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Abstract: Measures of similarity or differences between data objects are applied frequently in geog-
raphy, biology, computer science, linguistics, logic, business analytics, and statistics, among other
fields. This work focuses on event sequence similarity among event sequences extracted from time
series observed at spatially deployed monitoring locations with the aim of enhancing the understand-
ing of process similarity over time and geospatial locations. We present a framework for a novel
matrix-based spatiotemporal event sequence representation that unifies punctual and interval-based
representation of events. This unified representation of spatiotemporal event sequences (STES)
supports different event data types and provides support for data mining and sequence classification
and clustering. The similarity measure is based on the Jaccard index with temporal order constraints
and accommodates different event data types. The approach is demonstrated through simulated
data examples and the performance of the similarity measures is evaluated with a k-nearest neighbor
algorithm (k-NN) classification test on synthetic datasets. As a case study, we demonstrate the use of
these similarity measures in a spatiotemporal analysis of event sequences extracted from space time
series of a water quality monitoring system.

Keywords: spatiotemporal event sequences (STES); matrix representation; similarity measures; time
locked Jaccard similarity; K-NN/1-NN

1. Introduction

Wireless sensor networks (WSN) or other monitoring systems, deployed regularly
or irregularly in geographic space, have become commonly used for environmental data
collection and monitoring. Each monitoring station or node can have one or more sensors
producing time series on variables of interest for monitoring. Within this setting, we may
be interested in the similarity among the time series observed across a set of monitoring
stations. For example, we might want to ask, how similar are water quality monitoring vari-
ables within an estuary or across different estuaries? Several prior studies have researched
time series similarity measures but time series can contain substantial data redundancy
making similarity computations inefficient and expensive [1,2]. Converting time series to
event sequences can reduce the data volume while retaining key information [3–5]. In this
paper we report on development of an approach for measuring the similarity among event
sequences associated with monitoring stations distributed within some geographic space.
We refer to these as spatiotemporal event sequences (STES) because of the pertinence of
their distribution in space. The approach aims to address two basic questions. Firstly, how
similar are event sequences within a defined geospatial region? Secondly, within the region,
do event sequences that are closer in space tend to be more similar? Answers to these
questions can contribute to insights on patterns in spatial processes that can be helpful for
environmental monitoring.

Figure 1A illustrates an instance of an STES as a set of temporally ordered events
observed at a fixed location in space. An STES differs from other types of event sequences
such as genomic sequences [6], industrial process monitoring sequences [7], patient symp-
tom sequences [8], political event sequences [9], or consumer purchasing sequences [10] in
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that STES derive from time series observed at fixed geospatial locations and each sequence
consists of events of the same type (e.g., high temperature events, heavy precipitation
events, impaired water quality events, drought events).
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this approach allows only monotonic mapping, which means that the matched events in 
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Figure 1. The STES problem setting. (A) An example of fixed locations of interest or observation sites distributed along
the coast. (B) An example of a spatiotemporal event sequence extracted from a space-time series of precipitation with the
threshold of ≥1.0 inch/24 h. Red bars represent events.

Converting time series to event sequences leads to on-going production of STES at each
monitoring station as illustrated in Figure 1B. An individual STES conceptually represents a
realization of a process at the location and the set of STES deployed in a region conceptually
forms a field of event sequences representing an evolving underlying process [11]. As an
example, a precipitation event sequence observed at station S1 (Figure 1A) represents a
local realization of a meteorological process. Through similarity measures among event
sequences in geographic space we can extend Tobler’s First Law of Geography, which
states that “everything is related to everything else, but near things are more related than
distant things”, to an assessment of process similarity in space.

Related work on a number of similarity measures can be found for event sequences,
but not directly STES as we define them. Edit distance is a measure of similarity first
developed for comparing strings (a type of sequence). It refers to the total number of editing
operations needed to transform one string into another string. The lower the number, the
more similar the strings. Some examples of edit distance include Hamming distance [12],
Levenshtein distance [13], Jaro–Winkler distance [14], and Longest Common Subsequence
(LCSS) distance [15]. The edit distance measure was first extended to measure event
sequence similarity using the lowest cost of three types of editing operations: insert, delete
and move [16,17]. The move operation was included to incorporate the occurrence time of
the events. As noted by Wongsuphasawat et al. [18] this approach allows only monotonic
mapping, which means that the matched events in the target and candidate sequences
must be in similar order. The Jaccard similarity coefficient is a classic measure of similarity
between two sets that continues to be applied in several application domains, for example
in comparing biological sequence data [19,20] and in web usage mining [21]. More recent
event sequence similarity measures have been proposed to take into consideration temporal
order and temporal duration in addition to assessing event type similarity [22]. While most
similarity metrics treat events as points in time, Kotsifakos et al. (2013) and Mirbagheri and
Hamilton (2020) propose approaches for interval based event sequence similarity [23,24].
Their event representation includes an event label and start and end time, and the event
sequence is a list of these arranged in ascending order. Their concept of similarity between
two event sequences includes the presence of event intervals with the same labels, the
order of occurrences of the event intervals, the duration of the event intervals, and the
temporal relations among the event intervals. To our knowledge, none of the currently
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available similarity measures for event sequences address both time stamped and interval
based events and consider the spatial dimension. Our event sequence similarity approach
builds on the Jaccard index and integrates interval and time stamped events.

The paper is organized as follows. Section 2, Materials and Methods, describes the
process of eventization and generation of STES, the proposed methods for transforming
STES to matrices based on various measurement characteristics, and the development of
similarity measures for different levels of event representation (qualitative vs. quantitative),
as applied to entire sequences or user defined moving windows. Section 3, Results and
Discussion, demonstrates construction of STES similarity matrices and implementation of
the similarity measures on synthetic mini datasets, further evaluates the performance of
the similarity measures on execution speed and classification accuracy and provides a real
world application on classification of the Maine coastal regions based on cluster analysis
of precipitation event sequences. Finally, Section 4 concludes this study, considering the
remaining issues and future work.

2. Materials and Methods
2.1. Eventization and Spatiotemporal Event Sequences (STES)

Jassby and Powel (1990) describe an event as a short-term, yet substantial, discon-
tinuity in the underlying behavior of a time series [25]. Eventization is the process of
event identification from observations or measured raw data according to user definitions
applied in a specific domain. In this paper it refers to the process of event identification
from space-time series and formation of timestamped, ordered event sequences. Briefly,
primitive or simple event extraction [26] or detection can be grouped into three categories:
(1) threshold-based approaches [27] in which an event is regarded to occur when observa-
tions exceed some predefined thresholds, (2) pattern-based approaches [28] in which an
event is represented as a spatiotemporal pattern and event detection is performed using
pattern matching techniques; and (3) learning-based approaches [29] in which selected
modeling methods are used to model spatiotemporal dependencies of sensor data and
make probabilistic inference about events.

In environmental applications, we are interested in the spatiotemporal context of the
sequences. The expressions of space and time components capture different granularities.
Temporal entities have two types of time expression, timestamps and time intervals [30].
Timestamps can express different granularities as in what time, what date, what day of the
week, what week, and what year, etc. Time intervals can also be of different granularities,
such as seconds, minutes, hours, days, months, seasons, and years. Given these two
temporal concepts, we identify two general types of STES: timestamped and interval
events as illustrated in Figure 2.

For eventization, we need to consider the level of measurement of an observed time
series variable. A real valued level of measurement may for example be retained in an
event representation (as illustrated in Figure 3A). Alternatively, an observed real value at a
time stamp may be transformed to an ordinal or binary value (as illustrated in Figure 3D).
Interval events can be divided into as many timestamps as determined by an event defini-
tion and user defined granularity, within which the full range of observed values satisfying
the event definition may be retained (see Figure 3B,C). Alternatively, all observed values
within an interval that satisfy an event definition may be transformed to ordinal or binary
values (as illustrated in Figure 3E,F).
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Figure 2. Graphical illustration of spatiotemporal event sequences (STES). (A) An example of spatiotemporal timestamped
event sequences where rows represent locations each with 20 time units. (B) An example of interval event sequences for
5 locations and 20 time units.
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Figure 3. Graphical illustration of spatiotemporal event sequences (STES) with consideration for level of measurement and
variation within a single event. STES in (A–C) are extracted from space-time series with interval/ratio values, and (D–F) are
extracted as ordinal values from space-time series. (A,D) are punctual event sequences. (B,E) are interval event sequences
with no internal variation over the interval. (C,F) are interval event sequences with bounded variation within the interval
consistent with an event definition. H, M and L represent high, medium and low, respectively.
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2.2. Matrix Representation of STES

For a regularly sampled time series, the set of timestamps T forms a discrete set,
with observations spaced at uniform time intervals. Given s locations and t timestamps, a
space-time series dataset can be represented with a s× t matrix where locations correspond
to rows and timestamps to columns and ν represents an observed variable.

G0−Timestamps(1, 2, 3, . . . , t)

Spatial locations (1, 2, 3, . . . , s)


v11, v12, v13, . . . , v1t
v21, v22, v23, . . . , v2t
v31, v32, v33, . . . , v3t

. . .
vs1, vs2, vs3, . . . , vst

 (1)

G0-Timestamps represent the finest temporal granularity as described by Shahar [30],
here corresponding to the time series sampling rate. Each value potentially corresponds to
a status change, which could define a timestamped event or the start or end of an interval
event. As noted above, events are identified based on different user defined functions such
as threshold based, pattern-based, or learning based [31]. For simplicity, in the following
definitions, we assume use of a threshold, but the approach is generalizable to other
event detection approaches [32]. A temporal granularity in integer unit Gi scaled from
G0 (e.g., hour to day, day to week) is specified by a user based on application domain
considerations. At each observation location s, an event sequence is formed at the Gi scale
after eventization. The event sequences for all locations form an initial STES matrix. In the
eventization process, the dimension can be further reduced through removing rows and
columns without events in locations across all Gi-timestamps or Gi-timestamps across all
locations. Following this data reduction, we may have n locations and Gi granularity of
m timestamps, in which the STES are represented as n×m matrix (n ≤ s and m ≤ t).

Gi Timestamps (1, 2, 3, . . . , m)

Spatial locations (1, 2, 3, . . . , n)


e11, e12, e13, . . . , e1m
e21, e22, e23, . . . , e2m
e31, e32, e33, . . . , e3m

. . .
en1, en2, en3, . . . , enm

 (2)

We identify four different cases corresponding to timestamped versus interval events
and qualitative versus quantitative. For the case of nominal values, appearance of a user
specified nominal category or label at a timestamp indicates the occurrence of an event.
For this case the event value is defined as follows:

eij =


na i f vij = missing data
1 i f vij ≥ threshold, or

i f vij = de f ined nominal value
0 otherwise

i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(3)

where all timestamped observations (vij) are ordinal, interval or ratio values, the corre-
sponding event value eij may retain the original observation value or be subjected to some
data transformation such as logarithm, percentage or normalization. Given a threshold for
defining an event instance, sequences in this case can be represented as follows:
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eij =


na i f vij = missing data
0 i f vij < threshold
vij or v′ij i f vij ≥ threshold
v′ij is trans f ormed vij

i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(4)

An interval event occurs when the defining event conditions persist for more than one
G1 timestamp. As long as we determine the smallest temporal granularity in a specific study
or system, we can represent an interval event sequence through the same timestamped
event matrix as described above. The case for interval events with categorical values can
be defined according to Equation (5):

eij, eij+1, . . . , eij+∆t =


na i f vij, vij+1, . . . , vij+∆t = missing data
1 i f vij, vij+1, . . . , vij+∆t ≥ threshold
or, i f vij, vij+1, . . . , vij+∆t = de f ined nomial scale
∆t ≥ 1
0 otherwise

i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(5)

The case for interval events with ordinal or interval/ratio values can be defined
according to Equation (6):

eij, eij+1, . . . , eij+∆t =



na i f vij, vij+1, . . . , vij+∆t = missing data
0 i f vij, vij+1, . . . , vij+∆t < threshold
vij, vij+1, . . . , vij+∆t or v′ij, v′ij+1, . . . , v′ij+∆t

i f vij, vij+1, . . . , vij+∆t ≥ threshold
v′ij, v′ij+1, . . . , v′ij+∆t : trans f ormed vij, vij+1, . . . , vij+∆t
∆t ≥ 1

0 otherwise
i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(6)

For all interval events with no internal variation within the interval, i.e., with a
constant event class level, the defined interval events are as described in Equation (6):

eij = eij+1 = . . . = e ij + ∆t
f rom vij = vij+1 = . . . = vij+∆t or v′ ij = v′ ij+1 = . . . = v′ ij+∆t

2.3. Development of Similarity Measures for Spatiotemporal Event Sequences

The matrix framework presented above provides a flexible method to investigate
sequence similarity over space for the same time windows. In this context, we consider
the event sequence similarity as the level of co-occurring timestamped events for a certain
time period for two or more locations. We can vary the selection of a time window based
on the sampling frequency of the observation data and a target event granularity (e.g.,
drought events which may be defined as over 10 days of no rain need a larger time window
relative to heavy precipitation events). We present similarity measures for five situations:
(a) binary timestamped events (no consideration of variable class levels or magnitude),
(b) timestamped events with variable class levels or magnitude, (c) interval events consid-
ering time overlaps only, (d) interval events with constant nominal or ordinal labels and
time overlaps, and (e) interval events with a range of real values and time overlaps.

We follow the concept of Jaccard similarity [33] but consider the order of individual
event elements within each event sequence. The intersection between two sets of spa-
tiotemporal event sequences means the common events must “co-occur” in both sequences,
and the union refers to all events in either sequence. The measure of co-occurrence is
demonstrated by the following example:
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calculation situations. First, if event values are interval or ratio level, the global similarity 
can be calculated as below: 

Given the two spatiotemporal timestamped event sequences with 10 timestamps, we
compute the similarity between the two spatiotemporal event sequences as:

sim(es1, es2) =
|es1 ∩ es2|
|es1 ∪ es2|

=
5
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where, es1, es2 are two spatiotemporal event sequences from two locations S1, S2; t1, t2,
. . . , t10 are 10 timestamps. The intersection between two event sequences is the number of
co-occurring events between them. We discuss this similarity measure in more detail for
five different situations in the following sections.

2.3.1. Similarity Measures between Event Sequences without Considering
Event Magnitude

First, we compute the level of pairwise co-occurrence between two event sequences
es1 and es2, co_occur(es1, es2), by simply counting the number of punctual events with
the same occurrence time appearing in both es1 and es2. So, the global (long duration)
similarity between event sequences can be calculated as below:

simgloblal(es1, es2) =
co_occur(es1, es2)

|es1 ∪ es2|
(7)

where simgloblal(es1, es2)—global similarity between event sequences es1 and es2, mean-
ing overall similarity between two event sequences over a long user specified dura-
tion, co_occur(es1, es2)—co-occurring number of events between sequences es1 and es2,
|es1 ∪ es2|—cardinality of the union of two event sequences es1 and es2.

In contrast to global similarity, we introduce a user defined local comparison temporal
window (ctw) (equivalent to a moving window), for which local (short duration) similarity
is calculated as:

simlocal(es1_ctwi, es2_ctwi) =
co_occur(es1_ctwi, es2_ctwi)

|es1_ctwi ∪ es2_ctwi|
(8)

where, i = 1, 2, 3, . . . , k; k = Temporal Length o f Event Sequence
ctw , the number of time win-

dow chunks in an event sequence; |es1_ctwi ∪ es2_ctwi|, cardinality of the union of two
corresponding subsequences of two event sequences in the same ctw. For each pair of
spatiotemporal event sequences, we have k local similarities in an ordered list, represented
as
(
sim1

local , sim2
local , sim3

local , . . . , simk
local big).

2.3.2. Similarity Measures between Event Sequences Considering Event Magnitude

We first find all co-occurrence time points between two event sequences es1 and es2,
and then we calculate the similarity between two individual events at the co-occurrence
timestamp based on their level of measurement. We have two similarity calculation
situations. First, if event values are interval or ratio level, the global similarity can be
calculated as below:

simgloblal(es1, es2) =
∑C

j=1
(
1− Abs

(
lev
(
es1j
)
− lev

(
es2j
)))

|es1 ∪ es2|
(9)
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Second, if event levels are ordinal attribute based, the formula becomes:

simgloblal(es1, es2) =
∑C

j=1
(
1− Abs(lev(es1j)−lev(es2j))

n−1
)

|es1 ∪ es2|
(10)

where,

simgloblal(es1, es2)—global similarity between event sequences es1 and es2,
es1j, es2j —the event levels of two corresponding co-occurring events in es1 and es2 at
timestamp j, inherited from original measurements,
lev
(
es1j
)
, lev

(
es2j
)
—the relative event levels of two corresponding co-occurring events in

es1 and es2 at timestamp j, respectively:

lev
(
es1j
)
=

es1j

es1j + es2j
and lev

(
es2j
)
=

es2j

es1j + es2j

where,

C—the total number of co-occurring timestamps,
Abs

(
lev
(
es1j
)
− lev

(
es2j
))

—absolute value of difference between relative event levels of
two corresponding co-occurring events in es1 and es2 at time stamp j,
|es1 ∪ es2|—cardinality of the union of two event sequences es1 and es2,
n—the number of ordinal attribute-based event levels.

Similarly, we can characterize the local similarity between event sequences by the
following Equation (11) for interval/ratio attribute-based events and (12) for ordinal
attribute-based events:

simlocal(es1_ctwi, es2_ctwi) =
∑c

j=1

(
1− Abs

(
lev
(

es1ctwij

)
− lev

(
es2ctwij

)))
∣∣es1ctwi ∪ es2ctwi

∣∣ (11)

and

simlocal(es1_ctwi, es2_ctwi) =
∑C

j=1
(
1−

Abs(lev
(

es1ctwij

)
−lev

(
es2ctwij

)
n−1

)∣∣es1ctwij ∪ es2ctwij

∣∣ (12)

where, i = 1, 2, 3, . . . , k; k = Temporal Length o f Event Sequence
ctw , c is the number of co-occurring

time points in ctw,
∣∣∣es1ctwij ∪ es2ctwij

∣∣∣, cardinality of the union of two corresponding sub-
sequences of two event sequences in the same ctw. As before for each pair of spatiotem-
poral event sequences, we have k local similarities in an ordered list, represented as(

sim1
local , sim2

local , sim3
local , . . . , simk

local

)
.

We note that the approaches for measuring sequence similarity as described above
apply also to interval event sequences. We simply transform interval event sequences to
punctual event vectors to form a matrix.

3. Results and Discussion
3.1. Implementation Examples

In this section we use simulated precipitation and temperature datasets to demon-
strate the transformation of raw space- time series observations to event sequence matrices
based on the event definitions described in the previous section. We calculate global and
local pairwise event sequence similarities according to the steps described above. The
transformation to STES matrices and the similarity measure calculations have been devel-
oped as R functions (see the link for software availability). The first two experiments cover
timestamped events based on simulated precipitation measurements for 5 locations and
20 timestamps as shown in Table 1. We note that these timestamps could apply to different
temporal granularities, but some minimum granularity is considered a punctual timestamp.
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Table 1. Simulated precipitation measurements in 5 locations with 20 timestamps.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

s1 0.22 0.35 1.20 0.56 3.10 2.20 1.30 1.77 0.30 0.00 1.00 0.55 2.10 0.50 1.55 0.80 0.20 1.20 1.50 2.20
s2 0.25 2.50 0.40 1.67 2.80 2.10 1.50 0.60 0.20 0.00 1.00 0.44 2.00 0.33 1.23 1.80 0.10 0.10 1.80 2.10
s3 0.28 2.10 0.45 1.45 2.40 1.80 0.44 0.80 0.10 0.00 1.00 0.70 1.50 0.80 1.50 1.20 0.00 0.00 1.60 2.00
s4 0.31 1.70 0.50 1.23 0.50 0.60 0.55 2.10 0.20 0.00 0.00 1.50 0.50 2.10 0.22 1.60 0.10 0.22 0.10 1.90
s5 0.34 1.60 0.55 1.01 0.60 0.67 1.66 1.80 0.10 0.00 0.00 1.40 0.70 2.50 0.52 1.90 1.15 0.30 0.50 1.80

Situation 1. We define precipitation ≥ 1 inch as events from the dataset in Table 1 and based on
Equation (3) we transform the measurements to a matrix of binary punctual events:

Temporal points(1, 2, 3, . . . , 20)

Spatial locations(1, 2, 3, 4, 5)


0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1
0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1
0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1


In an alternate view of this matrix seen in Figure 4. we show local comparative

temporal windows based on 4 timestamps, i.e., ctw = 4:
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subsequences for each original event sequence. The pairwise similarity measures between 
event sequences of 5 locations is shown in Figure 5. 

Figure 4. A schematic view of the punctual event matrix of Situation 1 with 5 local comparison
temporal windows. Blocking 2 columns in yellow is intended to improve visual separation of the
local windows.

The pairwise global similarity and local similarity between event sequences were
calculated based on Equations (7) and (8). Here, ctw = 4, so we have 5 chunks of subse-
quences for each original event sequence. The pairwise similarity measures between event
sequences of 5 locations is shown in Figure 5.

By intuition, the event sequences in locations s2 and s3 are more similar than other
pairs with only one mismatch, which is reflected in the global similarity matrix with the
highest score of 0.91. The lowest similarity score is between s1 and s4 event sequences
with only two co-occurring events. The rest of the similarity scores for other pairwise
comparisons reflect their closeness in terms of co-occurrences.
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Figure 5. Output matrix of local similarity with five temporal windows and global similarity between
five spatiotemporal event sequences from Situation 1.

Situation 2. We again extract precipitation ≥ 1 inch-events from the dataset in Table 1 but now
consider the magnitude of the precipitation ≥ 1 inch by retaining the original observation values.
Based on the transformation rules described in Equation (4) we obtain the event matrix with event
levels as follows:

Temporal points(1, 2, 3, . . . , 20)

Spatial locations(1, 2, 3, 4, 5)



0 0 1.2 0 3.1 2.2 1.3 1.77 0 0 1 0 2.1 0 1.55 0 0 1.2 1.5 3.2

0 2.5 0 1.67 2.8 2.1 1.5 0 0 0 1 0 2 0 1.23 1.8 0 0 1.8 2.1

0 2.1 0 1.45 2.4 1.8 0 0 0 0 1 0 1.5 0 1.5 1.2 0 0 1.6 2

0 1.7 0 1.23 0 0 0 2.1 0 0 0 1.5 0 2.1 0 1.6 0 0 0 1.9

0 1.6 0 1.01 0 0 1.66 1.8 0 0 0 1.4 0 2.5 0 1.9 1.15 0 0 1.8



The alternate view of this event matrix is shown in Figure 6. Where Equations (9) and
(11) are used to calculate the global and local similarity respectively:
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Figure 6. A schematic view of the punctual event matrix of Situation 2 while considering varying event levels with
5 temporal comparison windows. Blocking 2 columns in yellow is for better visual separation of 5 local windows.

From the similarity matrix in Figure 7 we can see the change of similarity scores from
the results shown in Figure 5 that do not take event magnitude into consideration. While
all scores in Figure 7 decrease compared to Figure 5, the overall rankings of these scores
are the same. This indicates that refinement of event levels and additional attributes of
events incorporated into the similarity measure can affect the similarity values but rankings
between event sequences remain stable.
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The following examples for interval events are based on the temperature graph for
five locations shown in Figure 8.
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Figure 8. Simulated temperature trend in 5 locations over 20 time units. Notice that the red dashed horizontal line is the
applied threshold value of 10 ◦C.

Situation 3. Here we identify interval events ≥ 10 ◦C from high frequency temperature measure-
ments at 5 locations. Assume that a minimum temporal granularity is specified (e.g., day, hour)
such that we can obtain the measurements at all time points (t1, t2, . . . , t20) as in the dataset
shown in Table 2. Using Equation (5), we obtain interval events as a sequence of contiguous 1s in a
binary event matrix.
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Table 2. Extracted temperature measurements at 20 time points from continuous data.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

s1 0 0 10.2 5.6 31 22 13 17.7 3 0 10 5.5 21 5 15.5 8 2 12 15 32
s2 2.5 5 4 16.7 28 21 15 6 2 0 10 4.4 20 3.3 12.3 18 1 1 18 21
s3 0 1 4.5 14.5 24 18 4.4 8 0 0 10 7 15 8 15 12 0 0 16 20
s4 3.1 7 5 12.3 15 6 5.5 21 32 0 0 15 5 1 12.2 16 1 2.2 31 19
s5 3.4 6 5.5 10.1 26 6.7 16.6 18 0 0 0 14 17 5 5.2 19 11.5 3 35 18

The sequence of contiguous 1’s represents interval events, but these are processed as
punctual events in the event sequence matrix:

Temporal points(1, 2, 3, . . . , 20)

Spatial locations(1, 2, 3, 4, 5)


0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1


The alternative view of the interval event matrix in the example of Situation 3 can be

seen in Figure 9. In this figure, we also assume that the comparative temporal window has
10 timestamps, i.e., ctw = 10 such that we have only 2 subsequences.
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Figure 9. A schematic view of the interval event matrix of Situation 3 with binary events and with
two temporal windows separated by a red vertical line. Notice that the chunks blocked with blue
color in horizontal orientation represent interval events.

The pairwise global similarity and local similarity between event sequences is calcu-
lated with the Formulas (7) and (8). Here, ctw = 10, so we have 2 chunks of subsequences
for each original event sequence. The pairwise similarity matrices between event sequences
for the 5 locations is shown in Figure 10.

The event sequences for locations s2 and s3 in Figure 10 are more similar than other
pairs with only one mismatch at one timepoint, which is reflected in the global similarity
matrix with the highest score of 0.88. The lowest similarity is between s1 and s4 event
sequences with only four co-occurring timepoints and a relatively long union of events.
The rest of the similarity scores reasonably reflect their actual closeness.
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Figure 10. Output matrix of local similarity with two temporal windows and global similarity
between five spatiotemporal event sequences from Situation 3.

Situation 4. For the interval events of Situation 3 with the consideration of event level, i.e.,
the variation of event values within the interval, we obtain a matrix of interval events based on
Equation (7) as below:

The sequence of contiguous values represents interval events, but these are processed
as punctual events in the event sequence matrix:

Temporal points(1, 2, 3, . . . , 20)

Spatial locations(1, 2, 3, 4, 5)



0 0 0 0 31 22 13 17.7 0 0 0 0 0 0 0 0 0 12 15 32

0 0 0 16.7 28 21 15 0 0 0 0 0 0 0 12.3 18 0 0 18 21

0 0 0 14.5 24 18 0 0 0 0 0 0 0 0 15 12 0 0 16 20

0 0 0 12.3 15 0 0 21 32 0 0 0 0 0 12.2 16 0 0 31 19

0 0 0 10.1 26 0 16.6 18 0 0 0 14 17 0 0 19 11.5 0 35 18


The alternative view of the interval event matrix in the example of Situation 4 is

represented in Figure 11. In this figure, we assume that the comparative temporal window
has 10 timestamps, i.e., ctw = 10.
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The pairwise global similarity and local similarity between event sequences is calcu-
lated with Equations (9) and (11) for this situation. Here, ctw = 10, so we have 2 chunks of
subsequences for each original event sequence. The pairwise similarity matrices between
event sequences of 5 locations is shown in Figure 12.
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This situation considers the internal variation within an interval event along with
co-occurrences. We can compare the similarity scores in Figure 12 with those in Figure 10.
Like Situation 2, the overall similarity values decrease compared to the situations without
considering event magnitude. We can see here the event sequences at locations s2 and s3
in Figure 12 are still more similar than other pairs with slight variations of event values
between co-occurring timepoints, which can be reflected in the global similarity matrix
with the highest score of 0.81. The lowest similarity (0.29) remains between s1 and s4 as in
Situation 3. The rest of the similarity scores for other pairwise comparisons also reasonably
reflect an intuitive sequence closeness.

A Special Case in Situation 4. If the temperature measurements are recorded as an average value
for every four days as shown in Table 3.

Table 3. Simulated averaged temperature measurements for every 4 time units in 5 locations.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

s1 9.8 9.8 9.8 9.8 22 22 22 22 12 12 12 12 8.8 8.8 8.8 8.8 31 31 31 31
s2 9.1 9.1 9.1 9.1 28 28 28 28 14 14 14 14 5 5 5 5 26 26 26 26
s3 11 11 11 11 24 24 24 24 11 11 11 11 7 7 7 7 28 28 28 28
s4 14 14 14 14 25 25 25 25 18 18 18 18 9 9 9 9 33 33 33 33
s5 8 8 8 8 18 18 18 18 12 12 12 12 15 15 15 15 24 24 24 24

We can transform this dataset to a matrix of interval events with event levels based on
Equation (6) as shown in the matrix below:

Temporal points(1, 2, 3, . . . , 20)

Spatial locations(1, 2, 3, 4, 5)



0 0 0 0 22 22 22 22 12 12 12 12 0 0 0 0 31 31 31 31

0 0 0 0 28 28 28 28 14 14 14 14 0 0 0 0 26 26 26 26

11 11 11 11 24 24 24 24 11 11 11 11 0 0 0 0 28 28 28 28

14 14 14 14 25 25 25 25 18 18 18 18 0 0 0 0 33 33 33 33

0 0 0 0 18 18 18 18 12 12 12 12 15 15 15 15 24 24 24 24
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The alternative view of the interval event matrix for this example of average tempera-
ture can be seen in Figure 13. In this figure, we also assume that the comparative temporal
window has 10 timestamps, i.e., ctw = 10.
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The pairwise global similarity and local similarity between event sequences can be
calculated with Equations (9) and (11). Here, ctw = 10, so we have 2 chunks of subsequences
for each original event sequence. The pairwise similarity matrices between event sequences
of 5 locations is shown in Figure 14.
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Intuitively we can see the event sequences between locations s1 and s2, and between
locations s3 and s4 in Figure 14 are more similar than other pairs with all co-occurring
events of similar value at most timepoints, which can be reflected in the global similarity
matrix with the highest score of 0.91 and 0.90. The lowest similarity is 0.51 between s4
and s5 event sequences with three co-occurring events of different significance and two
mismatched events.

3.2. Performance Evaluation

In this section we present our experimental evaluation of the accuracy and speed of
different similarity measures with some synthetic datasets. In the first experiment, we
compared the speed for computing similarity matrices using the small dataset used in this
section. For the second, we used K-nearest neighbor (k-NN) classification with different
similarity measures for comparing classification accuracy and efficiency.

3.2.1. Execution Speed for a Binary Event Matrix

The purpose of this experiment is to assess processing times for the timestamp locked
Jaccard based similarity described in this paper (STES.sim1, see the software availability
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link). We compared STES.sim1 with generic edit distance in R (EditD Dynamic), and two
functions of Edit Distance and original Jaccard similarity from the R package Rstringdist.
The dataset contains 20 timestamps and 5 locations so we can generate a 5 × 5 similarity
matrix. Microbenchmarks [34] in R was used to record the time elapsed for each similarity
algorithm in the same similarity matrix generation function in R. The result indicated that
STES.sim1 outperformed edit distance by a factor of 10 (Table 4).

Table 4. Evaluation of different similarity measures with STES similarity matrix on example data for 100 times (unit:
microseconds).

Algorithm Min lq Mean Median uq Max n_eval

STES.sim1 503 549 676 587 657 2328 100
EditD Dynamic 4904 5250 5942 5474 6319 12,467 100

EditD_Rstringdist 2064 2280 2591 2408 2625 5501 100
Jaccard_Rstringdist 1863 2021 2651 2167 2556 8504 100

3.2.2. Accuracy Evaluation with Synthetic Datasets Using 1-NN Classifier

K-NN is a conventional non-parametric classifier, used widely as the baseline classifier
for solving many classification problems [35,36]. It is based on measuring the distances or
similarities between a test data set and each of the training data to decide the final classifi-
cation output. When proposing a new distance or similarity measure, 1-NN accuracy was
strongly recommended for testing [37]. Note that this does not exclude the additional other
trainings and tests with different K values. Here, however, the 1-NN test has the advantage
of having no parameters and allowing comparisons between similarity measures.

Synthetic dataset 1: This dataset contains 100 event sequences (records) with 50 times-
tamped fields of binary values (0, 1) representing whether the event occurred or not. The
test uses 3 different event distribution patterns (groups or classes) labeled by A, B and C.
The sample function in R with the prob argument was used to control density and order
of event occurrences. The first pattern (Label A) is characterized with the first 20 times-
tamps having a higher probability (0.8) of event occurrence and the remainder with lower
probability (0.2). In the second pattern (Label B) the subsequence of higher probability of
event occurrence is placed in the middle, and in the third pattern (Label C), the higher
probability occurrence region is placed at the end. The event data structure of these three
patterns and the observation number of each pattern are graphically depicted in Figure 15.
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Figure 15. Schematic event sequence data structure for synthetic dataset 1 with three different
mono-categorical event (0, 1) distribution.

We should note that the binary data (0, 1) can represent either two categories or actual
values of 0 and 1. Therefore, both category-based and value-based similarity measures
can be applied to this dataset. In this evaluation experiment, the category-based measures
include Edit Distance and time-restricted Jaccard Distance for category data (trJacDist-cat)
developed in this paper, and the value-based distance measures are Euclidean, Manhattan,
Minkowski, and Cosine Distance. When running 1-NN classification test, the dataset with
three patterns is first randomized and then divided into 70% training and 30% test set for
the experimental setup. Hence, there are 70 training event sequences and 30 test sequences
on which classification was performed. The effectiveness of a similarity measure in this
experiment is evaluated with accuracy for classifying three patterns of event sequences
(Label A, B, and C) and time for completing the task. To capture the fluctuation of time
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used for each task due to internal computer operation system, we run each 1-NN test for
each similarity measure 15 times to compute the error bars.

Using seven similarity measures carried out with 1-NN classification for the dataset
mentioned above, Figure 16 shows the comparison of accuracy and time elapsed to com-
plete the given task. The effectiveness of different similarity measures can be seen by
comparing the accuracy and time required to complete the task. While the same accuracy
can be achieved with trJacDist/trJacDist-cat and Edit Distance for classifying this small
dataset, the time required with trJacDist measure is about 5 times less than Edit Distance
measure. Euclidean, Manhattan and Minkowski Distance algorithms show a time advan-
tage over trJacDist/trJacDist-cat, but slightly lower accuracy. We note that Cosine Distance
has similar accuracy but a slightly better time performance.
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Figure 16. The bar graph for accuracy and times for 1-NN using seven different similarity mea-
sures applied on synthetic dataset 1 with three classes. Note: error bars are based on 15 times of
computation for the same task.

Synthetic dataset 2: This dataset contains 100 records (event sequences) with 128 times-
tamped fields of real values. As shown in Figure 17, there are three types of patterns in
this dataset: sine, box, and ramp-cliff, each function of which has high level of white noise
as the background noise. We excluded the Edit distance in this test as it is inappropriate
for real valued data. We compared trJacDist with Euclidean, Manhattan, Minkowski, and
Cosine distance-based similarity measures for evaluating the efficiency and accuracy of
classification with 1-NN classifier. The dataset was also randomized and then split into
70% training and 30% test sub-datasets when running 1-NN classification. From the results
shown in Figure 18 we can see that while trJacDist shows a time disadvantage against these
methods it shares the same accuracy with Euclidean, Manhattan, and Cosine distance.
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3.3. Application Example

We examined the feasibility of the proposed framework in the real-world application
of monitoring precipitation events obtained from observation stations distributed along
the Maine coast. Here we demonstrate the specific steps of eventization and similarity
measures developed in this study and we address the question: Do STES that are closer in
space show higher similarity measures?

The Maine Department of Marine Resources (DMR) manages the shellfish growing
areas in coastal Maine based on the fecal pollution situations observed from more than
2000 monitoring stations. Precipitation events can trigger high levels of fecal coliform in
shore waters and are thus of concern. Grouping of similar stations in terms of heavy rain or
high precipitation events is useful for allocating the limited labor pool for long term water
sampling. We used the similarity measures developed in this study to conduct clustering
analysis with the high precipitation event sequences (≥1 in daily) of selected monitoring
stations for 5 years.

Considering the daily precipitation is very close between nearby monitoring stations
we selected 43 monitoring stations for this experiment in the shellfish growing areas that
are well distributed along the Maine coast (Figure 19). With daily precipitation data of
5 years, we have an initial 43 × 1826 matrix of precipitation raw data (Table S1).

The dimensions of the raw data matrix is reduced through the eventization steps
developed in this research. In this specific example, we extracted event sequences of
either ≥1” or ≥2” precipitation for each monitoring station. Based on Equation (3) we
computed the data in Table S1 with R script (STS.eventize1.R) and created the event
sequence matrix of 43 × 192 (≥1” precipitation) (Table S2) or 43 × 52 (≥2” precipitation)
(Table S3). Taking ≥1” precipitation event sequences as an example (Table S2) and using
the STES similarity measure (STES.sim1.R) from this paper, we created the similarity matrix
of 43 × 43 (Table S4) between selected test monitoring stations. We transformed these
similarity data into distance data to conduct hierarchical clustering analysis [38] using the
hclust R function with linkage method Ward.D2.

Figure 20 shows the clustering results from using STES similarity on event sequences
of ≥1 in precipitation during 5 years in 43 locations (monitoring stations) as a heatmap and
distance-based cluster dendrogram.
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Figure 20. STES similarity-based heat map and STES distance based hierarchical clustering between monitoring stations
along ME coast in >1 in precipitation events in 5 years (2010–2014).

The results show the emergence of five clusters (groupings of event sequences that
are most similar). The heatmap and cluster dendrogram indicate that these clusters are
in fact spatial clusters indicating that for this case, sequences that are close in space tend
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to be more similar. These results can provide decision makers with more information for
arranging the labor within each region (cluster) along the Maine coast to collect water
samples for fecal coliform measurements from selected stations.

4. Conclusions

In this paper, we have demonstrated a matrix-based representation of spatiotemporal
event sequences for unifying punctual and interval events. These similarity measures
along with the univariate spatiotemporal event matrices for event data storage discussed
above provide a novel method and an alternative foundation for further event sequence
pattern discovery. A comparison of event sequence similarity is important for detecting
co-occurrence patterns and investigating the influence of event sequences of interest. We
assume that similar event sequences indicate a similar process structure and potential
shared causal mechanisms.

Based on the analysis of sequence properties for four situations and one special case
that consider event co-occurrences and event levels, we have proposed corresponding
similarity measures for pairwise comparisons for punctual and interval events and for
whole or long duration sequences or their subsequences. The experimental results with
simulated datasets showed that these similarity scores between spatiotemporal event
sequences reasonably represent perceived closeness.

A comparative evaluation against other similarity algorithms shows the same or
better accuracy results. Our method shows a time disadvantage against the real valued
methods but a substantial time advantage over the qualitative Edit Distance. Overall, our
approach has the advantages of flexibility in that it can accommodate both qualitative and
quantitative event values as well as both punctual and interval events.

We recognize some limitations in the current research. This research establishes a
framework of matrix representations and similarity development for univariate event
sequences of different types. It does not yet handle similarity assessment for multivariate
event sequences. Such an extension requires some modification of the matrix representation
and similarity measures which will be addressed in future work. In the current work we
demonstrate fixed matrix sizes which can be chunked into smaller subsequence sets for
local versus global similarity computations. For future work, an extension that addresses
streaming events from monitoring stations would be a useful addition. The addition of
temporal logic operations and extensions to consider lagged sequence alignment similarity
rather than the time locked case are other considerations for future work. Furthermore, we
have not tested the current methods on big data. Future work will focus on the evaluation
extensive real datasets from environmental monitoring or other domains. Currently our
STES representation includes the intervals between event occurrences. For sequences in
which event occurrences may be sparse with long intervening intervals we are considering
approaches for sparse matrices. Lastly, we also consider extensions to detect complex
events of interest, and incorporation of our methods into Complex Event Processing
(CEP) systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijgi10090594/s1, Table S1: Precipitation data of 43 monitoring stations in the Maine coast
(2010–2014). Table S2: Event sequence matrix of 43 × 192 from eventization based on ≥1” precipi-
tation. Table S3: Event sequence matrix of 43 × 52 from eventization based on ≥2” precipitation.
Table S4: Similarity matrix of 43 × 43 from the event sequence matrix of Table S2.
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