

ISPRS Int. J. Geo-Inf. 2021, 10, 666. https://doi.org/10.3390/ijgi10100666 www.mdpi.com/journal/ijgi

Article

A Method of Optimizing Terrain Rendering Using Digital

Terrain Analysis

Lei Zhang 1, Ping Wang 2,3, Chengyi Huang 4, Bo Ai 1,2,* and Wenjun Feng 5

1 College of Geodesy and Geomatics, Shandong University of Science and Technology,

Qingdao 266590, China; 201982020020@sdust.edu.cn
2 Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural

Resources, Guangzhou 510000, China; wangping@scs.mnr.gov.cn
3 South China Sea Information Center of State Oceanic Administration, Guangzhou 510000, China
4 North Sea Engineering and Survey and Research Institute, State Oceanic Administration,

Qingdao 266061, China; huangchengyi@ncs.mnr.gov.cn
5 Qingdao Yuehai Information Service Co., Ltd., Qingdao 266590, China; fwj@oceanread.com

* Correspondence: aibo@sdust.edu.cn

Abstract: Terrain rendering is an important issue in Geographic Information Systems and other

fields. During large-scale, real-time terrain rendering, complex terrain structure and an increasing

amount of data decrease the smoothness of terrain rendering. Existing rendering methods rarely

use the features of terrain to optimize terrain rendering. This paper presents a method to increase

rendering performance through precomputing roughness and self-occlusion information making

use of GIS-based Digital Terrain Analysis. Our method is based on GPU tessellation. We use quad-

trees to manage patches and take surface roughness in Digital Terrain Analysis as a factor of Levels

of Detail (LOD) selection. Before rendering, we first regularly partition the terrain scene into view

cells. Then, for each cell, we calculate its potential visible patch set (PVPS) using a visibility analysis

algorithm. After that, A PVPS Image Pyramid is built, and each LOD level has its corresponding

PVPS. The PVPS Image Pyramid is stored on a disk and is read into RAM before rendering. Based

on the PVPS Image Pyramid and the viewpoint’s position, invisible terrain areas that are not culled

through view frustum culling can be dynamically culled. We use Digital Elevation Model (DEM)

elevation data of a square area in Henan Province to verify the effectiveness of this method. The

experiments show that this method can increase the frame rate compared with other methods, es-

pecially for lower camera flight heights.

Keywords: terrain rendering; tessellation; Potential Visible Set; Digital Terrain Analysis; Levels of

Detail; OpenGL Shading Language

1. Introduction

Three-dimensional terrain rendering is an important subject of research in Geo-

graphic Information System (GIS). In recent years, with the increasingly higher require-

ments for realistic rendering, large-scale, high-precision, real-time terrain rendering

methods are facing challenges.

These techniques can be divided into two categories: grid-based terrain modeling

and triangulation-based terrain modeling [1]. The former method makes use of height

data collected or arranged in the form of a regular (e.g., rectangular or square) grid; it has

simple geometric structure and is widely used, but one of its shortcomings is that it is not

related to the characteristics of the terrain itself. The latter method uses Triangulated Ir-

regular Networks (TIN), which can reduce redundancy while preserving details of the

terrain. This method has complex data structures and needs more storage space for topol-

ogy information of triangles. In addition, a hybrid terrain model has been put forward

Citation: Zhang, L.; Wang, P.;

Huang, C.; Ai, B.; Feng, W. A

Method of Optimizing Terrain

Rendering Using Digital Terrain

Analysis. ISPRS Int. J. Geo-Inf. 2021,

10, 666. https://doi.org/10.3390/

ijgi10100666

Academic Editor: Wolfgang Kainz

Received: 20 August 2021

Accepted: 27 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

ISPRS Int. J. Geo-Inf. 2021, 10, 666 2 of 22

and studied [2–4] in which the two aforementioned data structures are combined. Hybrid

terrain models can visualize complex terrain features such as cliffs. However, hybrid ter-

rain models have more complicated data structures and need additional processing tasks.

Sometimes terrain rendering, especially for large-scale terrains, cannot achieve the

expected frame rate. However, many optimization techniques have been proposed in the

last years. Hoppe successively proposes Progressive Meshes (PM) [5] and View-Depend-

ent Progress Meshes (VDPM) framework [6]. VDPM can achieve a good performance.

However, because all the vertex information in a terrain model is sent to GPU, this method

has no advantage in saving bandwidth. Another representative and well-known method

is Real-time Optimally Adapting Meshed (ROAM) [7], which is based on regular grids

and uses two priority queues to drive splitting and merging operations. This method used

a binary tree to manage triangles, and a triangle represents a node in the binary tree. Split-

ting operations can replace triangles with its two child triangles. Merging operations can

merge two child triangles into one father triangle. These operations maintain continuous

triangulations built from preprocessed bintree triangles.

Chunked Levels of Detail (Chunk LOD) [8] is an approach to aggregated LOD. LOD

are usually computed and used when rendering a terrain, and they improve rendering

performance by adjusting the number of triangles. Compared with the previous methods,

Chunk LOD reduces the amount of CPU calculation. In addition to LOD, view frustum

culling is also used to accelerate rendering in these methods. View frustum culling culls

groups of triangles outside the viewing frustum at the CPU stage instead of discarding

them by hardware automatically [9].

Though these methods have simplified data to be rendered to some extent, they have

complex data structures and need large transmission bandwidths [10]. As hardware im-

proves, some researchers start using GPU based methods [4,11,12], which greatly improve

the rendering speed. After tessellation, which provide a way to tessellate geometry on the

GPU [13], was added to rendering pipeline, hardware tessellation technology has become

popular and widely used in terrain rendering of commercial game engines, such as Unreal

4 from Epic Games Inc. and Unity from Unity Technologies. Schäfer et al. discuss and

compare methods of rendering based on hardware tessellation in their report [14]. Hard-

ware tessellation technology uses axis-aligned quad patches as primitives. It usually uti-

lizes a displacement map to determine the location of sample points generated in fix-func-

tion tessellator. Displacement maps store terrain height information and topological in-

formation implied. This method reduces primitives sending from CPU to GPU. On the

basis of the new graphics card that supports tessellation, many methods have been devel-

oped. Yusov et al. use vertical skirts to hide cracks [15]. Engel et al. [16] present an algo-

rithm that achieves smooth LODs transitions from any viewpoint. Cantlay [17] introduces

his crack-free terrain, but his work ignores the terrain roughness. Some methods [18–21]

use quadtrees to manage data and adopt view frustum culling to minimize data passed to

GPU.

Nevertheless, we notice that some methods ignore occlusion culling. A large number

of invisible primitives are sent to GPU during real-time rendering. Our approach is dedi-

cated to solving this problem to a certain extent by using potential visible patch set (PVPS)

to cull an invisible area when rendering terrain. Airely et al. first used a precomputed

potential visible set (PVS) to cull hidden geometries in real-time rendering [22]. PVS is

used in many graphics applications to cope with large amounts of data [23,24]. Zaugg et

al. introduce this idea into terrain rendering [25]. In traditional terrain rendering, which

uses triangulation-based modeling, it is difficult for PVS to reject invisible primitives be-

cause its data is organized vertex-by-vertex, and it usually consists of millions of vertexes.

As a result, visibility information is hard to calculate and store. However, the emergence

of hardware tessellation can apply PVS easily. In this method, the terrain is divided into

quad regular patches, and there is no need to pay attention to the details of each vertex;

therefore, information about invisible and visible patches could be easily stored. Table 1

lists and compares parts of the methods referred to above.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 3 of 22

Table 1. Comparison of the various methods.

Method

Grid-Based/Tri-

angulation-

Based/Hybrid

Levels Of

Detail (LOD)

Quadtree/Binary

Tree

GPU

Tessellation

View Frustum

Culling

Occlusion

Culling

Baumann [2] Hybrid Yes No No Yes No

Paredes [4] Hybrid Yes No Yes No No

Hoppe [5] Triangulation Yes No No No No

Duchaineau [7] Triangulation Yes Binary Tree No No No

Ulrich [8] Grid Yes Quadtree No No No

Ripolles [11] Grid No No Yes No No

Yusov [15] Grid Yes Quadtree Yes No No

Engel [16]
Procedural

Algorithm
Yes Quadtree Yes Yes No

Cantlay [17] Grid Yes No Yes No No

Zhai [18] Grid Yes Quadtree Yes Yes No

Kang [19] Grid Yes Quadtree Yes No No

Fu [20] Grid Yes Quadtree Yes Yes No

DONG [21] Grid Yes Quadtree Yes Yes No

Zaugg [25] Grid Yes Quadtree No No Yes

Ours Grid Yes Quadtree Yes Yes Yes

Here, we propose a viewpoint-based, seamless method to avoid sending unnecessary

primitives to rendering pipeline using hardware tessellation. We partition the scene into

cells and calculate a PVPS for each cell. Viewpoints in the same cell share the same PVPS;

therefore, it is feasible to calculate and store every viewpoint’s PVPS, even with limited

storage capacity. We use quadtrees to manage patches. Patches are created based on their

father node, and roughness is taken as a factor in LOD selection. For each LOD level, we

calculate a PVPS image and a roughness image. We call the union of PVPS images PVPS

Image Pyramid, and we call the union of roughness images Roughness Image Pyramid.

We read a node’s roughness value and visibility information from Roughness Image Pyr-

amid and PVPS Image Pyramid to decide whether a node is to split. Before nodes’ split-

ting, we read their visibility information from PVPS Image Pyramid. If the information

shows invisible results, nodes will be discarded. We calculate a PVPS by key viewpoints’

visibility between test points on patches using a line-of-sight algorithm. Key viewpoints

are a set of points that are chosen to calculate visibility information (PVPS) in a cell space.

Test points are sampled on patches. Whether a patch is visible within a cell is determined

by key viewpoints in this cell and test points on this patch. For each key viewpoint, we

calculate the visibility with each test point. When a high enough number of visibility re-

sults turn out invisible, we consider this patch is not visible within a cell space. We use all

calculation results to create a PVPS. When a viewpoint moves from one cell to its adjacent

cells, we adjust primitives (patches) via PVPS. PVPS is stored as binary images on disk.

2. Methods

As is shown in Figure 1, our process is divided into three parts: preprocessing, ini-

tialization and patches update, and rendering.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 4 of 22

Figure 1. Process of our method.

2.1. Experimental Data

We use a 4096 × 4096 TIFF 32-bit, sampled at 12.5 m spacing, grayscale image as a

height map. The data is from the southern mountainous area of Luoyang City, Henan

Province, China. This area is crisscrossed with ravines and rivers. When roaming on the

ground in this kind of scene, many terrain regions are occluded. Figure 2a shows this

image.

(a)

ISPRS Int. J. Geo-Inf. 2021, 10, 666 5 of 22

(b)

(c)

Figure 2. Diagram of the terrain and partitions. (a) represents the terrain height map, a 4096 × 4096

TIFF 32-bit, sampled at 12.5 m spacing, grayscale image. (b) represents the partition result, parti-

tioned into 64 × 64 patches. (c) shows the scene’s partition, in addition to 32 × 32 partitions on

the plane; it is partitioned in the vertical direction.

2.2. Preprocessing

2.2.1. Partition of Scene and Terrain

In this section, we use a height map (texture data) to illustrate the result of terrain

partition. A height map can be seen as a Digital Elevation Model (DEM), used for render-

ing and calculating visibility between points. A square DEM cell �� can be described by

Equation (1).

�� = (��, �� , ��); � = 1,2,3, ⋯ (1)

Figure 2a shows our height map. A GPU can conveniently and efficiently perform

height map texture sampling during terrain rendering.

Partitioning terrain and view scene is an important part in the whole preprocessing

stage, also influencing the performance of rendering later.

The partitioning method depends on rendering quality requirements. Smaller parti-

tion intervals can result in a lot of precomputation work and taking up too much space to

store PVPS information, but this can generate a precise PVPS and has a better rendering

ISPRS Int. J. Geo-Inf. 2021, 10, 666 6 of 22

performance. A bigger partition interval can lead to a rough PVPS, relatively: more areas

that should have been eliminated might be retained.

In this paper, we partition the terrain into 64 × 64 patches. A patch represents a

square terrain area and is defined by the coordinates of its four corners. The way of parti-

tion depends largely on experience. When the terrain is partitioned into more patches such

as 128 × 128 patches, we can get more triangles and, therefore, a better rendering result.

As a result, more patches decrease FPS. As for the terrain of this paper, 64 × 64 patches

can meet the requirements of rendering quality. We partition the scene space into view

cells. A cell represents a cuboid region in space. Cells are distributed over the surface of

the terrain. There are three floors, and there are 32 × 32 cells for each floor. The view

scene not in the 32 × 32 × 3 view cells is called ��������� . For each cell except ��������� ,

we calculate a PVPS. There are 32 × 32 × 3 + 1 view cells in total. The partition process

is expressed by Equations (2) and (3). Figure 2 shows the partition result.

��������
� = {����ℎ��|� = 0,1, … ,63, � = 0,1, … ,63} (2)

������
� = {�������|� = 0,1, … ,31, � = 0,1, … ,31, c = 0,1,2} ∪ {���������} (3)

2.2.2. PVPS Computation

This section describes the strategy we proposed to determine a cell’s Potential Visi-

bility Patch Set (PVPS). We adopt a straightforward method based on an adapted line-of-

sight algorithms to calculate visibility between one viewpoint and one test point.

As is shown in Figure 3a, terrain section line consists of a set of points whose coordi-

nates are obtained by a kind of 3D Bresenham algorithm [26,27]. Each point in a terrain

section line is assigned the value of the nearest DEM cell.

(a) (b)

Figure 3. Diagram of 3D Bresenham algorithm and line-of-sight algorithm. (a) describes 3D Bresenham algorithm. The

blue line segment is the projection of the line segment formed by two points on the terrain. The gray grids are the grids

through which the line segments pass. The black points are the intersections of the vertical lines from the center of the

gray grids to the blue line segment. A black point’s elevation value is represented by the elevation value of the nearest

DEM cell. (b) shows line-of-sight algorithms we use. The blue line represents the terrain section line.

As is shown in Figure 3b, for a point ��
� = ����

�, ���
�, ���

�� ; � = 1,2,3, ⋯ in a terrain sec-

tion line, we calculate �� = ����
, ���

, ���
�; � = 1,2,3, ⋯ , �� is the vertical projection of ��

�

onto the straight line connecting the view and test point. For each ��
�, we test the condition

in Equation (4), where ������
� represents the angular coefficients of oriented line from ��

to ��
�, and ������

 represents the angular coefficients of oriented line from �� to ��. If all

results are less than 0, there is no visibility between the viewpoint and the test point; oth-

erwise, they are intervisible.

����, ��, ��
�� = ������

� − ������
 (4)

ISPRS Int. J. Geo-Inf. 2021, 10, 666 7 of 22

Test points are evenly distributed in a patch area, 7 × 7 test points in total, as are

shown in Figure 4. More test points can lead to a more precise PVPS result. In this paper,

we set 7 × 7 test points. The area represented by the dotted rectangle is the patch waiting

to have its visibility confirmed. We use line-of-sight algorithms described above to calcu-

late each test point’s visibility with a viewpoint in a cell. If all results are false, this patch

is not visible from this viewpoint; otherwise, this patch is added to this viewpoint’s PVPS.

Figure 4. Test points. There are 7 × 7 test points in total.

The union of each viewpoint’s PVPS in a cell is defined as that cell’s PVPS. The exact

solution to this problem is not feasible computationally, so we can only take a limited

number of viewpoints. We simplify this part of work by considering the visibility rela-

tionship between viewpoints in the same view cell.

Suppose there is a test point on a patch; as long as we find a viewpoint from which

this test point is visible, we can assert that patch is visible from this cell. Only when we

find enough viewpoints from which all test points on that patch are invisible can we assert

that that patch is invisible from this cell. We choose a certain number of viewpoints on

one or two edges of a cell to estimate the exact visibility information. The viewpoints we

choose are named key viewpoints. To explain this strategy of key viewpoints, we first

describe two simple properties.

As is shown in Figure 5, suppose there is a viewpoint �� = (���
, ���

, ���
), which is not

on the top of the view cell and is visible from the test point. It can be proven that there

exists a viewpoint �� = (���
, ���

, ���
+ ∆�) for each ��

� in the terrain section line, which

satisfies �(��, ��, ��
�) > 0. ∆� represents the height difference between point �� and ��.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 8 of 22

Figure 5. Diagram of the positional relationship between points.

One property is that, if a test point is visible from a viewpoint ��, then the test point

is also visible from any other viewpoint lying higher than �� on the same vertical line as

��.

As is shown in Figure 5, suppose there is a viewpoint �� = (���
, ���

, ���
) on the top

plane of a cell. Suppose there is a viewpoint �� = (���
, ���

, ���
) lying on the vertical plane

containing �� and a test point ��. If �� is visible from the test point �� = (���
, ���

, ���
),

���
≥ ���

, it can be proven that �� is also visible from ��.

Thus, another property is that, if a test point �� is visible from a viewpoint ��, and

�� lies higher than or equal to ��, then �� is also visible from a viewpoint �� lying on

the vertical plane containing �� and �� , at the same height as ��, and closer to �� than

�� .

According to the above two properties, viewpoints on the closer edges are more

likely to be visible from a test point. Moreover, according to the contrapositive of the two

properties, as is shown in Figure 5, if �� is not visible from ��, any viewpoint on the

orange plane or on the blue plane is also not visible from ��. If �� is not visible from ��,

any viewpoint on the blue plane is also not visible from ��. Suppose in a cell, when we

have enough viewpoints from which a test point is invisible, we then assert that the test

point is invisible from that cell. The viewpoints located on an edge and closer to a test

point are more valuable than other viewpoints because these viewpoints can prove that a

wider range of viewpoints are invisible. It can be said that these points are representative,

and we call them key points. Similarly, when a test point is higher than the top plane of a

cell, we choose key points on the further edges.

As a strategy, we choose key viewpoints on different edges according to the azimuth,

and height of the test point as is shown in Figure 6. When the top plane is higher than the

test point, the edges we choose are the edges which are closer to this test point. When the

top plane is lower than the test point, the edges we choose are the edges which are further

to this test point. These situations are listed in Figure 6.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 9 of 22

Figure 6. Diagram of edge selection policy. The picture on the left shows the top view of a cell. The possible areas of all

test points are divided into 8 regions. A test point may be located at one of 8 different regions. ���� represents the eleva-

tion of the top plane of a cell; �� represents elevation of the test point. Our viewpoints are sampled on the top plane of a

cell; their elevations are the same. According to 2 different conditions, as is shown in the table, samples will be taken on

different edges.

To calculate a test point’s visibility to a cell, we adopt an iterative strategy, first choos-

ing key viewpoints on both ends of the edges and then testing their visibility with the test

point: if there is a visible result with the test point, we regard the test point visible from

this cell. If all results are false, we choose the midpoint of every two adjacent key view-

points as new key viewpoints and iterate the above process until reaching a set number

of key viewpoints. The larger the number is set, the more accurate the result will be. We

set this number to 16 in this paper. Afterward, if all results turn out invisible, we consider

this test point is not visible from the cell. We do this for all test points in a patch until we

find a visible result. Only when all test points are turn out invisible do we regard this

patch as not visible from this cell. The results are Boolean in nature, with 0 corresponding

to invisible patches and 1 to visible ones. When the patch is regarded visible from a cell,

the corresponding pixel is white; when the patch is regarded invisible from a cell, the pixel

is black. All the results form a 64 × 64 binary image. Figure 7 shows a cell’s PVPS result.

Figure 7. Diagram of a PVPS map. A PVPS map is a 64 × 64 binary image. Potential visible patches

are marked white, and not visible ones are marked black.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 10 of 22

2.2.3. Roughness Map Computation

We use terrain roughness as a factor to decide quadtree LOD levels. In Digital Terrain

Analysis, one of its definitions is the ratio of terrain surface area to projection area [28].

Roughness of a square DEM cell ���������� is calculated by Equation (5), where ������

represents the slope of this square DEM cell. Slope is determined by the rates of change

(delta) of the surface in the horizontal and vertical directions from the center cell. The

values of the center cell and its eight neighbors determine the horizontal and vertical del-

tas. ������ is calculated by the Slope tool of ArcGIS 10.3.

���������� = 1 ÷ cos
������ ∗ �

180
 (5)

The computation result is normalized to a range of 0–255 and stored in a grayscale

image (Figure 8).

Figure 8. Diagram of a terrain roughness map. It is a 4096 × 4096 grayscale image.

2.3. Initialization and Patches Update

Our method is implemented based on Open Graphics Library (OpenGL). In the sec-

tions that follow, we use a right-handed system, where Y is the vertical axis and X and Z

are the horizontal axes to keep consistent with OpenGL.

We use a top–down quadtree to generate patches and construct terrain model. The

detailed process of initialization and patches update is shown in Figure 9. The whole

quadtree construction begins from an initial quadtree node. The initial quadtree node is

located at the center of the whole terrain. After it is input, it will be tested for view frustum

culling and occlusion culling. The initial quadtree node can almost always split into child

quadtree nodes. Child quadtree nodes repeat the same process until all quadtree nodes

generate patches.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 11 of 22

Figure 9. Flowchart of quadtree initialization and patches update.

As is shown in Figure 10, a terrain is represented by a group of quadtree nodes. Each

quadtree node represents a quadrilateral patch. Quadtree nodes at different levels repre-

sent patches of different sizes. We use ��,�
� to represent a quadtree node. � represents the

level this quadtree node is at. � and � are used to uniquely determine the location of a

quadtree node. � represents the ordinal number of the quadtree node counting from the

X-axis. � represents the ordinal number of the quadtree node counting from the Z-axis.

Figure 10. Diagram of the quadtree, PVPS Image Pyramid, and Roughness Image Pyramid. Blue circles represent quadtree

nodes, and red circles represents corners of a patch.

The coordinates of a quadtree node ��,�
� on the X and Z axes �

��,�
� and �

��,�
� can be

calculated as the following equations. Length represents the length of a patch in coordinate

system. For example, as is shown in Figure 10, the Length of the patch generated by ��,�
�

is the distance between ������� and �������.

�
��,�

� = (i + 1) ×
�����ℎ

2���
 (6)

�
��,�

� = (� + 1) ×
�����ℎ

2���
 (7)

ISPRS Int. J. Geo-Inf. 2021, 10, 666 12 of 22

2.3.1. Quadtree Initialization and Quadtree Nodes Input

At the initialization stage, we first load visibility information. We create PVPS Image

Pyramids to store the visibility information. It is used to cull primitives that cannot be

culled by view frustum culling. Figure 10 shows a PVPS Image Pyramid and a Roughness

Image Pyramid. They have seven levels in total. Each level has 32 × 32 × 3 PVPS images,

and they correspond to 32 × 32 × 3 cells. Each level has only one roughness image. At

level 6, there are 64 × 64 quadtree nodes. The PVPS images and roughness image at level

six are 64 × 64 grayscale images. A lower-level image is half the edge length of the image

on the level directly above it.

Each node corresponds to a pixel in the PVPS images and a pixel in the roughness

images. A pixel in the PVPS Images represents the visibility of a quadtree node. Each node

can find its own visibility information in the PVPS images. There are two grayscale values

in PVPS Images A grayscale value 0 (black) represents an invisible node, and a grayscale

value 255 (white) represents a visible one. The grayscale value of a pixel in its image is the

result of logic OR operation of four neighborhood pixel values in the image of a higher

level. Therefore, if any child node of a father quadtree node is visible, the father node is

considered visible, and its corresponding pixel value is 255 (white). If all child nodes are

invisible, their father node is considered invisible, and the pixel value is 0 (black). Except

for pixels in the level six, each pixel in a roughness image is the arithmetic mean of four

neighborhood pixel values in the image of a higher level. Before rendering, PVPS images

and roughness images are read into memory.

When the quadtree construction begins, the initial quadtree node ��,�
� at LOD level

0 is firstly input. ��,�
� is located at the center of the whole terrain, as is shown in Figure

10.

2.3.2. View Frustum Culling

View frustum culling is an idea to cull groups of triangles before GPU stage. It can

improve the rendering efficiency as a result. Luna introduced this method and gave an

example [9]. In this paper, we build a bounding box for each quadtree node. If the bound-

ing box is outside the frustum, we discard this quadtree node. If the bounding box is inside

or intersect the frustum, this quadtree node will become a candidate for being checked for

occlusion culling. As is shown in Figure 11, the terrain is composed of different-size

patches, which are generated by quadtree nodes. Quadtree nodes not inside the frustum

are discarded and do not generate patches.

Figure 11. The terrain after view frustum culling.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 13 of 22

2.3.3. Occlusion Culling

At this stage, each input quadtree node is checked for PVPS culling. According to the

input node’s level and position, we read the pixel value in the corresponding PVPS im-

ages. For example, ��,�
� is a quadtree node at level k; it corresponds to a (� + 1) × (� +

1) size PVPS image of level k. We read the pixel value at (m,n) of this image. If the pixel

value is 0, we determine that this quadtree node is visible, and this quadtree node becomes

a candidate for splitting. If the pixel value is 255, we determine that this quadtree node is

invisible and discard this node.

2.3.4. Quadtree Nodes Splitting

We use the following equation as a node evaluation function to decide whether a

quadtree node splits or not.

����� =
�� × �

���� × (� + ��)
 (8)

���� =
�����ℎ

2�
 (9)

� is the precomputed roughness value. �� and �� are adjustment coefficients. �� is

used to determine the degree of subdivision of the terrain, and �� is used to determine

the influence degree of the terrain roughness to �����. � represents the node’s distance

to camera; ���� represents the corresponding terrain edge length of the node. If a quad-

tree node ��,�
� ’s ratio is lower than 1, it will be split into four child nodes: ���,��

��� , �����,��
��� ,

���,����
��� , and �����,����

��� , and those four child nodes are tested for view frustum culling in

the next iteration. If not splitting, a node will generate a patch. A patch is defined by the

coordinates of its four corners, as shown in Equation (10). Their Y-axis coordinates should

be the same; here, we set it to 0.

������� = (�
��,�

� −
1

2
× ����, 0, �

��,�
� −

1

2
× ����)

������� = (�
��,�

� −
1

2
× ����, 0, �

��,�
� +

1

2
× ����)

������� = (�
��,�

� +
1

2
× ����, 0, �

��,�
� −

1

2
× ����)

������� = (�
��,�

� +
1

2
× ����, 0, �

��,�
� +

1

2
× ����) (10)

2.4. Rendering

After the iteration process at the CPU ends, coordinates of all patches are sent to GPU.

At the GPU stage, input axis-aligned quad patches are tessellated into meshes of geomet-

ric primitives [29]. Afterward, a height map texture (Figure 2a) is sampled, and the verti-

ces of meshes are positioned according to the height map.

An important step at this point is how to avoid cracks, a problem that arises when

adjacent patches have different sizes. Figure 12a,b shows a terrain with cracks. Because

the triangles that make up the terrain do not fit together tightly, some holes and cracks

are created.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 14 of 22

(a) (b)

(c) (d)

Figure 12. A terrain with cracks. (a,b) show a terrain with cracks. The cracks are marked by red rectangles. (c,d) show the

result of our crack-free method.

There are already some methods to solve this problem. Yusov et al. [15] exploit “ver-

tical skirts”, which can hide possible cracks but create extra triangles. Cantlay [17] adds

explicit information about a patch’s neighbors. He achieves crack-free terrain by adjusting

tessellation factors according to the adjacency information. This method needs to pass ad-

ditional adjacency information to GPU. Zhang et al. put forward dynamic stitching strips

[30]; this is relatively complex for adding extra strips. Kang et al. obtain a crack-free terrain

by restricting patch LODs to 2�, i.e., 1, 2, 4, 8, 16, 32, and 64 [19]. Most of these crack-free

methods mainly focus on adjusting tessellation scale factor in the Tessellation Control

Shader.

To solve this problem, we divide edges of patches into two class: edges adjacent to

different-sized patches and edges adjacent to the same-sized patches. As in shown in Fig-

ure 13, the LOD level of the patch in the left is one lower than the two patches in the right.

Edges adjacent to patches of the same LOD level are marked red; other edges are marked

blue. In addition, edges adjacent to no patches are seen as edges adjacent to different-sized

patches.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 15 of 22

Figure 13. Diagram of edges of two classes.

When the quadtree is computed, we search a node’s four neighbors and calculate

their difference in levels. We take advantage of Y-axis coordinates of vertexes to pass clas-

sification information of edges without extra data. Coordinates of a patch’s four corners

are modified as Equation (11); �����_����, �����_���, �����_���ℎ�, and �����_������ rep-

resent the LOD levels of a patch’s four neighbors. In the Tessellation Control Shader, Y-

axis coordinates of four vertices are used to decided four outer tessellation levels:

��_���������������[�]; � = 1,2,3,4.

������� = (�
��,�

� −
1

2
× ����, ����� − �����_����, �

��,�
� −

1

2
× ����)

������� = (�
��,�

� −
1

2
× ����, ����� − �����_���, �

��,�
� +

1

2
× ����)

������� = (�
��,�

� +
1

2
× ����, ����� − �����_���ℎ�, �

��,�
� −

1

2
× ����)

������� = (�
��,�

� +
1

2
× ����, ����� − �����_������, �

��,�
� +

1

2
× ����) (11)

In the Tessellation Control Shader, when the value of Y-axis coordinates of ������� .

equals 0, ��_���������������[�] is set as the ratio of the current edge length to the mini-

mum edge length. Minimum edge represents edges of patches, which is generated by

quadtree nodes at level six. If the value of Y-axis coordinates of ������� does not equal 0,

��_���������������[�] is up to the edge length in the screen space. The pseudo code is

shown in Algorithm 1.

Algorithm 1 Crack-Free Process

1: if Y coordinates of ������� equal 0, then

2: ��_���������������[0] = Constant * ScreenSpaceLeftEdgeLength

3: else

4: ��_���������������[0] = LeftEdgeLength / MinEdgeLength

5: end if

6: if Y coordinates of ������� equal 0, then

7: ��_���������������[1] = Constant * ScreenSpaceBottomEdgeLength

8: else

9: ��_���������������[1] = BottomEdgeLength / MinEdgeLength

10 end if

ISPRS Int. J. Geo-Inf. 2021, 10, 666 16 of 22

11: if Y coordinates of ������� equal 0, then

12: ��_���������������[2] = Constant * ScreenSpaceRightEdgeLength

13: else

14: ��_���������������[2] = RightEdgeLength / MinEdgeLength

15: end if

16: if Y coordinates of ������� equal 0, then

17: ��_���������������[3] = Constant * ScreenSpaceTopEdgeLength

18: else

19: ��_���������������[3] = TopEdgeLength / MinEdgeLength

20: end if

Constant represents a constant that is used to decide the degree of subdivision of a

terrain. Inner tessellation levels are calculated for the number of tessellations within an

abstract patch. They are calculated as Equation (12). ����������� and ����������� pre-

sent two inner tessellation levels. ����������������ℎ� and ����������������ℎ� repre-

sent two edge lengths in the screen space; ������������� represents the roughness

value, which is obtained by reading roughness maps. �� and �� are adjustment coeffi-

cients. �� is used to determine the degree of subdivision of the patch, and �� is used to

determine the influence degree of the roughness value to inner tessellation levels. After

setting these tessellation factors, Y-axis coordinates of four corners of the patch are set the

original value, for example 0, and passed to tessellation evaluation shader.

����������� = �� × ����������������ℎ� × (������������� + ��)

����������� = �� × ����������������ℎ� × (������������� + ��) (12)

3. Results

We perform our experiments in OpenGL 4.6 on a 3.00 GHz Intel Core i7 9700 CPU

with an NVIDIA GeForce GTX 1660Ti GPU. The screen resolution is 1200 × 800.

In order to test the effectiveness of our method, we compare the performance of our

method with our implementations of two other methods. Figure 14 shows the results of a

60 s flight over the test area at four different heights with method A, method B, and

method C. Method A is implemented in Zhai [18]; it is based on quadtrees, and it also

takes terrain roughness into consideration. Method B is implemented in Dong [21]. In this

method, roughness is defined as the difference between maximum and minimum eleva-

tion of a terrain. Method C is the method proposed in this paper. The average camera

heights of our experiments are 884 m, 1012 m, 1140 m, and 1268 m. The adjustment pa-

rameters �� and �� in Equation (12) are set to 10 and 1, respectively. The results are

shown in Figure 14a–d and Table 2, respectively. The horizontal axis in Figure 14 repre-

sents the timeline of 60 s flights.

(a) (b)

ISPRS Int. J. Geo-Inf. 2021, 10, 666 17 of 22

(c) (d)

Figure 14. Comparison among different methods. (a) Average camera heights of 884m. (b) Average camera heights of

1012m. (c) Average camera heights of 1140m. (d) Average camera heights of 1268m.

Figure 14a shows that PVPS culling can effectively increase the frame rate at an av-

erage camera height of 884 m. Compared with the two other methods, the average frame

rate increases by 24% and 20%. Table 2 shows the average number of patches and average

number of triangles during four flights. When the average camera (viewpoint) position is

884 m, compared with method B and method C, PVPS culling reduces about 24 and 36

patches sent to GPU every frame, and as a result, the number of triangles is reduced ef-

fectively.

Table 2. Comparison among different methods.

Average Camera Heights (m) Methods
Average Frame Rate

(frame/s)

Average Number of

Patches

Average Number of

Triangles

884

Method A 3445 92 115,269

Method B 3567 104 110,194

Method C 4279 68 79,063

1012

Method A 3433 91 116,540

Method B 3521 103 112,497

Method C 3884 73 89,391

1140

Method A 3357 90 117,139

Method B 3444 102 116,505

Method C 3764 81 102,119

1268

Method A 3304 88 118,157

Method B 3392 101 117,094

Method C 3557 83 105,194

By comparing the line charts in Figure 14, we can find that the effect of PVPS culling

is strongly influenced by the camera (viewpoint) position. We calculate the average frame

rate of three methods at different heights as is shown in Table 2. At 884 m, the average

frame rate is improved by 834 FPS and 712 FPS compared with method A and method B.

However, the average frame rate is only improved by 253 FPS and 165 FPS at 1268 m. As

the camera height increases, PVPS culling has less and less effect on improving the ren-

dering frame rate. In summary, PVPS culling can achieve a better performance improve-

ment at lower heights. When the viewpoint is at a high position with a wide field of view,

PVPS culling has little improvement in the rendering frame rate.

Figure 15 is a set of images that show a frame image of each method. Figure 15a–c

show a frame image of method A, method B, and method C, respectively. The difference

between the rendered results is not easy to detect. As is shown in the red rectangle, some

extra triangles are rendered in method A and method B. Triangles from distant, invisible

terrains and triangles from closer terrains coincide. Method C increase the rendering

frame rate through rejecting those invisible triangles. Rejecting those triangles does not

ISPRS Int. J. Geo-Inf. 2021, 10, 666 18 of 22

decrease the density and number of triangles drawn on the screen, ultimately, so the qual-

ity of images does not decline.

(a)

(b)

(c)

Figure 15. Frame images of three methods. (a) shows a frame image of Method A. (b) shows a

frame image of Method B. (c) shows a frame image of Method C.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 19 of 22

Terrain LOD is indispensable for efficient rendering. Flat terrain needs fewer trian-

gles. As is shown in Figure 16a,b, the camera (viewpoint) is at the center of the terrain;

according to the distance to the camera and terrain roughness value, patches are of differ-

ent Levels of Detail (LOD).

We adjust the subdivision degree of rough terrain by adjusting the adjustment pa-

rameters �� and �� in Equation (12). The terrain with different roughness can be subdi-

vided into different degrees by taking appropriate adjusting coefficients. We select a typ-

ical region to verify the effect of different adjustment coefficients on terrain rendering. The

region is in the gentle valley, as is shown in the red rectangle in Figure 16a,b. Figure 16c–

h show the influence of different adjustment coefficients over the rendering result of the

area. The adjustment coefficients �� and �� in Equation (12) are listed in Table 3. In Fig-

ure 16d, flat terrain nearby and rugged terrain in the distance show the difference of sur-

face subdivision. These adjustment coefficients are determined by users and influence the

number of triangles and, therefore, the FPS. Table 3 shows their impact in this respect. By

decreasing the value of �� and increasing the value of ��, the number of triangles ren-

dered are reduced, and the frame rate is increased.

Using fewer triangles to render flat terrain has almost no effect on the rendering qual-

ity. Through comparison of Figure 16c,e,g, it is difficult to find the difference of the ren-

dering results with different numbers of triangles. By adjusting the subdivision degree of

rough terrain using adjustment parameters �� and ��, our method can achieve higher

frame rates while losing little flat terrain detail.

Table 3. Comparison of different adjustment coefficients.

Adjustment Parameters Number of Triangles Frame Rate (frame/s)

�� = 10, �� = 1 112,868 1921

�� = 12.5, �� = 0.5 72,314 2223

�� = 15, �� = 0.25 83,470 2295

(a) (b)

(c) (d)

ISPRS Int. J. Geo-Inf. 2021, 10, 666 20 of 22

(e) (f)

(g) (h)

Figure 16. Influence of different adjustment parameters on terrain subdivision. (a) and (b) show the region we select to

verify the effect of different adjustment parameters. (c,d) �� = 10, �� = 1. (e,f) �� = 12.5, �� = 0.5. (g,h) �� = 15, �� = 0.25.

4. Conclusions and Future Work

This paper presents a method which uses Digital Terrain Analysis to optimize real-

time terrain rendering based on hardware tessellation. Digital Terrain Analysis is an im-

portant function of Geographic Information Systems. It provides methods to extract ter-

rain features. Our method here employed focuses on mining the features of the terrain

itself and uses this information set to optimize rendering process. We introduce the con-

cept of PVPS Image Pyramid and Roughness Image Pyramid and use them for node’s

discarding and splitting of terrain quadtree nodes. Our method is based on the view-

point’s position. According to the PVPS and roughness images of different viewpoint po-

sitions, we dynamically adjust the rendering strategy. PVPS Image Pyramid provides a

method to cull invisible quadtree nodes hierarchically. Roughness Image Pyramid can

help control the degree of terrain division and, therefore, reduce the number of triangles

in flat terrains. Calculation of terrain feature information may take too much time, so we

precomputed this part of the data. The whole precomputation process takes about 6.5 h

in our experiment. We use popular and widely used hardware tessellation technology to

achieve rendering results and check the rendering efficiency. Compared with previous

methods, our proposed method can improve the rendering performance in different de-

grees according to the position of the viewpoint. Our proposed method can obtain better

rendering performance at lower camera flight heights. As the camera height increases, our

method has less and less effect on improving the rendering frame rate.

As a limitation, our method is not effective for flat terrain, where the field of vision

is wide and there is almost no self-occlusion. Another limitation of the presented approach

is the space partitioning into regular cells, which leads to a lack of flexibility. In future

work, we will try to partition the space into irregular cells according to the situation of

terrain self-occlusion. In addition, we will also use more terrain features for LOD selection

and compare the differences between them. Application of the proposed method on larger

terrains is also under consideration.

Author Contributions: Conceptualization, Zhang, L.; software, Zhang, L. and Feng, W.; data cu-

ration, Wang, P. and Huang, C.; writing—original draft preparation, Zhang, L.; writing—review

ISPRS Int. J. Geo-Inf. 2021, 10, 666 21 of 22

and editing, Zhang, L. and Ai, B.; visualization, Zhang, L.; funding acquisition, Ai, B. All authors

have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [Grant

No. 62071279, 41930535] and the SDUST Research Fund [Grant No. 2019TDJH103].

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their

meaningful comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Petrie, G.; Kennie, T.J.M. Terrain modelling in surveying and civil engineering. Comput.-Aided Des. 1987, 19, 171–187.

2. Baumann, K.; Doellner, J.; Hinrichs, K.H.; Kersting, O. A Hybrid, Hierarchical Data Structure for Real-Time Terrain Visualiza-

tion. In Computer Graphics International, Canmore, Alta, Canada, 11 June 1999; Proceedings of the IEEE: NJ, USA, 1999; pp. 85–92.

3. Boo, M.; Amor, M. Dynamic hybrid terrain representation based on convexity limits identification. Int. J. Geogr. Inf. Sci. 2009,

23, 417–439.

4. Paredes, E.G.; Bóo, M.; Amor, M.; Döllner, J.; Bruguera, J.D. GPU-based Visualization of Hybrid Terrain Models. In

GRAPP/IVAPP, Rome, Italy, 24-26 February 2012; pp. 254–259.

5. Hoppe, H. Progressive meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM

Press: Boston, Ma, USA, 1996; pp. 99–108.

6. Hoppe, H. View-dependent refinement of progressive meshes. In Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques, Los Angeles, CA, USA, 3-8 August 1997; ACM Press: Boston, MA, USA, 1997; pp. 189–198.

7. Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.; Miller, M.C.; Aldrich, C.; Mineev-Weinstein, M.B. ROAMing terrain: Real-time op-

timally adapting meshes. In Proceedings. Visualization'97 (Cat. No. 97CB36155); IEEE: Piscataway, NJ, USA, 1997; pp. 81–88.

8. Ulrich, T. Rendering massive terrains using chunked level of detail control. In Proc. ACM SIGGRAPH 2002; Association for

Computing Machinery, New York, NY, USA; 2002.

9. Luna, F. Introduction to 3D Game Programming with DirectX 12; Stylus Publishing, LLC: Sterling, VA, USA, 2016.

10. Lindstrom, P.; Pascucci, V. Terrain simplification simplified: A general framework for view-dependent out-of-core visualiza-

tion. IEEE Trans. Vis. Comput. Graph. 2002, 8, 239–254.

11. Ripolles, O.; Ramos, F.; Puig-Centelles, A.; Chover, M. Real-time tessellation of terrain on graphics hardware. Comput. Geosci.

2012, 41, 147–155.

12. Livny, Y.; Kogan, Z.; El-Sana, J. Seamless patches for GPU-based terrain rendering. Vis. Comput. 2009, 25, 197–208.

13. Luna, F. Introduction to 3D Game Programming with DirectX 11; Stylus Publishing, LLC: Sterling, VA, USA, 2012.

14. Schäfer, H.; Niessner, M.; Keinert, B.; Stamminger, M.; Loop, C.T. State of the Art Report on Real-time Rendering with Hardware

Tessellation. In Eurographics (State of the Art Reports); EUROGRAPHICS Association: Goslar, Germany, 2014; pp. 93–117.

15. Yusov, E.; Shevtsov, M. High-performance terrain rendering using hardware tessellation. WSCG 2011, 19, 85–92.

16. Engel, W.,(Ed.); GPU Pro 4: Advanced Rendering Techniques; CRC Press: Boca Raton, FL, USA, 2013.

17. Cantlay, I. Directx 11 Terrain Tessellation. Nvidia Whitepaper 2011, 8, 3.

18. Zhai, R.; Lu, K.; Pan, W.; Dai, S. GPU-based real-time terrain rendering: Design and implementation. Neurocomputing 2016, 171,

1–8.

19. Kang, H.; Jang, H.; Cho, C.S.; Han, J. Multi-resolution terrain rendering with GPU tessellation. Vis. Comput. 2015, 31, 455–469.

20. Fu, H.; Yang, H.; Chen, C. Large-scale terrain-adaptive LOD control based on GPU tessellation. Alex. Eng. J. 2021, 60, 2865–2874.

21. Dong, L.; Zhang, B.; Zhao, X. A Seamless Terrain Rendering Algorithm Based on GPU Tessellation; Geomatics and Information

Science of Wuhan University, Wuhan University: Wuhan, China, 2017.

22. Airey, J.M.; Rohlf, J.H.; Brooks Jr, F.P. Towards image realism with interactive update rates in complex virtual building envi-

ronments. ACM SIGGRAPH Comput. Graph. 1990, 24, 41–50.

23. Laakso, M. Potentially Visible Set (PVS); Helsinki University of Technology: Espoo, Finland, 2003

24. Durand, F. A Multidisciplinary Survey of Visibility. ACM Siggraph Course Notes Visibility, Problems, Techniques, and Appli-

cations; Association for Computing Machinery, New York, NY, USA; 2000.

25. Zaugg, B.; Egbert, P.K. Voxel column culling: Occlusion culling for large terrain models. In Data Visualization; Springer: Vienna,

Austria, 2001; pp. 85–93.

26. Floriani, L.; Magillo, P. Algorithms for visibility computation on terrains: A survey. Environ. Plan. B: Plan. Des. 2003, 30, 709–

728.

27. Bresenham, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 1965, 4, 25–30.

28. Chorley, R.J. Spatial Analysis in Geomorphology; Routledge: Oxfordshire, UK, 2019; pp. 3–16.

ISPRS Int. J. Geo-Inf. 2021, 10, 666 22 of 22

29. Kessenich, J.; Sellers, G.; Shreiner, D. OpenGL Programming Guide: The Official Guide to Learning Opengl, Version 4.5 with SPIR-V;

Addison-Wesley Professional: Boston, MA, USA, 2016.

30. Zhang, L.; She, J.; Tan, J.; Wang, B.; Sun, Y. A multilevel terrain rendering method based on dynamic stitching strips. ISPRS Int.

J. Geo-Inf. 2019, 8, 255.

