
 International Journal of

Geo-Information

Article

TriangleConv: A Deep Point Convolutional Network for
Recognizing Building Shapes in Map Space

Chun Liu 1,2 , Yaohui Hu 1 , Zheng Li 1, Junkui Xu 2,3,* , Zhigang Han 2,3 and Jianzhong Guo 2,3

����������
�������

Citation: Liu, C.; Hu, Y.; Li, Z.; Xu, J.;

Han, Z.; Guo, J. TriangleConv: A Deep

Point Convolutional Network for

Recognizing Building Shapes in the

Map Space. ISPRS Int. J. Geo-Inf. 2021,

10, 687. https://doi.org/10.3390/

ijgi10100687

Academic Editor: Wolfgang Kainz

Received: 31 July 2021

Accepted: 11 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer and Information Engineering, Henan University, Kaifeng 475000, China;
liuchun@henu.edu.cn (C.L.); 104753190624@henu.edu.cn (Y.H.); lizheng@henu.edu.cn (Z.L.)

2 Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University,
Zhengzhou 450046, China; zghan@henu.edu.cn (Z.H.); guo_jianzhong420@sohu.com (J.G.)

3 College of Geography and Environmental Science, Henan University, Kaifeng 475000, China
* Correspondence: 10130153@vip.henu.edu.cn

Abstract: The classification and recognition of the shapes of buildings in map space play an im-
portant role in spatial cognition, cartographic generalization, and map updating. As buildings in
map space are often represented as the vector data, research was conducted to learn the feature
representations of the buildings and recognize their shapes based on graph neural networks. Due
to the principles of graph neural networks, it is necessary to construct a graph to represent the
adjacency relationships between the points (i.e., the vertices of the polygons shaping the buildings),
and extract a list of geometric features for each point. This paper proposes a deep point convolutional
network to recognize building shapes, which executes the convolution directly on the points of the
buildings without constructing the graphs and extracting the geometric features of the points. A
new convolution operator named TriangleConv was designed to learn the feature representations of
each point by aggregating the features of the point and the local triangle constructed by the point
and its two adjacency points. The proposed method was evaluated and compared with related
methods based on a dataset consisting of 5010 vector buildings. In terms of accuracy, macro-precision,
macro-recall, and macro-F1, the results show that the proposed method has comparable performance
with typical graph neural networks of GCN, GAT, and GraphSAGE, and point cloud neural networks
of PointNet, PointNet++, and DGCNN in the task of recognizing and classifying building shapes in
map space.

Keywords: map space; shape recognition; shape classification; point convolution; TriangleConv

1. Introduction

As an indispensable part of geographic objects, buildings are widely distributed in
large and medium-sized maps [1,2]. The classification and recognition of the shapes of
buildings in map space play an important role in spatial cognition, cartographic general-
ization, and map updating [3–6].

In practice, it is challenging to describe the shapes of buildings due to their irregular
outline. Researchers have proposed many methods for this purpose, such as coding the
shapes of buildings according to the left and right directions of buildings [7] or using
letter symbols as templates for shape matching [8]. Moreover, the cognition of building
shapes is subjective and may be affected by many factors in practice, such as personal bias.
Thus, many methods have also been presented to extract the geometric features of the
buildings from different perspectives for the cognition of the building shapes, such as the
smallest bounding rectangle (SBR) [9] and the triangular centroid distances (TCDs) [10].
Although these methods are intuitive to understand, they often fail to obtain deeper feature
information about the objects.

Deep learning, due to its state-of-the art feature extraction ability, has gained much
attention in recent years. The typical deep learning models of convolutional neural net-

ISPRS Int. J. Geo-Inf. 2021, 10, 687. https://doi.org/10.3390/ijgi10100687 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-9055-8221
https://orcid.org/0000-0003-0887-9788
https://orcid.org/0000-0002-2971-4803
https://orcid.org/0000-0002-9993-3382
https://doi.org/10.3390/ijgi10100687
https://doi.org/10.3390/ijgi10100687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10100687
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10100687?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2021, 10, 687 2 of 14

works [11–14] have become major players in many fields, such as natural language process-
ing [15,16], visual image processing [13,17,18], and other fields in which the data are often
located in the Euclidean space and have a regular structure. However, there exist many
other kinds of non-Euclidean data that do not have regular structures in our lives [19].
One typical example is social network data, which are graphs. The convolutional neural
networks cannot run on the irregular graph data because the convolution operators, i.e.,
the fundamental building blocks of convolutional neural networks, cannot be applied to
the graphs [20]. Therefore, graph neural networks, such as GCN [21–23], GAT [24], and
GraphSAGE [25] have been proposed for deep learning on the graph data [26]. Different
convolution operators have been designed for graphs.

In map space, buildings are often represented with vector data. Similar to social
networks, these buildings in the form of non-Euclidean vector data also do not have
a regular structure. Therefore, related work has been done to extract the deep feature
representations of the buildings and recognize their shapes based on graph neural networks.
For example, Yan et al. used graph Fourier transform and the convolution theorem to
extract the shape features of building groups [27] and used the graph neural network of the
spectral domain to construct a graph convolutional autoencoder (GCAE) model to extract
the shape features of the buildings [28].

Due to the principles of graph neural networks, when extracting shape features from
buildings, it is necessary to first construct the graph for each building to represent the
adjacency relationships between the points (i.e., the vertices of the polygons shaping the
buildings). The points are taken as the vertices of the graph and the adjacency between
points as the edges. Moreover, the geometric features of each point also need to be extracted
in advance to improve the feature learning performance. For example, 14 features were
designed and extracted for each point in the work of reference [28].

This paper–different from these existing works–proposes a deep point convolutional
network (DPCN) to learn the deep shape feature representations of the buildings in map
space and recognize their shapes. DPCN executes the convolution directly on the points of
the buildings without constructing the graphs and extracting the initial geometric features
for the points. A new convolution operator named TriangleConv wass designed to perform
convolution on the points. We note that the convolution operation in deep learning can
be viewed as an aggregation of the features of a point and its neighbor points in the
receptive field. Accordingly, the main idea of the TriangleConv operator was to aggregate
the features of a point and its two adjacency points to generate the new features of the
point. Particularly, in order to obtain more information from the adjacency points, the
features of the local triangle constructed by the point and its two adjacency points are used
for the aggregation instead of using the features of two adjacency points directly.

The proposed method is inspired by the deep learning methods for point clouds.
Similar to 2D vector data, a point cloud is also a collection of points. However, unlike
vector data, point cloud data are position invariant. Changing the position of a point in the
collection does not affect the shape represented by the point cloud data. Before Qi et al.
proposed the PointNet method [29], the deep learning methods for point clouds usually
first projected the 3D point cloud data to a regular structure, such as a 2D plane or the
voxels, without performing operations directly on the points. Following PointNet, many
new neural networks have been proposed for performing operations on the points, such
as the PointNet++ [30] and the DGCNN [31]. Although the vector data are similar to the
point cloud data, the neural networks for point cloud data are not applicable for the vector
data. This is because they do not consider the point order that represents the adjacency
between the points in vector data. The same feature representations will be learned for two
different vector objects, which have the same set of points, but with different orders.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 3 of 14

To evaluate the proposed method, these vector polygon data representing the build-
ings that have been used in the work of [28] are taken as the experimental dataset. This
dataset contains 5010 buildings. Based on the similarity between the buildings and the
letters in the alphabet, the buildings were labeled with similar letters. Based on this
dataset, we compared our method with commonly used graph neural networks and point
cloud neural networks. The experimental results show that in the task of classifying the
shapes of buildings in map space, the proposed method achieves comparable performance
in terms of accuracy, macro-precision, macro-recall, and macro-F1, which are often used in
multi-classification tasks.

The main contribution of this paper is that we propose a new convolution operator
TriangleConv, which can execute the convolution directly on the points of the buildings
and build a deep point convolutional network to classify the shapes of the buildings in
map space. The remainder of this paper is structured as follows. Section 2 introduces the
proposed DPCN method, including the framework of DPCN, the TriangleConv operator,
and the implementation and the parameters of training. Section 3 details the dataset and
metrics. Section 4 analyzes the results of the experiments and describes the application
of the proposed method to recognize the shapes of the buildings in the Open Street Map.
Finally, Section 5 concludes the work.

2. The Deep Point Convolutional Network

Inspired by point cloud neural networks, this paper proposes a deep point convo-
lutional network (DPCN) to recognize the shapes of the buildings in map space. The
proposed model can execute the convolution directly on the points of the buildings with
the TriangleConv convolution operator. In this section, we introduce the framework of the
proposed DPCN, the details of the TriangleConv convolution operator, and the implementa-
tion and training of the network.

2.1. The Framework of DPCN

The framework of DPCN is shown in Figure 1. The inputs are the buildings in the
form of an ordered list of points {pi|i = 1, 2, · · · , n}. In particular, all of the buildings were
preprocessed with the same number of points. The points in the list correspond directly to
the vertices of the polygons shaping the buildings, and the order between them represents
the adjacency relationships between the vertices. Each point contains a two-dimensional
coordinate, i.e., pi = (xi, yi). The outputs are the score vectors of which each dimension
shows the possibility that buildings belong to a certain class. Given the vector data of
buildings, DPCN consists of three modules: point feature extraction, building feature extraction,
and building shape recognition.

Deep Point Convolutional Network

Max pooling layer

Nx2 Nx64 Nx1024

Output

Fully connected layers Softmax layerTriangleConv layers

Input

Point Feature Extraction Building Feature
Extraction

Building Shape Recognization

Class
scores

1x1024 1x512 1x256 1xK

Figure 1. The framework of DPCN. The left-most side indicates that the input of DPCN is a list of
points with the coordinates as their initial features. The middle part is the network used by DPCN to
learn the feature representations of the input buildings and predict their classes. The right-most part
shows the output of DPCN, which is a score vector of which each dimension means the possibility
that the input building belongs to a certain shape class.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 4 of 14

• Point feature extraction module: this module aims to learn and extract the feature
representations of each point of the input building. As shown in Figure 1, it stacks
two TriangleConv layers. Each TriangleConv layer performs the TriangleConv operator
on the points. The first TriangleConv layer generates a feature representation with
64 dimensions for each point. Taking this new feature representation as input, the
second TriangleConv layer extracts a higher dimensional feature representation with
1024 dimensions for each point. Through these TriangleConv layers, DPCN embeds
each point of the input building into a high dimensional space.

• Building feature extraction module: this module is to aggregate the features of the
points and obtain the feature representation of the input building. To achieve this
purpose, a max pooling layer is used, which executes the max operation on each
dimension of the feature representations of the points. Accordingly, a tensor with
1024 dimensions is derived to represent the deep features of the shape of the building.
This feature representation will be used by the building shape recognition module to
predict the shape of the input building.

• Building shape recognition module: this module aims to predict the shape of the
input building with its feature representation. It usually stacks several fully connected
layers and one softmax layer. As shown in Figure 1, there are three fully connected
layers in DPCN. The fully connected layers transform a feature of one space into a new
feature of another space and aggregate the information of different dimensions in this
process. With three fully connected layers, the building shape feature representation
with 1024 dimensions is transformed into a k dimensional representation where k is
the number of shape classes. Finally, the softmax layer executes the softmax operation
on the k dimensional representation to output the possibility scores that the input
object belongs to different shape classes.

2.2. The TriangleConv Operator

In DPCN, each TriangleConv layer performs the TriangleConv operator on the points.
The TriangleConv operator is designed to execute the convolution directly on the points of
the buildings without constructing the graphs and extracting the initial geometric features
for the points. It aims to generate new feature representations for each point during
the convolution operation. As convolution operation in deep learning can be viewed as
an aggregation of the features of a point and its neighbor points in a receptive field, to
generate new feature representations of a point of the buildings, the TriangleConv operator
aggregates the features of the point and the local triangle constructed by the point and its
two adjacency points. As shown in Figure 2a, each building in map space is represented by
an ordered point list. By treating this point list as an end-to-end list, the neighbors of either
point pi are the adjacency points pi−1 and pi+1, which are before and after pi in the list.
When learning the feature representations of pi, we take the features of an invisible local
triangle, such as Figure 2b constructed by pi and its two adjacency points rather than just
take the features of the two adjacency points. This local triangle contains more information
about the local relationships between pi and its two adjacency points. For example, such
feature information includes the distance between the points, the size of the triangle, the
angle between the sides. Thus, given the features of the point pi and its local triangle4i,
TriangleConv operator is a function of these features as shown by Formula (1).

v
′
pi
= h(vpi , f (4i)) (1)

As shown in Formula (1), vpi denotes the feature representation of point pi. Initially,
vpi is the coordinate of pi. The function f means the feature representation extraction
process from the local triangle4i. There are many kinds of information about the triangle
4i that can be used for generating its feature representation. In this paper, we take the
information of the three sides of the triangle into consideration as shown in Formula (2).

ISPRS Int. J. Geo-Inf. 2021, 10, 687 5 of 14

f (4i) = f (ve1 , ve2 , ve3) (2)

As shown in Figure 2b, the representations of the three sides can be derived by the
subtraction between the feature representations of the three points. From the perspective
of vector operation, the subtraction can capture the information of the distance and the
angles between the three points. Given the list of points shaping the polygon of a building,
such information can better encode the local structure of the polygon around a point.

ve1 = vpi − vpi−1 (3)

ve2 = vpi − vpi+1 (4)

ve3 = vpi−1 − vpi+1 (5)

Given the feature representations of three sides, we concatenate them together as the
feature representation of the local triangle4i. This means the concatenation function is
used as the implementation of function f in Formula (2). This concatenation is to aggregate
the feature information of three sides together, which will be used by the function h to
generate the new feature representation of the point pi.

（a）The vector data of a building （b）The local triangle of a point

pi-1

1
D
-
C
o
n
v

no
rm
iz
a
ti
on

R
e
l
u

······

pi

pi+1

pi-1 pi

pi+1

e1

e2e3

（c）The artichetecture of TriangleConv operator

Multilayer Perceptron

1
D
-
C
o
n
v

no
rm
iz
a
ti
on

R
e
l
u

ve1
ve2
ve1
vpi

Figure 2. TriangleConv operator. (a) The vector data of a building; (b) the local triangle constructed
by a point and its two adjacency points; (c) the architecture of the TriangleConv operator.

For the function h in the formula (1), there are many candidate implementations. In
this paper, we implement it with multilayer perceptron (MLP). We first concatenate the
feature representation of point pi with that of the local triangle and then input them into
the MLP as shown in Figure 2c. The MLP is implemented as the connection of several
convolution components. Each component stacks a 1D-Conv module (kernel_size = 1), a
batch normalization module, and a Relu module. More accurately, there are three such
components in the MLP of the first TriangleConv layer and two components in the second
TriangleConv layer. We will detail their implementations in the following section.

From the above definition of the TriangleConv operator, it should be noted that since
the TriangleConv operator is designed for the buildings, which can be shaped by polygons,
the proposed method may not apply to all kinds of vector objects.

2.3. The Implementation and the Parameters of Training

For the first TriangleConv layer, the MLP consists of three convolution components as
shown in Figure 2c. The numbers of input channels and output channels of the 1D-Conv
modules in the components are (8,64), (64,64), (64,64). For the second TriangleConv layer,
there are two convolution components in the MLP, and the numbers of input channels and
out channels of the 1D-Conv modules in the components are (256,512), (512,1024). The
numbers of input channels and out channels of the linear modules in these fully connected
layers are set to (1024,512), (512,256), (256,10). Moreover, there are two dropout modules
following the first and second fully connected layers.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 6 of 14

Our implementation of the proposed DPCN was based on the Pytorch [32] library,
version 1.6.0. When training the network, we used 4000 of the buildings in the dataset
as the training set and 1010 buildings as the test set. This also means that training set
was about 80% and the ratio of the test set was about 20%. The network was trained for
150 epochs. The cross loss function was used, and the Adam optimizer [33] with the initial
parameter of 0.01 was adopted, and this parameter will change with the increase of the
training epoch. Meanwhile, the StepLR mechanism was adopted to constantly adjust the
learning rate of the network with a step size of 20 and the gamma parameter was set to 0.5.
The batch size of the training was set to 32. What is more, all experiments were conducted
on a computer with Intel Core i5-7500 and NVIDIA GeForce RTX 2080Ti.

3. Dataset and Metrics

To evaluate the performance of the proposed method, this section introduces the
dataset and metrics we used for the experiments.

3.1. Experimental Dataset and Preprocessing

We took the dataset used by the work of [28] as the experimental dataset. This dataset
was filtered from different types of areas on OpenStreetMap. It consists of a total of 5010
buildings. According to their shapes, each building was labeled with a similar letter in
the alphabet as shown in Figure 3 [34]. Finally, there were 10 different shape types in
the dataset, such as O-shape, Y-shape, and F-shape. That is, there were 501 buildings for
each type.

Class

1

F-
shape

E-
shape

T-
shape

Z-
shape

O-
shape

I-
shape

L-
shape

Y-
shape

U-
shape

H-
shape

2

Figure 3. Examples of 10 different types of data in the experiment.

We followed the methods used by [28] to preprocess the dataset. The buildings in
the dataset have a different number of points. Similar to the usual convolutional neural
networks and graph neural networks, the dimensionality of the data input to DPCN should
be consistent. Therefore, we need to preprocess all of the buildings in the dataset with the
same number of points. Specially, the Douglas–Peucker method [35] with a conservative
and empirical threshold of 0.1 m was used to first simplify the original data. This method
is an algorithm that approximates the curve as a series of points and reduces the number
of points. Then, the equally spaced interpolation method was performed on the simplified
data to unify the number of points of different buildings. This method is performed on a
curve composed of a list of points. According to the preset number of points, it sets new
points at equal intervals between two points on the curve or deletes the extra points in
the list. In addition, considering the large variation of the coordinate values of the points
of different buildings, the Z-score method was further used to normalize the coordinate
values of the points of all buildings into decimals between (0,1) [28].

3.2. The Evaluation Metrics

To evaluate the performance of the proposed method, the metrics, which are often used
by the multi-classification tasks, were adopted in this paper. They are the macro-precision,
the macro-recall, the macro-F1, and the accuracy, which are defined as follows.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 7 of 14

macro− precision =

n
∑

k=1
precisionk

n
(6)

macro− recall =

n
∑

k=1
recallk

n
(7)

macro− F1 =

n
∑

k=1
F1k

n
(8)

In the above definitions, the precisionk, recallk and F1k means the precision, the recall,
and the F1 for class k. The definitions of them are as follows.

precisionk =
TPk

TPk + FPk
(9)

recallk =
TPk

TPk + FNk
(10)

F1k =
2 ∗ precisionk ∗ recallk

precisionk + recallk
(11)

In the definitions, TP means the number of positive samples correctly classified,
FP is the number of negative samples incorrectly labeled as positive samples, and FN
is the number of positive samples incorrectly labeled as negative samples. This means
that precisionk measures how many samples are correctly classified among these samples
predicted as positive samples for class k, recallk measures how many positive samples are
correctly classified for class k, and F1k combines the values of precisionk and recallk. Based
on these definitions, we can see that macro-precision, macro-recall and macro-F1 measure the
average values of the precision, the recall and the F1 among the n classes.

For the metric of accuracy, its definition is as Formula (12), and it measures the
proportion of all correctly classified samples to the total number of samples.

accuracy =
1
m

m

∑
i=1

(f (xi) = yi) (12)

In the above definition, m is the total number of samples, xi and yi correspond to the
i-th sample and its class label, and f (xi) is the label predicted.

The values of all the metrics above range between 0 and 1. The higher the values, the
better the performance of the methods.

4. Results and Analysis

To evaluate the proposed method, several experiments were done to compare the
method with a variety of related methods, including graph neural networks and point
cloud neural networks. We present and analyze the results of these experiments in this
section. All results in this section are derived from the epoch with best accuracy after
model convergence.

4.1. The Sensitivity Analysis of the Number of Input Points of Each Building

The proposed method executes the convolution directly on the points of the buildings
to learn the feature representations of each point and derives the shape feature representa-
tion of building through a max pooling operation. Thus, the number of points of the input
buildings actually affects the performance of building shape recognition. For example, it is
often assumed that more points will contribute to the recognition because more information
is present. To evaluate the effects of the number of the points, we preprocessed the input
buildings with the different number of points and observed the recognition performance.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 8 of 14

In practice, two points can shape a line, four points can shape a polygon-like I-shape and
O-shape, eight points can shape a polygon-like T-shape and U-shape, and twelve points
can shape all types of standard (simplest) shapes in Figure 3. Therefore, we start with two
points to validate the influence of different numbers of points on the performance of our
proposed method in recognizing building shapes. The results are shown in Table 1.

Table 1. The results of the sensitivity analysis of the number of input points of each building.

Point Number Accuracy Macro-Recall Macro-Precision Macro-F1

2 0.3941 0.6731 0.3689 0.3273
4 0.8624 0.8537 0.5437 0.5955
8 0.9624 0.9872 0.7486 0.8137
16 0.9842 0.9902 0.8376 0.8874
32 0.9752 0.9882 0.8079 0.8664
64 0.9762 0.9881 0.7914 0.8509

128 0.9733 0.9871 0.7300 0.8077

The result shows that when there are two points in each building, the performance is
very poor. When the number is increased to four, the performance is greatly improved. The
accuracy is improved significantly, which reaches 86.24%, but the results of macro-precision
and macro-F1 are still unsatisfactory. When the number is up to eight, the values of all
metrics are further improved and the macro-F1 value is over 80%. When the number of
points is 16, the performance of each evaluation metric reaches an optimal result. When
the number of points is 32 or more, the performance of the evaluation metric decreases
instead. This may be because when the number of points is more than 12 points, some
details of the shapes can be supplemented, but if the number of points is too large, it will
cause redundancy of input information. When there are too many points for a building,
there will be many points distributed on the straight line. For these points, distributed
on the straight lines, it is impossible to construct the effective triangles required by the
TriangleConv operator of our method. Instead, the information extracted from these points
will interfere with the performance of the whole method. This may explain why the
performance decreases when the number of points of the buildings is 32 or more. These
results also show that it will not always contribute to the shape recognition by increasing
the number of points. Accordingly, we preprocessed the buildings with 16 points in
our experiments.

4.2. The Performance Analysis of the Candidate Convolution Methods

Because buildings in map space are in the form of an ordered list of points, the
convolution on points can be done by aggregating the features of one point and its two
adjacency points. Instead, we proposed to aggregate the features of the point and the local
triangle constructed by the point and its two adjacency points. To validate the choice, we
conducted the experiment to compare the performance of the two different convolution
implementations.

Table 2 shows the results of the performance comparison between the two convolution
implementations, where the DPCN-3 point denotes the method to execute the convolution
on points by directly aggregating the features of the points and their two adjacency points.
The comparison results show that the proposed method outperforms the DPCN-3 point.
The possible reason is that the triangle contains more local information than the two
adjacency points. In the proposed method, the feature information of three sides are taken
into the convolution for generating the new feature of a point. The features of three sides
are generated by the subtraction between the features of the three points constructing
the triangle. From the perspective of vector operation, the subtraction can capture the
information of the distance and the angles between the three points. The information can
better express the local shape of the polygon shaping a building. The comparison results
also confirm the contribution of the information.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 9 of 14

Table 2. The results of the sensitivity analysis of the candidate convolution methods.

Accuracy Macro-Recall Macro-Precision Macro-F1

DPCN-3point 0.9653 0.9858 0.7443 0.817
DPCN 0.9842 0.9902 0.8376 0.8874

4.3. Comparison with Related Methods

Because there are some works used to apply graph neural networks, such as GCN,
to extract the shape features of buildings in map space [28], and relevant experiments
have shown that GAT [24] and GraphSAGE [25] perform better than GCN, we have
selected the graph neural networks of GCN, GAT, and GraphSAGE for comparison. Their
implementations in the Deep Graph Library (DGL) [36] are used; DGL is a Python package
built for easy implementation of the graph neural network method family. All of the
buildings in the experiment dataset were preprocessed with 16 input points to ensure
the fairness of the comparison. In practice, all of these networks take a feature matrix
describing the feature representations of the vertices of the graph as input. For example,
the work in [28] defined and extracted 14 geometric features for each point constructing
the graph. However, similar to our method, these graph neural networks can also take
the coordinates as the initial features of each point without using these manually defined
geometric features. Considering that, we conduct comparisons with these selected graph
neural networks in two cases. In the first case, we compare our method with these graph
neural networks by taking the 14 geometric features defined in [28] as the features of
each point. In the second case, we compare with these networks by directly taking the
coordinates as the initial features of each point. To distinguish these networks in the
two cases, we call these graph neural networks in the first case GCN+F, GAT+F, and
GraphSAGE+F.

Moreover, the proposed method is inspired by the point cloud neural networks. A
point cloud is also a collection of points, which is similar to 2D vector data. This means
that point cloud neural networks can also run on the 2D vector data. To evaluate the
performance of these point cloud neural networks on the buildings, we also selected these
typical point cloud neural networks of PointNet [29], PointNet++ [30], and DGCNN [31]
for comparison. Their implementations on the GitHub were adopted. All of the buildings
are still preprocessed with 16 points.

The results of the comparison are shown in Table 3. Figure 4 also shows the value
change of the metrics along with the increase in the number of epochs. The results of the
comparison with GCN, GAT, and GraphSAGE show that when taking these manually
defined geometric features for each point, these graph neural networks(GCN+F, GAT+F,
GraphSAGE+F) work well for classifying building shapes in map space, for example,
their accuracies are over 95% directly, but when directly taking the coordinates as the
initial features of the points, the performances of these graph neural networks(GCN, GAT,
GraphSAGE) fall a lot. This indicates that it is necessary to define and extract these
geometric features for each point. However, these results also show that although the
proposed method has not explicitly extracted the geometric features for each point, it still
achieves comparable performance with the TriangleConv operator. This means that the
proposed point convolutional network can also capture deep feature information of the
building shapes compared with these graph neural networks. In addition, for these point
cloud neural networks, the results show that they have also achieved good performance in
the task of classifying the buildings in map space, but still fall behind the method proposed
in this work. For example, the performance of DPCN is 2.28%, 3.37%, and 2.08% higher
than that of PointNet, PointNet++, and DGCNN in accuracy. Particularly, in terms of the
metric of macro-F1, DPCN performs better than PointNet by 8.26%, PointNet++ by 12.51%
and DGCNN by 10.84%. The reason for this result may be that, unlike vector data, point
cloud data are position invariant, and these point cloud neural networks do not consider
the point order that represents the adjacency between the points constituting the buildings.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 10 of 14

When using these networks to extract the shape feature representations of the buildings,
the same feature representations will be learned for two different buildings, which have
the same set of points but with different orders.

Table 3. The results of graph neural network methods(two cases), point cloud neural network
methods, and our proposed DPCN using the same experimental environment and parameters.

Accuracy Macro-Recall Macro-Precision Macro-F1

GCN+F 0.9505 0.9827 0.6877 0.7689
GAT+F 0.9505 0.9886 0.7455 0.8041
GraphSAGE+F 0.9574 0.9902 0.7498 0.8173
GCN 0.3396 0.3224 0.2835 0.1802
GAT 0.6465 0.4544 0.3298 0.3015
GraphSAGE 0.5010 0.7598 0.5116 0.4780
PointNet 0.9614 0.9243 0.7622 0.8048
PointNet++ 0.9505 0.9637 0.6999 0.7623
DGCNN 0.9634 0.9348 0.7135 0.7790

DPCN 0.9842 0.9902 0.8376 0.8874

Figure 4. The values of each evaluation metric of our proposed DPCN, graph neural network
methods(GCN+F, GAT+F, GraphSAGE+F, GCN, GAT, GraphSAGE), and point cloud neural network
methods(PointNet, PointNet++, DGCNN) vary with the increase of the number of epochs.

4.4. The Application of DPCN

To further evaluate the proposed approach of DPCN, we also applied it to the shape
recognition of buildings in the map from the Open Street Map. The selected area is shown
in Figure 5. There are a total of 3059 buildings in this area. Most of them are shown in
orange. However, the ones in the red box are in bright green, and they are in various
shapes, such as I-shape and O-shape.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 11 of 14

Figure 5. The selected area from Open Street Map, which is a part of the urban area of Shanghai, China.
Using the WGS84 coordinate system, this area is in the extent of 31.225670 dd (Up), 31.225670 dd
(Down), 121.452669 dd (Left), and 121.498787 dd (Right).

We have preprocessed all 3059 buildings with 16 input points. After training DPCN
with the experimental data described in the above section, we applied DPCN to these
buildings and predicted their shapes. Because DPCN has learned the feature extraction
and shape recognition ability of the ten types of buildings as shown in Figure 3, the outputs
are also the shapes of the ten types with which the buildings are most similar.

The prediction results for all the bright buildings in the red box in Figure 5 are shown
in Figure 6. We can find that our method is able to correctly classify the shapes of most of
the buildings. For example, for buildings with significant visual features such as 1, 3, 5,
9, their shapes can be correctly recognized by DPCN, and the prediction probabilities are
close to 1. For some visually ambiguous buildings, such as 2, 4, 14, DPCN is also able to
select the shape types with which there is the greatest similarity. By comparing the results
between 5 and 8, and 7 and 10, we can see that DPCN is not sensitive to the orientation of
buildings. For object 12, it looks like object 13, i.e., I-shape, but is predicted as an O-shape,
which is not consistent with our visual perception. In the training dataset used in our
experiments, the square shape buildings are labeled as O-shape. This may show that our
method has learned to distinguish the O-shape from the I-shape according to the ratio of
the long axis to the short axis of the building. When this ratio is less than the threshold
learned by DPCN through training, DPCN assumes that the probability of the building
belonging to the O-shape is greater than that of the I-shape. Therefore, with a probability
of 0.6115, the building of 12 is predicted as O-shape instead of I-shape.

The results also show that some classification results do not match our visual percep-
tion. We believe there are several reasons for this phenomenon. First, the dataset we used
to train DPCN was not rich enough, which led to DPCN not being able to classify buildings
with less distinctive shape features. Second, because the shapes of some buildings do not
belong to any of the 10 categories learned by DPCN, then DPCN can only give the result
with the highest probability.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 12 of 14

U-SHAPE
0.6558

I-SHAPE
0.5055

L-SHAPE
0.9990

Z-SHAPE
0.9099

O-SHAPE
0.6115

I-SHAPE
0.8956

T-SHAPE
0.9999

F-SHAPE
0.6574

F-SHAPE
0.9999

U-SHAPE
0.9997

L-SHAPE
0.9509

Z-SHAPE
0.9999

I-SHAPE
0.9999

O-SHAPE
0.9999

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 6. The predicted results of the buildings in the selected area of Figure 5, which is marked with
the red box.

5. Conclusions

To better recognize the shapes of buildings in map space, this paper proposes a deep
point convolutional network, which can execute the convolution directly on the points of
the vector data. It does not require any intermediate representations, such as adjacency
matrices and the geometric features of the points. A new convolution operator named
TriangleConv is designed to perform the convolution on the points. It learns the feature
representations of each point of the building by aggregating the features of the point and
the local triangle constructed by the point and its two adjacency points.

To evaluate the proposed method, the dataset from the work of [28] was used, which
consisted of 5010 vector buildings. Under the experimental conditions we used, compared
with the typical graph neural networks of GCN, GAT, and GraphSAGE, and the point
cloud neural networks of PointNet, PointNet++, and DGCNN, the proposed method has
shown comparable performance on classifying the shapes of the buildings in map space
in terms of accuracy, macro-precision, macro-recall, and macro-F1. The parameter sensitivity
analysis also shows that too many or too few points for buildings will affect the shape
recognition. Too few points make our method unable to obtain the shape features of the
building well. Too many points will cause redundancy of information, thereby weakening
the ability of our method to extract shape features.

Author Contributions: Conceptualization, Chun Liu, Yaohui Hu, and Junkui Xu; methodology,
Chun Liu and Yaohui Hu; software, Chun Liu and Yaohui Hu; validation, Yaohui Hu and Zheng Li;
investigation, Zheng Li; resources, Chun Liu and Zhigang Han; data curation, Yaohui Hu; writing—
original draft preparation, Yaohui Hu and Chun Liu; writing—review and editing, Jianzhong Guo
and Junkui Xu; supervision, Jianzhong Guo and Zhigang Han; project administration, Chun Liu;
funding acquisition, Zhigang Han. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (no. 41871316).

Institutional Review Board Statement: Not applicable for studies not involving humans and or animals.

Informed Consent Statement: Not applicable for studies not involving humans or animals.

ISPRS Int. J. Geo-Inf. 2021, 10, 687 13 of 14

Data Availability Statement: The source codes and dataset are available for downloading at the link:
https://github.com/Huyaohui122/DPCN, accessed on 8 June 2021.

Acknowledgments: The authors would like to thank the editor, associate editor, and anonymous
reviewers for processing our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved

random forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [CrossRef]
2. Zhou, X.; Chen, Z.; Zhang, X.; Ai, T. Change Detection for Building Footprints with Different Levels of Detail Using Combined

Shape and Pattern Analysis. ISPRS Int. J. Geo-Inf. 2018, 7, 406. [CrossRef]
3. Shea, K.S.; Mcmaster, R.B. Cartographic Generalization in a Digital Environment: When and How to Generalize. J. Fluid Mech.

1989, 1, 56–67.
4. Mark, D.M.; Freksa, C.; Hirtle, S.C.; Lloyd, R.; Tversky, B. Cognitive models of geographical space. Int. J. Geogr. Inf. Sci. 1999,

13, 747–774. [CrossRef]
5. Matikainen, L.; Hyyppä, J.; Ahokas, E.; Markelin, L.; Kaartinen, H. Automatic Detection of Buildings and Changes in Buildings

for Updating of Maps. Remote Sens. 2010, 2, 1217–1248. [CrossRef]
6. Touya, G.; Zhang, X.; Lokhat, I. Is deep learning the new agent for map generalization? Int. J. Cartogr. 2019, 5, 142–157. [CrossRef]
7. Rainsford, D.; Mackaness, W. Template Matching in Support of Generalisation of Rural Buildings. In Advances in Spatial Data

Handling; Richardson, D.E., van Oosterom, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 137–151.
8. Wang, H.L.; Wu, F.; Zhang, L.L.; Deng, H.Y. The application of mathematical morphology and pattern recognition to building

polygon simplification. Acta Geod. Cartogr. Sin. 2005, 34, 269–276.
9. Basaraner, M.; Cetinkaya, S. Performance of shape indices and classification schemes for characterising perceptual shape

complexity of building footprints in GIS. Int. J. Geogr. Inf. Sci. 2017, 31, 1952–1977. [CrossRef]
10. Yang, C.; Wei, H.; Yu, Q. A novel method for 2D nonrigid partial shape matching. Neurocomputing 2018, 275, 1160–1176.

[CrossRef]
11. Niu, X.X.; Suen, C.Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognit. 2012, 45, 1318–1325.

[CrossRef]
12. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
13. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet

large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
14. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

15. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences. arXiv 2014,
arXiv:1404.2188.

16. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A.M. Character-Aware neural language models. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence, AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016; AAAI Press: San Francisco, CA, USA, 2016;
pp. 2741–2749.

17. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995,
3361, 1995.

18. Li, X.; Zheng, H.; Han, C.; Zheng, W.; Chen, H.; Jing, Y.; Dong, K. SFRS-Net: A Cloud-Detection Method Based on Deep
Convolutional Neural Networks for GF-1 Remote-Sensing Images. Remote Sens. 2021, 13, 2910. [CrossRef]

19. Lazer, D.; Pentland, A.S.; Adamic, L.; Aral, S.; Barabasi, A.L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M.
Life in the network: The coming age of computational social science. Science 2009, 323, 721–723. [CrossRef]

20. Xu, B.; Cen, K.; Huang, J.; Shen, H.; Cheng, X. A survey on graph convolutional neural network. Chin. J. Comput. 2020,
43, 755–780.

21. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. arXiv 2014,
arXiv:1312.6203.

22. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for Speech Recognition.
IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

23. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
24. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903.
25. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2018, arXiv:1706.02216.
26. Zhang, C.; Wang, J.; Yao, K. Global Random Graph Convolution Network for Hyperspectral Image Classification. Remote Sens.

2021, 13, 2285. [CrossRef]
27. Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector

data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]

https://github.com/Huyaohui122/DPCN
http://doi.org/10.1016/j.isprsjprs.2015.03.011
http://dx.doi.org/10.3390/ijgi7100406
http://dx.doi.org/10.1080/136588199241003
http://dx.doi.org/10.3390/rs2051217
http://dx.doi.org/10.1080/23729333.2019.1613071
http://dx.doi.org/10.1080/13658816.2017.1346257
http://dx.doi.org/10.1016/j.neucom.2017.09.067
http://dx.doi.org/10.1016/j.patcog.2011.09.021
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/rs13152910
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.3390/rs13122285
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.010

ISPRS Int. J. Geo-Inf. 2021, 10, 687 14 of 14

28. Yan, X.; Ai, T.; Yang, M.; Tong, X. Graph convolutional autoencoder model for the shape coding and cognition of buildings in
maps. Int. J. Geogr. Inf. Sci. 2021, 35, 490–512. [CrossRef]

29. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

30. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017,
arXiv:1706.02413.

31. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. 2019, 38. [CrossRef]

32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703.

33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
34. Yan, X.; Ai, T.; Zhang, X. Template Matching and Simplification Method for Building Features Based on Shape Cognition. ISPRS

Int. J. Geo-Inf. 2017, 6, 250. [CrossRef]
35. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [CrossRef]
36. DGL Development Team. Deep Graph Library. 2018. Available online: https://docs.dgl.ai/en/0.5.x/index.html (accessed on 3

February 2021).

http://dx.doi.org/10.1080/13658816.2020.1768260
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.3390/ijgi6080250
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
https://docs.dgl.ai/en/0.5.x/index.html

	Introduction
	The Deep Point Convolutional Network
	The Framework of DPCN
	The TriangleConv Operator
	The Implementation and the Parameters of Training

	Dataset and Metrics
	Experimental Dataset and Preprocessing
	The Evaluation Metrics

	Results and Analysis
	The Sensitivity Analysis of the Number of Input Points of Each Building
	The Performance Analysis of the Candidate Convolution Methods
	Comparison with Related Methods
	The Application of DPCN

	Conclusions
	References

