80 62.42

+CCR 436.56 43.00
+ASPCA + CCR 464.39 62.55

3.2. Comparisons with Other Methods

We experimented on the four datasets described in Section 2.2 to compare our method
with recent learning-based change detection methods:

• FC-EF [6]: Image-level fusing method based on FCN: concatenating the bi-temporal im-
ages as the model input and transferring the feature information by a skip-connection
from the encoder to the decoder.

• FC-Siam-conc [6]: Single-level feature fusing method based on FCN, which employed
a Siamese encoder–decoder structure for the inputting of bi-temporal images. In
the decoder, this involves concatenating the upsampled feature with dual features
extracted by the encoder to gradually restore the changed map resolution.

• FC-Siam-diff [6]: Single-level fusing method based on FCN, which used Siamese
structure for bi-temporal input. The only difference from FC-Siam-conc is that the
skip -connection was replaced by the absolute difference rather than the element-wise
sum of feature maps.

• U-Net++ [7]: An image-level fusing method based on U-Net++ [44], which utilized
deep supervision by multiple side-outputs fusion of concatenated bi-temporal images.

• DASNet [27]: A dual-branch, metric-based method based on spatial attention and
channel attention mechanism, which aimed to punish the L2 distance between feature
pairs updated by the dual attention module, thus making the changed pair and
unchanged pair more easily discriminated.

• STANet [9]: A single-level feature fusing method based on distance metric, which
employed a spatial–temporal attention module to capture the temporal–spatial depen-
dency between the bi-temporal images.

• SNUNet-CD [54]: A feature-level, densely connected Siamese method based on U-
Net++, which mitigates localization information loss in the deep layers by transmitting
compact information from the encoder to the decoder. Moreover, an ensemble channel
attention module is proposed to aggregate and refine features of multiple semantic levels.

We experimented with the above methods according to the original parameters de-
scribed in corresponding papers. Table 6 reports the quantitative comparison results on the
LEVIR-CD dataset. For F1 score, mIOU, and OA, our model outperformed other learning-
based methods. The visualization is shown in Figure 9; due to the first three models being
similar, only the visual map produced by FC-Siam-conc was listed.
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Table 6. Comparison of results on the LEVIR-CD dataset. The bold numbers indicate the best results.

Method Precision Recall F1 mIOU OA

FC-EF 81.26 80.17 80.71 71.53 98.39
FC-Siam-conc 91.99 76.77 83.69 71.96 98.49
FC-Siam-diff 89.64 82.68 86.02 78.86 98.65

U-Net++ 90.66 85.32 87.91 80.94 98.24
DASNet 80.76 79.53 79.91 78.65 94.32
STANet 83.81 91.02 87.27 78.64 98.87
SNUNet 91.85 88.69 90.24 82.21 98.11

MCCRNet (ours) 89.91 89.62 90.71 91.13 99.24
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The quantitative comparison result on the CCD dataset is shown in Table 7. Our
model also outperformed the other methods in terms of precision, F1, mIOU, and OA; in
particular, the precision achieved quite a high level.

Table 7. Comparison of results on the CCD dataset. The bold numbers indicate the best results.

Method Precision Recall F1 mIOU OA

FC-EF 60.63 57.42 58.98 46.64 88.49
FC-Siam-conc 68.96 59.33 63.78 50.66 90.33
FC-Siam-diff 76.84 64.33 70.03 52.44 89.69

U-Net++ 89.54 87.10 88.30 84.58 96.88
DASNet 91.28 86.34 88.74 80.94 96.98
STANet 95.88 94.69 95.28 94.44 98.35
SNUNet 96.32 96.28 96.30 95.48 99.04

MCCRNet (ours) 97.52 95.32 96.41 96.07 99.25

The visualization of the ablation results is shown in Figure 10. We still only give the
results of FC-Siam-conc for the fully convolutional network (the first three items in Table 7).
It can be seen that, whether the change scene is small vehicles or broad roads, our method
greatly reduces the ignored area (the green parts in Figure 10) and further corrects the
mispredicted unchanged pixels (the red parts in Figure 10).
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A comparison between different methods is shown in Table 8, from which we achieved
state-of-the-art on all metrics, and the F1 and OA were much higher than the semi-
supervised methods.

Table 8. Comparison results on Google Data GZ dataset. The bold numbers indicate the best results.

Method Precision Recall F1 mIOU OA

FC-EF 85.47 76.58 80.78 74.26 96.64
FC-Siam-conc 87.22 78.44 82.60 75.32 96.98
FC-Siam-diff 87.43 78.51 82.36 75.20 96.48

U-Net++ 88.10 78.64 83.10 76.23 97.26
DASNet 82.38 81.94 82.16 83.04 96.59
STANet 90.02 87.61 88.80 88.59 97.72
SNUNet 88.47 90.02 89.27 89.12 97.83

MCCRNet (ours) 90.18 93.66 91.89 91.58 98.32

The visual comparison results are shown in Figure 11. For most change regions of
buildings, our model effectively migrated the gaps between discontinuous blocks and
refined the building edges.

We also give the quantitative comparison results on DSIFN dataset in Table 9. Due to
the high resolution and the complex environment, most of the methods could not achieve
excellent performance, but MCCRNet achieved a remarkable result for recall.

Table 9. Comparison of results on DSIFN dataset. The bold numbers indicate the best results.

Method Precision Recall F1 mIOU OA

FC-EF 70.38 51.69 56.60 43.95 84.68
FC-Siam-conc 62.54 56.39 59.31 42.48 86.34
FC-Siam-diff 58.66 64.38 61.39 44.46 85.78

U-Net++ 60.42 66.88 63.49 46.33 86.68
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Table 9. Cont.

Method Precision Recall F1 mIOU OA

DASNet 53.87 74.68 68.42 47.74 84.92
STANet 67.68 61.36 64.36 47.48 88.59
SNUNet 69.97 75.66 72.70 49.68 89.22

MCCRNet (ours) 66.12 91.28 76.69 67.08 81.69
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The visualization of comparison results is shown in Figure 12. Our method greatly
reduced the change regions ignored by the network (the green parts in Figure 12).
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4. Discussion

Our study aimed to obtain the change map of bi-temporal remote sensing images from
the perspective of two points: dual long-range interdependencies between feature pairs
and change region contextual representation. In addition, we achieved a coarse-to-fine
change detection network by employing multi-scale feature pairs rather than a single-level
fused feature. The proposed ASPCA module adopted an atrous spatial pyramid pooling
structure and a dual self-attention mechanism to capture bi-directional attention maps,
effectively strengthening the distinguishable change information between feature pairs.
From the ablation study in Section 3.1, we found that the ASPCA module could improve the
performance of change detection. The change contextual representational module utilized
the relationship between pixels and their contextual region to correct misclassified pixels,
especially for those changed pixels that were predicted to be unchanged (false negatives).
The CCR module first introduced the class mechanism into the change detection task.

4.1. The Effectiveness of ASPCA

To verify the capacity of strengthening feature pairs’ representation with the ASPCA
module, we created visualization heatmaps of features updated by ASPCA module, as
shown in Figure 13. Due to the low resolution of high-level features, only the feature pair
from the last ASPCA (named att1_1 and att1_2) and the fused one from ConvTransposed
Block 1 (named transconv1) are given. From this, ASPCA enhanced the distinguishable
differences of dual features by applying interactive attention weights. Different from other
change detection methods based on attention mechanism, ASPCA receives two inputs
corresponding to bi-temporal features and produces dual-features output, avoiding the
defects of single-feature representation. In particular, the bottom layers (such as layer 1 and
layer 2) in the encoder tend to extract more detailed texture information, while high layers
(such as layer 3 and layer 4) extract more abstract semantic information, so the former
emphasizes more detailed change appearance information such as edges, shapes, and
colors, while the latter emphasizes global change semantic information such as categories
and regions.
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(d) The heatmap of feature T1. (e) The heatmap of feature T2. (f) The heatmap of fused feature after
ConvTransposed Block 1.
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4.2. The Effectiveness of CCR

To verify the capacity of correcting misclassified pixels, the feature maps output from
the CCR module were was visualized. As shown in Figure 14, we made an attention
map of pixel-change region relationships and the heatmap of change region contextual
representations. As can be seen, the region around the change pixels most likely belongs
to the same change category, which indicates that the change region representations are
weighted by pixel-change region relationships, thus producing finer change region contex-
tual representations. In this work, the channel of fused feature was reduced from 960 to 512,
thus decreasing the computational cost and simultaneously increasing the nonlinear ability.
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attention map of pixel-change region relation. (e) The heatmap of change region contextual representations.

In addition, we adopted an auxiliary supervision with the last upsampled feature
to increase the generalization ability in the training stage, but it was removed in the
testing stage.

4.3. Generalization

As the experiments show, datasets with different resolutions had varying general-
ization abilities: VHR image pairs were harder to distinguish due to elaborate object
details, while low-resolution samples gained a more gratifying results owing to a task-
surpassed network model. Specifically, our model obtained finer building outlines for the
LEVIR dataset and had stronger generalizability in season-varying change scenes. For
the CCD dataset, the model learned excellent discriminable weights from season-varying
image pairs, including objects of different scales (such as cars and buildings). As the
results of DSIFN present, image pairs with sophisticated and multi-view circumstances
had greatly reduced performance due to the prominent depth difference. For common
grounds, all datasets were sensitive to object edges, caused by intrinsic defects of cascading
transposed convolutions.

5. Conclusions

In this work, we have proposed an end-to-end network named a multi-level change
contextual refinement network (MCCRNet) for remote sensing image change detection. The
MCCRNet creatively put forward a dual-input and dual-output attention module ASPCA.
A CCR module first introduced a corrective ability for mispredicted pixels in the manner
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of coarse-to-fine. In addition, we designed a novel loss to solve the class-imbalanced
problem based on cost-sensitive learning. Compared to early methods, our loss adaptively
adjusted the weight of positive and negative samples’ loss with an increase in the number
of training iterations. As to the overall structure of the proposed network, multi-level
dual features were fully fused in a cascade manner, thus helping to discriminate change
representations. The experimental results on four change datasets proved the validity
of our method. In particular, for low-resolution samples such as the CCD dataset and
fine-grained very-high-resolution images such as the LEVIR dataset, our method achieved
extremely high performance. On the other hand, our model had a poor generalization
ability under the scene of view-changes. So, the image depth will be considered to improve
the performance afterwards. In the whole work, a large number of image labels were
used for supervised learning, creating labor-intensive and time-consuming challenges for
other label-free datasets. In the next stage, we will focus on unsupervised learning to solve
change detection tasks.
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