
 International Journal of

Geo-Information

Article

A Temporal Directed Graph Convolution Network for Traffic
Forecasting Using Taxi Trajectory Data

Kaiqi Chen, Min Deng and Yan Shi *

����������
�������

Citation: Chen, K.; Deng, M.; Shi, Y.

A Temporal Directed Graph

Convolution Network for Traffic

Forecasting Using Taxi Trajectory

Data. ISPRS Int. J. Geo-Inf. 2021, 10,

624. https://doi.org/10.3390/

ijgi10090624

Academic Editor: Wolfgang Kainz

Received: 16 July 2021

Accepted: 13 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Geo-Informatics, Central South University, Changsha 410083, China; chenkaiqi@csu.edu.cn (K.C.);
dengmin@csu.edu.cn (M.D.)
* Correspondence: csu_shiy@csu.edu.cn

Abstract: Traffic forecasting plays a vital role in intelligent transportation systems and is of great
significance for traffic management. The main issue of traffic forecasting is how to model spatial
and temporal dependence. Current state-of-the-art methods tend to apply deep learning models;
these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address
these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed
graph is first constructed to model the movement characteristics of vehicles, and based on this, a
directed graph convolution operator is used to capture spatial dependence. For temporal dependence,
we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic
flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through
comparative experiments. Moreover, a detailed discussion is presented to provide the path of
reasoning from the data to the model design to the conclusions.

Keywords: traffic flow forecasting; Markov chain; directed graph convolution; transformer structure;
spatial dependence; temporal dependence

1. Introduction

Traffic flow forecasting aims to estimate traffic conditions (e.g., the velocities or travel
time of traffic flow) of each segment on road networks in future time periods based on
historical information [1]. It has played an important role in intelligent transportation
systems (ITSs) on account of its extensive applications in urban transportation [2]. For
instance, Google Maps can provide users with high-quality route planning and navigation
services with the aid of traffic forecasting for the purpose of avoiding traffic congestion [3].
Despite the massive efforts made by relevant studies, high-precision and high-reliability
traffic forecasting is still subject to the nonlinear dependence of traffic flow variables in the
dimensions of both space and time [1,2,4–6].

On the one hand, the time series of traffic flow variables generally present significant
temporal dependence in both the short and long term [4]. Specifically, traffic conditions are
highly correlated with those observed at adjacent times, and the short-term correlations are
gradually delayed with increasing temporal distance. Additionally, the periodicity of traffic
flow series on multiple temporal scales can be modeled as long-term temporal dependence.
On the other hand, relevant studies have confirmed the existence of dependence between
the traffic flow variables observed on topologically connected road segments with certain
time lags; this is defined as spatiotemporal dependence [1,2,4]. In traffic applications such
as autonomous driving and signal light control, model-based traffic simulators (e.g., LWR
and PW) have been widely employed to simulate various traffic flows on road networks
by considering spatiotemporal dependences [7]. However, in spite of their effectiveness
in modeling the evolution of traffic flow on road networks, the lack of vehicle behavior
information combined with the high costs of computational time fundamentally limit the
applications of model-based traffic simulators in real-time traffic forecasting on large-scale
urban road networks [8]. Nowadays, the increasing availability of discrete trace points
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recoded by vehicle-mounted GPS enables the characterization of time-varying traffic flow
states at the road segment level [9]. In this context, large amounts of data-driven models
have been specifically designed for the task of traffic flow forecasting [1,2,4–6]. Currently,
there are two alternative strategies for handling spatiotemporal dependence in traffic
flow forecasting based on data-driven models. The first is constructing machine learning
models by modeling spatiotemporal dependence as parameters to be estimated, such as the
space–time auto-regressive integrated moving average (ST-ARIMA) model [10]. To extract
implicit features derived from spatiotemporal dependence, a set of deep learning-based
forecasting methods have been designed by coupling a convolutional neural network
(CNN) with a recurrent neural network (RNN), such as CNN-Long Short-Term Memory
(CNN-LSTM) models [11]. However, the requirement of grid partitioning in Euclidean
space limits the capacity of traditional CNNs to accurately capture the spatial dependence
among road segments to a larger extent. For cases such as this, recent studies have
constructed an undirected graph structure to express the topological relationships between
road segments, and it was based on this that a graph convolution neural network was
employed to implement traffic flow forecasting [1,2,4–6,12–14].

According to related studies in the field of transportation, there are a total of three
elements, i.e., drivers, vehicles, and road segments, that constitute a transportation sys-
tem [15]. This means that the traffic flow on a road network is determined by both the
moving characteristics of the vehicles and the driving rules on the road segments. In the
road network shown in Figure 1, the flow direction and volume of moving vehicles are
represented by arrows and dotted lines, respectively. Segments 4 and 2 are both spatially
adjacent to segment 1, so segment pairs 4-1 and 2-1 have a consistent topological structure.
However, the two segment pairs do not necessarily share similar traffic flow distributions
due to the diverse driving directions of the vehicles. In addition, the driving rules on road
segments cannot be represented by the topology. For instance, segments 1, 4, and 7 are all
one-way roads with only one allowable driving direction, while vehicles are only allowed
to turn around on segment 3 despite it being topologically connected with segment 1. There
is a similar case in which the vehicles on segment 4 are prohibited from turning left into the
adjacent segment 6. Based on the above discussions, we can determine that the diversity of
driving directions and rules on road segments poses great challenges to current methods
of anisotropic spatial dependence modeling and reliable traffic condition forecasting.

Figure 1. An example of the diversity of traffic patterns on road segments.

To overcome the aforementioned challenges, this study develops a new traffic flow
forecasting method by constructing a temporal directed graph convolution network (T-DGCN)
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with the combined consideration of multiterm temporal dependence and vehicle movement
patterns on road networks. The main contributions of this study include the following
three aspects:

(1) A directed graph is constructed based on the Markov transition probabilities of traffic
flow to model the spatial dependence in an objective way, while a new spectral
directed graph convolution operator is designed to address the asymmetry of the
directed graph.

(2) A transformer architecture with a novel global position encoding strategy is inte-
grated to capture multiterm temporal dependence, with the aim of improving the
interpretability and validity of the forecasting model.

(3) Comparative experiments on real-world datasets are conducted to provide convinc-
ing evidence for the superior performance of the proposed method in traffic flow
forecasting.

The remainder of this article is organized as follows: Section 2 gives a full review of
the relevant research. Section 3 defines the critical problem and presents the proposed
T-DGCN. In Section 4, comparative experiments on real-world datasets are performed to
validate the superiority of the proposed method, while Section 5 provides an attribution
analysis of the experimental results. Finally, we conclude this study and provide future
research directions in Section 6.

2. Related Work

With the extensive utilization of data mining models in traffic flow analysis during
the past few decades, an enormous number of methods have been specifically designed for
traffic flow forecasting based on machine learning models or deep neural networks [1,2,5,6].
These two types of methods are reviewed in detail in the following.

Machine learning-based spatiotemporal forecasting models aim to estimate the target
spatial variable values at future times through parameter training with the constraint of
artificially defined spatiotemporal dependence.

With the successful use of the autoregressive integrated moving average model
(ARIMA) in time series forecasting [16], Hamed et al. [17] initially introduced this machine
learning model to urban traffic volume forecasting. On this basis, extensively modified
ARIMA models were successively proposed to improve traffic flow forecasting accuracy.
For instance, the Kohonen ARIMA model used a Kohonen self-organizing map to separate
the initial time series into homogeneous fragments to track the long-term temporal depen-
dence [18]. Guo et al. [19] integrated the Kalman filter with the generalized auto-regressive
conditional heteroskedasticity model to improve the performance of short-term traffic flow
forecasting. In addition to ARIMA-based models, support vector regression (SVR)-based
models also have outstanding performance in traffic flow forecasting [20]. For instance, Su
et al. [21] utilized the incremental support vector regression (ISVR) model to implement the
real-time forecasting of traffic flow states, and Gopi et al. [22] proposed a Bayesian support
vector regression model, which can provide error bars along with predicted traffic states.
Besides this, other common machine learning models have also been applied to the task of
traffic flow forecasting. Yin et al. [23] combined fuzzy clustering with a neural network
to design a fuzzy neural traffic flow forecasting approach. Cai et al. [24] constructed an
improved K-nearest neighbor (KNN) graph to optimize short-term traffic flow forecasting
results with the help of spatiotemporal correlation modeling. Sun et al. [25] proposed a
Bayesian network-based approach to maximize the joint probability distribution between
the historical traffic flow states used as antecedents and the future states to be estimated.

Considering the subjectivity in the measurement of spatiotemporal proximity effects,
existing machine learning-based models are greatly limited in capturing the underlying
dependence in multiple ranges in space and time. Compared to traditional machine
learning models, deep neural networks have self-learning capacity without the input of
any artificially extracted features. This powerful learning capability has enabled various



ISPRS Int. J. Geo-Inf. 2021, 10, 624 4 of 19

types of deep neural networks to be utilized in the forecasting of traffic flow on road
networks [1,3,6].

In essence, the traffic flow on road networks can be classified as a kind of space–time
sequence data [2]. Specifically, for the traffic flow sequence on any road segment, the
RNN and its variants, such as the long short-term memory (LSTM) unit [26] and the gated
recurrent unit (GRU) [27], were widely utilized to learn the dependence between time-
varying traffic flow states. For example, Ma et al. [28] developed a forecasting approach to
analyze the evolution of traffic congestion by coupling deep restricted Boltzmann machines
with an RNN that inherits congestion prediction abilities. Tian et al. [29] utilized a LSTM
to determine the optimal time lags dynamically and to achieve higher forecasting accuracy
and better generalization. Focusing on the spatial dimension, Wu and Tan [30] mapped
the recorded traffic flow states into regular grids divided from the study area to stack
sequential images in chronological order. This can leverage the local receptive field in a
CNN to capture the spatial dependence of traffic flow states in planar space. However, it
is well known that the transfer of traffic flow is rigidly constrained on road networks in
reality, so it is necessary to measure the spatiotemporal dependence of traffic flow in the
road network space. To address this issue, most studies have used each segment or sensor
as the minimum spatial unit and have organized the road network into a graph based
on the topological relationships between segments [1,3,6]. In this way, the idea of graph
convolution can be employed to extract spatially dependent embedded features from the
graph structure. For example, Zhao et al. [2] designed a T-GCN model that introduced 1st
ChebNet [12] to model the spatial dependence of traffic networks. Li et al. [13] proposed
a diffusion convolutional recurrent neural network (DCRNN) model that performed a
diffusion graph convolution on a traffic network to aggregate the spatial neighborhood
information of each node and captured long-term temporal dependence using a RNN. Yu
et al. [31] constructed a 3D graph convolution network that could simultaneously capture
spatial and temporal dependence in the process of feature learning.

As mentioned in Section 1, although existing methods have utilized the topological
structure of traffic networks to model spatial dependence, it is still necessary to quantita-
tively represent the movement patterns and driving rules of vehicles on road networks to
improve the rationality of traffic flow forecasting. In terms of temporal dependence, in
the majority of current RNN-based strategies, the specific modeling of the tendency and
periodicity characteristics in the time-varying process of traffic flow states is insufficient.
That is, a large number of relevant historical observations have not yet been sufficiently
exploited in an appropriate way, which restricts the accuracy of traffic flow forecasting. To
solve these two problems, this study designs a new method by coupling a directed graph
convolution network with a transformer structure to model anisotropic spatial dependence
and multiterm temporal dependence for the purposes of self-learning the underlying
spatiotemporal features of traffic flow states to obtain high-precision forecasting results.

3. Method

This section describes the proposed new traffic flow forecasting method. Specifically,
a directed traffic graph is first constructed by using a Markov chain-based strategy, as
described in Section 3.1; based on that, a spectral directed graph convolution kernel is
used to capture anisotropic spatial dependence, as presented in Section 3.2. In Section 3.3,
we design a keyframe sequence and employ a transformer structure for the extraction of
multiterm temporal dependence features. Finally, in Section 3.4, we build the T-DGCN by
assembling the spatial and temporal dependency learning modules.

3.1. A Markov Chain-Based Strategy for Constructing a Directed Traffic Graph

In this study, considering the directivity of traffic flow, we specifically represent the
traffic information on road networks using a graph structure G = (V , E , P), where the
road segments and intersections constitute the node set V = {υ1, υ2, υM} and the edge
set E =

{
e1 , e2 . . . , eN}, respectively. In this way, the traffic flow states on the road
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network can be abstracted into a tensor X ∈ RM×T×C, where M, T, and C denote the
number of segments, timestamps, and traffic flow feature dimensions, respectively. For the
edges in G, the majority of the current related studies generally quantify the topological
relationships between the road segments to obtain a symmetrical adjacency matrix P. To
further reflect the anisotropy in traffic flow spatial dependence, this study constructs a
Markov chain-based directed graph to describe the transition probabilities of the traffic
flow at intersections.

From the perspective of a discrete stochastic process, the transition of the traffic flow
between any pair of nodes in G can be considered to follow the hypothesis of a random
walk [32]. Let rst denote the located road segment of traffic flow at timestamp t. The
transition process can be modeled using a Markov chain, i.e.,

P [(rs0→rs1→ . . . →rst−1→rst)→rst+1] = P [rst→rst+1] (1)

This means that the current traffic flow states can entirely determine the future distribu-
tion of traffic flow on road networks. On this basis, given any two nodes vi and vj, we can
calculate the transition probability of traffic flow from vi to vj as pij = P[(rst = vi)→(rst+1 = vj)]
and can construct the following Markov transition matrix:

P =


p11 p12 · · · p1M
p21 p22 · · · p2M

...
...

. . .
...

pM1 pM2 · · · pMM

 ∈ RM×M (2)

We recombine the road nodes into a graph structure according to the transition matrix
P. To obtain the transition matrix, we define an intermediate variable γij to denote the
number of vehicles that move from segment vi to vj and form the following matrix Γ:

Γ =


γ11 γ12 · · · γ1M
γ21 γ22 · · · γ2M

...
...

. . .
...

γM1 γM2 · · · γMM

 ∈ RM×M (3)

On this basis, the transition matrix P can be expressed as

P = diag(Γ1)−1Γ (4)

Here, 1 is a vector of all ones. In this transition matrix, each element pij =
γij

∑M
k=1 γik

essentially quantifies the moving probability of traffic flow from vi to vj.

3.2. A Directed Graph Convolution Kernel for Capturing Spatial Dependence

Regarding the forecasting of space–time sequences organized using graph structures,
e.g., traffic flow series, the spectral graph convolution neural network has shown powerful
performance in learning dependence features on multiple spatial scales [12]. However, most
spectral-based methods are limited to only working on undirected graphs [33]. According
to spectral graph theory, it is necessary to find a directed Laplacian operator to implement
the convolution operation on a constructed directed traffic graph without the loss of
direction information. In this case, we leverage the Perron–Frobenius theorem to embed a
directed Laplacian operator into the graph convolution neural network [34].

Let rij(n) = P[(vi→···→vj)n] denote the probability that the state changes from vi
to vj after step n; this term can be calculated using the following Chapman–Kolmogorov
Equations [34]:

rij(n) =
M

∑
k=1

rik(n− 1)pkj (5)
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The connectivity of the urban road network indicates that any two road segments can
be connected through the flow of vehicles (∀vi, vj ∈ V , ∃n that rij(n) > 0), which means
that the Markov chain-based directed graph has the characteristic of strong connections.
According to the steady-state convergence theorem, the stationary distribution of traffic
flow states on road networks can be denoted as [34]:

π = π0Pn (6)

Here, π0 denotes the initial vector of traffic flow states, while n tends to positive
infinity. We can treat π as a Perron vector according to the Perron–Frobenius theorem to
define the Laplacian operator of a directed graph, i.e.,

L = I −Π
1
2 PΠ−

1
2 , where Π = diag(π) (7)

For the asymmetric matrix, the corresponding symmetric Laplacian can be expressed
as [33]

Lsym = I − 1
2

(
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

)
(8)

In this way, we symmetrize the original directed traffic graph, so we can obtain the
graph convolution kernel x ∗ gθ = U

(
UTx�UT gθ

)
. Then, this filter can be approximated

using Chebyshev polynomials [33]

x ∗ gθ ≈
K−1

∑
k=0

θkT
(
L̃sym

)
x (9)

where L̃sym = 2
λ

sym
max
Lsym − I is the rescaled form of Lsym for locating eigenvalues within

[−1, 1]. Let K = 2 and θ = θ0 = −θ1 and further approximate the largest eigenvalue of
Lsym as λ

sym
max ≈ 2 according to [12]. The filter can be simplified as

x ∗ gθ ≈ θ

[
I +

1
2

(
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

)]
x (10)

To alleviate the problems of exploding and vanishing gradients, Kipf and Welling [12]
used a renormalization strategy, i.e., I + D−1/2 AD−1/2 → D̃−1/2 ÃD̃−1/2 , by adding a
self-loop to each node Ã = A + I. Due to the self-loop structure of the Markov chain-based
directed graph, we utilize another renormalization strategy. Let θ = 2

2−λ
sym
max

θ0 = − 2
λ

sym
max

θ1,
and Equation (10) can be redefined as

x ∗ gθ ≈ θ

[
1
2

(
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

)]
(11)

Finally, the directed graph convolution layer can be represented as

Z =
1
2

(
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

)
XΘ (12)

Here, θ ∈ Rdin×dmodel is the learnable parameter, and din and dmodel denote the dimen-
sions of the input features and hidden features, respectively.

3.3. A Transformer Structure for Learning Temporal Dependence Features

In addition to the dependence of traffic flow in the space dimension, other critical
issues exist that need to be addressed in traffic flow forecasting, that is, extracting de-
pendence features between traffic flow states at distinct timestamps [2]. Faced with this
problem, the most widely used solution at present is the RNN [1]. However, current
RNN-based models were not specifically designed considering the inherent time-variant
characteristics of traffic flow states and tend to be overly complex, including a large number
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of learnable parameters. On the basis of prior knowledge, we design keyframe sequences
to organize the original data and leverage a transformer structure to extract multiterm
temporal dependency features.

As discussed in Section 1, the temporal dependence of traffic flow states mainly
includes short-term and long-term states; these indicate the tendencies and periodicities
of traffic flow time series, respectively. For each road segment at t, we first define the
tendency-related sequence as Xt(t) =

{
X (t−∆t)

∣∣∣∆t ≤ tl, ∆t ∈ N+
}

by using a time lag
parameter tl. In addition, current relevant work generally regards the periodicity as
the correlations between the observations at t and those at the corresponding times in
the previous few days or weeks [35]. Considering the slight fluctuation in the variation
cycle regarding traffic flow states, this study introduces a time window parameter tw to
define an interval around each periodic timestamp, within which the periodicity can be
refined by embedding the local tendencies. Then, the periodicity-related sequence can
be defined as Xp(t) =

{
X (t−∆t)

∣∣∣∆t ∈
[
nTp − tw, nTp + tw

]
, n ≤ Np and n, Np, tw ∈ N+

}
within Np cycles, where Tp denotes the length of one cycle. Xt(t) and Xp(t) form the
keyframe sequence Xk(t) at timestamp t. By inputting each member of Xk(t) to the
directed graph convolution layer in parallel, we can capture a spatial feature sequence
tensor F (t) ∈ RM×(tl+Np(1+2tw))×dmodel . To facilitate the capture of time- and space-varying
temporal dependence, we further employ daily periodic position embedding [36] and
node2vec embedding [37] strategies to encode the absolute time and space information for
each timestamp and each road segment. After that, the tensor F (t) can be integrated with
the space–time information by elementwise addition operations.

Targeting the spatial feature tensor F (t), we use self-attention to calculate the implicit
multirelationships on the keyframe sequence of each road segment at timestamp t. Basically,
three subspaces, namely the query subspace Qs ∈ Rdmodel×dk , the key subspace Ks ∈
Rdmodel×dk , and the value subspace Vs ∈ Rdmodel×dv , are obtained by performing linear
mapping operations on F (t), i.e.,

Qs = F (t)×Ws
q , Ks = F (t)×Ws

k , Vs = F (t)×Ws
v (13)

Here, Ws
q, Ws

k, and Ws
v are learnable parameters. To better capture multiterm

temporal dependence, multihead attention is further introduced by concatenating Nh
single attention heads, i.e.,

Head =
(

Head(1) ◦ Head(2) ◦ · · · ◦ Head(H)
)

(14)

where Head(h) = so f tmax
(

S(h)
)

Vh, and S(h) =
Qh(Kh)

T√
dh

k

Note that ‘◦’ denotes a concatena-

tion operator. After that, a new tensor Fout(t) that contains the spatial-temporal features
can be produced using a learnable parameter Wo ∈ R(Hdv)×(dmodel),

Fout(t) = Head×W (15)

On this basis, we can construct the transformer structure by the classical encoder-
decoder method [38] to implement traffic flow forecasting. As shown in Figure 2, both
the encoder and the decoder contain Ncell identical cells. Each identical cell is mainly
constituted by a multihead attention layer and a keyframe-wise fully connected feed-
forward layer. Residual connections and normalization layers are also integrated. Note
that the decoder cell has one more multihead attention layer than the encoder cell, which
has the function of calculating the multihead attention over the features of the historical
keyframes and the forecasted ones.
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Figure 2. The basic structure of the encoder and decoder. Each encoder (decoder) is composed of
Ncell encoder cells (decoder cells).

3.4. Temporal Directed Graph Convolution Network (T-DGCN)

With the integration of the Markov chain-based directed graph convolution layer
with the transformer structure-based encoder-decoder layer, Figure 3 gives the overall
architecture of the proposed T-DGCN. Specifically, for the keyframe sequences of each
road segment, two Markov-based directed graph convolution layers are used to capture
keyframe-wise spatial dependence to construct the spatial feature tensorF (t). The network
further utilizes the transformer structure-based encoder–decoder layer to learn multiterm
temporal dependence features from F (t). The forecasted results are ultimately output
from a fully connected layer.

Figure 3. The overall architecture of the T-DGCN.



ISPRS Int. J. Geo-Inf. 2021, 10, 624 9 of 19

In the training process, the goal is to minimize the error between the observed traffic
flow states Y on the road network and the forecasted states Ŷ. Thus, the loss function can
be defined as

loss =
1
2
‖ Ŷ−Y ‖2 + δLreg (16)

where δ is a weighing factor, and Lreg = ∑Nθ
i=1 θi

2 represent the L2 regularization term of all
learnable parameters θi, which has the function of preventing the overfitting problem.

4. Experimental Comparisons on a Real-Life Dataset

This section aims to verify the effectiveness and superiority of the proposed T-DGCN
model by performing comparative experiments on real-life datasets. In Section 4.1, we
describe the utilized traffic dataset, including information on the moving velocity and
turning directions at intersections, on the road network of Shenzhen, China. Section 4.2
introduces the baseline methods and evaluation metrics in the experimental comparisons.
Finally, the experimental results are presented to demonstrate the superior performance of
the proposed model in Section 4.3.

4.1. The Description of the Real-Life Dataset

There have been various traffic flow datasets, such as the PeMSD and METR-LA [39],
designed for the performance evaluation of distinct forecasting models. However, they
are mostly collected by fixed sensors on road segments, which lack the turning direction
information of vehicles at intersections and cannot support directed graph construction.
In recent years, GPS-equipped taxicabs have been employed as mobile sensors to con-
stantly monitor the traffic rhythm of a city and to record the turning directions of taxis
on road networks [40]. In China, Shenzhen city has more than 16,000 taxis that operate
on the road network [41], and relevant studies have confirmed the ability of these taxi
trajectories to reflect real traffic flow states on road networks [42]. Thus, we built a new
large-scale traffic dataset based on the taxi trajectories of Shenzhen. The original dataset
was downloaded from the Shenzhen Municipal Government Data Open Platform [43],
which contains approximately 1 billion taxi trajectory points from 1–31 January 2012, which
include multiple attribute information, such as taxi IDs, spatial locations, timestamps, and
instantaneous velocities. For any road segment in any time interval, this study utilizes the
average velocities of vehicles every 15 min on each road segment to represent the velocity
of traffic flow. Figure 4 shows the spatial distribution of the road network in the study,
which includes 672 interconnected road segments in major districts of Shenzhen.

Figure 4. Spatial distribution of the road network in the major districts of Shenzhen city.
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In the experiments, to obtain faster convergence, we normalized all the input velocity
values to 0–1. According to chronological order, the first 60% of the whole dataset is used
as the training set, while the following 20% and the last 20% are utilized for validation and
testing, respectively.

4.2. Baseline Methods and Evaluation Metrics

To verify the superiority of the proposed traffic flow forecasting method, a total of
seven representative models, namely the historical average (HA) model [44], ARIMA [16],
the vector auto-regression (VAR) model [45], the support vector regression (SVR) model [46],
the fully connected GRU (FC-GRU) model [27], the temporal graph convolutional network
(T-GCN) model [2], and the diffusion convolutional recurrent neural network (DCRNN)
model [13], were selected as the baseline methods to implement experimental comparisons
with the proposed model. The first four models are traditional machine learning-based
methods, while the last three models were designed by modifying and integrating state-of-
the-art deep neural networks.

In addition, the following three quantitative metrics were used to conduct the accuracy
assessment of the traffic forecasting results obtained by different methods, including

the root mean squared error RMSE =
√

1
2 ∑n

i=1 (yi − ŷi)
2, the mean absolute error MAE

= 1
2 ∑n

i=1

∣∣∣yi − ŷi

∣∣∣, and the accuracy AC = 1− ∑n
i=1(yi−ŷi)

∑n
i=1(yi−y) , where yi and ŷi represent the

observed and forecasted values of the traffic flow velocity, respectively, while y denotes
the average observations. RMSE and MAE were both utilized to measure forecasting
errors, while AC indicated the forecasting precision. Therefore, high forecasting accuracies
correspond to smaller RMSE and MAE values and larger AC values.

4.3. Comparative Analysis of the Experimental Results

In the experiments, we aimed to forecast the traffic flow velocity on road segments
by using the proposed method and the baseline methods introduced in Section 4.2. The
parameters included in the baseline methods were determined by referring to the identical
criterion used in original articles or related articles. Specifically, the orders were set to
(3, 0, 1) in the ARIMA model. In the VAR model, the lag was set to 3. The penalty term and
the number of historical observations in the SVR model were set to 0.1 and 12, respectively.
For the FC-GRU and T-GCN models, we set the number of hidden units to be 100.

Regarding the proposed method, we selected the appropriate parameters by com-
paring the forecasting performance of the candidates on the validation set. Specifically,
we designed 16 hidden units in the directed graph convolution layers. For the keyframe
sequence, the length of the tendency-related sequence and the time bandwidth of the
periodicity-related sequence were set to tl = 12 and tw = 5, respectively, and the number
of cycles was set to Np = 3. In the transformer structure, we set the dimensions of the
subspaces as dk = 8 and dv = 16, while the numbers of cells in the encoder and decoder
layers were both set to 3. Additionally, to simultaneously learn the short- and long-term
temporal dependence, the number of single-head attention nodes was set to be Nh = 2. In
the training phase, we set up a batch size of 64 and 1000 epochs, while the learning rate
was initialized as 0.0001 and was halved when the RMSE values remained unchanged for
two epochs. All of the hyperparameters are classified and listed in Table 1. The proposed
T-DGCN model was optimized using adaptive moment estimation (Adam) [47] and was
implemented based on the PyTorch framework [48].

Table 1. The hyperparameters of the T-DGCN and the training process.

Hyperparameters of the T-DGCN Hyperparameters of Training

dmodel tl tw Np dk dv Ncell Nh Batch Size Learning Rate Epochs

16 12 5 3 8 16 3 2 64 0.0001 1000
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Table 2 presents the quantitative evaluation results of the forecasted values obtained
by different methods on the traffic flow data from the road network of Shenzhen. It is
obvious that the deep neural network (i.e., T-GCN)-based models have significantly higher
forecasting accuracy than the classical machine learning-based methods (i.e., ARIMA, VAR,
and SVR). It can be concluded that deep neural networks have advantages in capturing
the nonlinear features related to spatiotemporal dependence. Note that the T-GCN model
has traffic forecasting performance similar to that of the FC-GRU model regardless of
the forecasting step length. This illustrates that the topology-based undirected graph
convolution operator has limits in modeling the spatiotemporal evolution of traffic flow.

Table 2. Quantitative evaluation results of different methods in traffic flow forecasting.

Step Size Metric
The Proposed and the Baseline Methods

HA ARIMA VAR SVR FC-GRU T-GCN DCRNN T-DGCN

1 (15 min)
RMSE 9.62 8.91 7.66 8.74 4.85 4.85 4.91 4.56 1

MAE 6.11 5.62 4.88 5.34 2.95 3.40 3.22 2.97 1

AC 0.69 0.71 0.74 0.70 0.81 0.82 0.81 0.85 1

2 (30 min)
RMSE 9.77 8.85 7.26 9.13 4.95 4.89 5.03 4.64 1

MAE 6.25 5.53 4.86 5.69 3.10 3.43 3.35 3.03 1

AC 0.69 0.72 0.78 0.69 0.79 0.80 0.81 0.82 1

3 (45 min)
RMSE 9.90 8.22 7.47 9.38 5.05 4.99 5.13 4.67 1

MAE 6.37 5.63 5.03 5.91 3.20 3.10 3.57 3.09 1

AC 0.68 0.74 0.77 0.68 0.80 0.79 0.79 0.81 1

1 Black bold font indicates the best performance.

The proposed T-DGCN model outperforms all seven baseline methods in terms of
the three evaluation metrics for different step sizes. More specifically, the forecasting
results of the proposed directed graph convolution-based method yield smaller RMSE and
MAE values and larger AC values than the other two current deep neural network-based
methods (i.e., FC-GRU and T-GCN). For example, for traffic flow forecasting in 15 min, the
RMSE value of the proposed T-DGCN model is approximately 6% lower than that of the
T-GCN model, while the AC value is approximately 6% higher. For the forecasting step
sizes of 30 min and 45 min, the proposed method outperforms both FC-GRU and T-GCN in
terms of all three metrics, to a large degree confirms the stable performance of the proposed
method to a large degree.

Furthermore, we specifically selected two road segments and visualized the results
forecasted by the proposed method. The T-GCN model, which shows the best performance
of the seven baseline methods, was selected as the representative for the comparisons. As
shown in Figure 5, both models fit the curve of the observed traffic flow time series well. In
detail, the T-GCN generates smoother forecasted results than the T-DGCN, which means
that the curves produced by the T-DGCN contain more high-frequency components. In
other words, the T-DGCN has obvious advantages in capturing drastic variations in traffic
flow velocities.

In addition to the forecasting accuracy, comparative experiments were further con-
ducted on the computational efficiency of both the baseline and the proposed methods.
We ran all of the models on a computer with 128 G memory and 16 CPU cores at 2.9 GHZ.
Table 3 provides the efficiency evaluation results of different methods. One can see that
all of the models have the capacity of outputting one-step forecasting results within 4 s.
In other words, the computational time of all of the models can meet the requirements of
real-time traffic flow forecasting given different forecasting steps (i.e., 15 min, 30 min, and
45 min). For deep learning-based methods, the running time on another computer with
a Nvidia RTX3090 GPU indicates that the computation speed can be increased by nearly
10 times. In summary, the proposed method can achieve the highest forecasting accuracy
within an acceptable computational time.
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Figure 5. The forecasting results of the traffic flow time series on (a) road segment 33, (b) road segment 44, and (c) road
segment 80 by the T-GCN and the proposed T-DGCN models with time resolution of 15 min.

Table 3. Efficiency evaluation results of different methods in traffic flow forecasting.

Device
The Proposed and the Baseline Methods

HA ARIMA VAR SVR FC-GRU T-GCN DCRNN T-DGCN

CPU <0.10 s 3.74 ± 0.06 s 3.56 ± 0.03 s 2.75 ± 0.05 s 2.16 ± 0.16 s 2.45 ± 0.19 s 3.78 ± 0.23 s 3.68 ± 0.30 s
GPU / / / / 0.17 ± 0.00 s 0.39 ± 0.00 s 0.59 ± 0.01 s 0.52 ± 0.01 s

5. Discussion and Explanation of the Experimental Results

In this section, we further analyze the experimental results obtained by the proposed
T-DGCN model from three aspects, namely the spatial distribution of the forecasting errors
in Section 5.1, the temporal distribution of the forecasting errors (which refer to the RMSE
values in the following sub-sections) in Section 5.2, and the multiterm temporal dependence
in Section 5.3. Based on the analysis in the above subsections, we will provide the discussion
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in Section 5.4. The purpose of this section is to provide convincing explanations for the
superior performance of the proposed method.

5.1. The Spatial Distribution of the Forecasting Errors

Figure 6a visualizes how the forecasting errors are distributed on the road net-
work. Overall, the proposed T-DGCN model obtains forecasting results with small er-
rors on most road segments. To analyze the relationship between the forecasting errors
and the vehicle movement patterns, the transfer complexity value tci is calculated by
tci = norm (∑672

j=1,j 6=i 1
{

γij
}
), where indicator function 1{.} enumerates the frequency of

nonzero γ values and where norm( ) denotes a min-max normalization function. The
distribution of tci is illustrated in Figure 6b. Visual comparisons show that the forecasting
errors have negative correlations with the transfer complexity values. Taking the four
highlighted regions in Figure 6a as examples, the road segments in Regions 1–3, which are
located at the edge of the study area, contain incomplete topological structures but have
high transfer complexity values and small forecasting errors. In contrast, despite the rich
topology information in the road segments of Region 4, the low transfer complexity values
correspond to the low forecasting accuracies.

Figure 6. Relationships between the forecasting errors and transfer complexity values with time step of 15 min, where
(a) and (b) indicate the distributions of the forecasting errors and the transfer complexity values on the road network, while
(c) depicts their fitting relationships using a scatter plot.

Moreover, Figure 6c presents a fitted curve to depict the relationships between the
transfer complexity values and forecasting errors in a more intuitive way. It can be observed
that an approximately negative linear relationship exists in the case of transfer complexity
values smaller than 0.2. When the transfer complexity values exceed 0.2, the forecasting
accuracies remain at a higher level. Furthermore, Figure 7 visualizes the normalized
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Laplacian matrices of the topology-based undirected graph and the proposed Markov-
based directed graph. On the one hand, the Laplacian matrix of the directed graph contains
more nonzero elements, which means that the graph convolution filter can aggregate more
neighborhood information than the undirected graph structure. On the other hand, the
variable values of the diagonal elements indicate that the self-influences receive more
attention in the directed graph structure.

Figure 7. Visualization of the normalized Laplacian matrices of (a) the topology-based undirected
graph and (b) the Markov-based directed graph for 30 selected road segments.

5.2. The Temporal Distribution of the Forecasting Errors

Figure 8 displays the average hourly distribution of the forecasting errors obtained
by implementing the proposed method on the testing set. The T-DGCN has the ability
to limit the forecasting errors to approximately four in the majority of timestamps. Here,
interestingly, the forecasting errors during 0:00–6:00, especially those between 3:00–6:00,
are significantly higher than those during other time periods.

Figure 8. The average hourly distribution of the forecasting errors obtained by implementing the
proposed method on the testing set, where the line represents the median of the forecasting errors.

This distribution characteristic is highly consistent with that described in a previous
study [1]. The existing inferences suggest that this may be a result of the magnitude of traffic
flow speed and the noise in records. However, Figure 9a,b illustrate the homogeneous
distributions of the traffic flow velocities and standard deviation in a whole day, which
rejects the above inferences. In this research, we further calculated the average hourly
distribution of the number of vehicles in Figure 9c. Clearly, the average number of vehicles
is very small during the early morning hours, which is in accordance with the distribution
of the prediction forecasting errors.
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Figure 9. The average hourly distributions of (a) the traffic flow velocities, (b) the standard deviations of traffic flow
velocities, and (c) the vehicle numbers.

5.3. Analysis of the Temporal Dependence

Figure 10 visualizes the multihead attention scores of four forecasting cases in the
transformer structure. The scores quantify the contribution degree of the observations
in the keyframe sequence to the traffic flow states to be forecasted. With the number of
single-head attention nodes set to two, the training process automatically differentiates the
two attention heads. The two attention heads learn the short-term dependence (i.e., the
tendency) and the long-term dependency (i.e., the periodicity) of traffic flow. Specifically,
Head-2 in Case 1 has higher attention scores in the beginning parts of the tendency-related
sequence, while the ending parts make more contributions to the forecasted states in Case 4.
For Cases 2 and 3, the middle parts in the tendency-related sequence are considered to
be more important than the beginning and ending parts by the transformer structure. In
addition, the heterogeneity of long-term dependence is adaptively captured, as reflected
by the distributions of attention scores in the periodicity-related sequence of Head-1.

Figure 10. Cont.
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Figure 10. Visualization of the two-head attention scores regarding (a) Case 1, (b) Case 2, (c) Case 3,
and (d) Case 4 in the transformer structure.

Furthermore, we utilized the auto-correlation function (ACF) to demonstrate the
rationality and effectiveness of the trained two-head attention. Figure 11a shows the
calculated autocorrelation coefficients of the original traffic flow time series with different
time lags, where each line describes the autocorrelation for each road segment. It is obvious
that the utilized traffic flow data contain significant tendencies and periodicities that appear
to be discrepant between road segments. Moreover, Figure 11b depicts the relationship
between the autocorrelation coefficients and forecasting errors. The results indicate that the
forecasting errors of the proposed method stabilize at low levels for road segments with
average autocorrelation coefficients larger than 0.2.

Figure 11. (a) The autocorrelation coefficients of the utilized traffic flow time series; (b) the relationships between the
average autocorrelation coefficients and the forecasting errors.

5.4. Discussion

Through the above analysis of the experimental results, we are able to provide a
comprehensive discussion regarding the outperformance of the proposed method in terms
of the accuracy of traffic flow forecasting from the following three aspects.

In the spatial dimension, the directed graph structure enables the neural network to
leverage more associated information with the help of the Markov transfer matrix, which is
a critical factor in higher traffic flow forecasting accuracies. In the temporal dimension, the
multihead attention in the proposed method has the ability to adaptively learn the short-
term and long-term temporal dependence of traffic flow states observed on different road
segments at distinct timestamps. Based on the above two factors, we can make convincing
arguments that the proposed method is superior to the baseline methods.

Furthermore, in real-world applications, the sparse observations of traffic flow states
in the early morning hours may increase the unreliability of space–time dependency
feature learning and the associated forecasting errors. In other words, the proposed
model performs better when there are more vehicles on the road network. However,
traffic forecasting is more important and needed during peak hours to serve as many
vehicles as possible, which is also the period with the highest forecasting accuracy of the
proposed method. Hence, the T-DGCN model is able to meet the needs of realistic traffic
forecasting tasks.
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6. Conclusions

This study designed a new method called the temporal directed graph convolution
Network (T-DGCN) to achieve high-precision traffic flow forecasting by adaptively captur-
ing complicated spatial and temporal dependence. Specifically, in the spatial dimension,
the idea of Markov chains is introduced to construct a directed graph for a road network
by taking the vehicle turning behaviors at intersections into account. On this basis, we
employed a directed graph convolution operator to learn spatial dependence features. In
the time dimension, we built a keyframe sequence for each forecasted state and used the
transformer structure to capture both short-term and long-term temporal dependence. In
the experiments, real-world taxi trajectory points in Shenzhen city, China, were utilized
to estimate historical traffic flow states on the road network to perform experimental
comparisons between the proposed method and seven commonly used representative
baseline methods using different evaluation metrics. The experimental results demonstrate
the superiority of the proposed method in terms of traffic flow forecasting accuracy. In
addition, we further discussed the forecasting results obtained by the proposed method
from the space–time distributions of the forecasting errors and the multiterm temporal
dependence. To a large extent, the discussions rationalize the high forecasting accuracy of
the proposed method.

In the future, we will pay attention to the following three aspects of published works:
The first is to make comparisons between the performance of model-based traffic simulators
and deep leaning models in real-time traffic flow forecasting. The second is to investigate
the impacts of incompleteness of traffic flow data on the model training process and on
measuring the uncertainty degree of forecasting results by leveraging statistical models.
Third, focus will be given to generalize the proposed T-DGCN model to improve its
applications in diverse traffic scenarios.
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