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Abstract: Geospatial linked data are an emerging domain, with growing interest in research and
the industry. There is an increasing number of publicly available geospatial linked data resources,
which can also be interlinked and easily integrated with private and industrial linked data on the
web. The present paper introduces Geo-L, a system for the discovery of RDF spatial links based on
topological relations. Experiments show that the proposed system improves state-of-the-art spatial
linking processes in terms of mapping time and accuracy, as well as concerning resources retrieval
efficiency and robustness.

Keywords: geospatial analysis; linked data; semantic web; topological relations

1. Introduction

The Web of Data, or the Semantic Web, is a continuously growing global data space [1].
Semantic Web standards, such as the RDF (Resource Description Framework) [2,3], OWL
(Web Onthology Language) [4,5], and SPARQL (SPARQL Protocol and RDF Query Lan-
guage) [6] were developed to express and exchange semantic information on the web, to
address the goal of semantic interoperability [7]. In the geospatial context, most prominent
is the GeoSPARQL initiative, which offers a necessary vocabulary to develop geo-related
data on the Semantic Web [8]. In recent years, geospatial linked data has gained increasing
attention [9], also due to advances in the Earth Observation domain [10]. Thus, numer-
ous resources of linked geospatial data have been developed, e.g., LinkedGeoData [11],
Smart Point Of Interest [12], Spanish Cases [13], and Ireland’s national geospatial data [14];
the domain is constantly growing within the Linked Data Cloud. Notably, the domain
of geospatial linked data contains complex datasets, such as NUTS [15], which describe
territories using polygons that may be more than 1700 vertices long.

According to the linked data principles, published data should be interlinked with
other datasets on the web [16]. In general, the linking (and fusing) of geospatial linked
data sources enable large-scale inferences and data integration [17]. Nevertheless, explicit
links are often not part of the dataset and should be discovered automatically, even in a
distributed cloud environment and huge datasets. These linking activities are one pillar
to foster the development of innovative software solutions. In particular, the linking of
geospatial data is a challenging task, since the links express relations which depend on
complex geometric computations and a naive computation of such relations between two
datasets requires the testing of all pairs of objects, one of each dataset, respectively, resulting
in a quadratic time complexity.

The present work introduces Geo-L, a system for the discovery of spatial links in RDF
datasets according to topological relations. Geo-L was developed considering the following
requirements, which we identified by comparing existing approaches, services, and tools
for this task:
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1. Scalability and efficiency: As mentioned before, the linked data cloud is continually
growing, employing new sources and datasets, and the service should be able to
handle big datasets. The idea is to provide a service for different linked data environ-
ments (open or closed). Therefore, the time required for linking has to be minimized,
and the vision is to discover even extensive datasets in near real time.

2. Robustness: The service must retain functionality under unforeseen conditions, such
as corrupted data. This is especially true for crowd-sourced or automatically gener-
ated datasets, which are likely to include errors as the size of data grows.

3. Interoperability and flexibility: The service has to be handled as easily and trans-
parently as possible. The (SPARQL affine) user should be able to easily formulate
queries to retrieve source and target datasets, as well as the linking condition. This
includes the ability to handle data of different formats, as datasets are heterogeneous.
For example, the computation of topological relations requires that geometries are
represented similarly, e.g., in WKT format. However, if the datasets use different
formats, then the service has to provide the means to unify these representations.
The service has to operate easily as a standalone system, as a module integrated into
other applications, or through RESTful API.

4. Quality: Given two sets of RDF resources with geospatial data, S and R, and a spatial
predicate, P, the service shall return all the links between the resources s ∈ S and
r ∈ R which satisfy P (see more in Section 2).

2. Background

Linked Data is a method which uses RDF format to publish structured and machine-
readable data on the Web, and employ RDF links to express explicit interconnections
between data items from various data resources. The result is referred to as the Web
of Data [16]. The basic idea of link discovery is to find data items within the target
dataset which are logically connected to the source dataset. More formally, this means:
given S and T, sets of RDF resources, called source and target resources, respectively,
and a relation, R, the aim of link discovery methods is to find a mapping, M, such that
M = {(s, t) ∈ S × T : R(s, t)}. A naive computation of M requires a quadratic time
complexity to test for every s ∈ S and t ∈ T whether R holds, which is unfeasible for
large datasets.

In a geospatial context, S and T are sets of spatial objects, which contain geometries
in a two-dimensional space as features; the links may be based on proximity or on topo-
logical relations. In the latter case, relations are expressed by the Dimensionally Extended
nine-Intersection Model (DE + 9IM) [18,19], which was accepted as an ISO standard [20].
DE + 9IM classifies binary spatial relationships between two geometries, a and b, which
may be points, lines, or polygons, based on the intersection of the interiors (I), boundaries
(B) and exteriors (E) of a with those of b. A combination of these six geometric features
define topological relations, which are described in a 3× 3 matrix as follows:

DE + 9IM(a, b) =

dim(I(a) ∩ I(b)) dim(I(a) ∩ B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩ B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩ B(b)) dim(E(a) ∩ E(b))


The intersection S of some feature of a with a feature of b may be either empty or

in itself a geometric object, namely: a point, a line, or a polygon. dim(S) returns the
dimension of the geometry S; if S consists of multiple geometries, then dim(S) is the
maximal dimension of intersection if it is of multiple parts.
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dim(S) =



−1 if S = ∅
0 if S contains at least one point,

but no lines or polygons

1 if S contains at least one line,

but no polygons

2 if S contains at least one polygon

In addition to the dimension values, the matrix may contain the values T (dim(S) ≥ 0),
F (dim(S) = −1), and * (“do not-care” value, which means that the value in this matrix cell
has no influence on the outcome of a function applied to this matrix): The model defines
topological predicates to describe the spatial relations between the two geometries in a
compact and human-interpretable manner, which are defined by pattern matrices: equals,
disjoint, intersects, touches, crosses, overlaps, within, and contains. For example, the pattern
matrix for the relation within is defined by the following pattern matrix (see also Strobl [21]).

a.within(b) =

T * F
* * F
* * *


formally described as (I(a) ∩ I(b) 6= ∅) ∧ ¬(I(a) ∩ E(b) 6= ∅) ∧ ¬(B(a) ∩ E(b) 6= ∅).

To illustrate how this matrix and, hence, the formula define the within relation consider
Figure 1, which shows two geometries a and b, such that a is within b. Table 1 graphi-
cally depicts the respective features f1(a), f2(b), such that f1, f2 ∈ {I, B, E}, used in each
component of the within formula, for those two geometries, as well as the dimension of
their intersection. As can be observed, the conditions of the topological relation within
are satisfied.

Table 1. Geometry features of components of within formula and dimension of their intersections.

f1(a), f2(b) dim( f1(a)∩ f2(b))

I(a), I(b) 2

I(a), E(b) −1

B(a), E(b) −1
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Figure 1. a within b.

3. Related Work

The link discovery of topological relations among RDF datasets has received growing
interest in recent years, and various methods for this problem have been proposed. These
methods usually define the topological relations between two geometries based on their
relations computed between their minimum bounding boxes. A minimum bounding box
(MBB) is the rectangle of the minimum area that encloses all coordinates of geometry and
is commonly used as an approximation to the geometry to reduce computational costs that
involve this geometry [22].

Smeros and Koubarakis [23] use the MultiBlocking technique [24] to discover topologi-
cal relations. This technique divides the Earth’s surface into curved rectangles and assigns
each geometry to all blocks in which it intersects, based on the geometry’s MBB. Relations
discovered within each block are, then, aggregated to construct the links. This method is
embedded in the Silk framework [25].

RADON [26] divides the space into hypercubes and uses optimized sparse space tiling
to index geometries. This is performed by mapping each geometry to the set of hypercubes
over which its minimum bounding box (MBB) spans. The method first indexes geometries
s ∈ S and, then, only indexes geometries t ∈ T that may potentially reside in hypercubes
already contained in the index. To minimize the size of the index, the method implements
a swapping strategy, that is, prior to the indexing phase, it calculates an estimated total
hypervolume (eth) for each of the datasets S and T. If eth(T) < eth(S), then it swaps
the two datasets and computes the reverse relation of the requested relation R. The link
generation itself is conducted using a method that reduces computations on a subset of DE
+ 9IM relations. RADON is implemented as part of the LIMES framework [27,28]

Faria et al. [29] adapt the AgreementMakerLight (AML) [30], a framework for auto-
mated ontology matching, to tackle the task of topological relations. This is performed by
utilizing ESRI Geometry API [31], which uses quadtree as means to index geometries and
detect a topological relationship among them.

These methods, as well as OntoIdea [32], were evaluated on several sets of geometries:
Achichi et al. [33] apply them to discover topological relations between LineStrings, con-
structed of trajectories from the TomTom [34] dataset. Saveta et al. [35] apply these methods
to find relations between LineStrings to LineStrings and between LineStrings to Polygons,
from the TomTom dataset and Spaten dataset [36], respectively. All datasets included at
most 2000 instances. Both evaluations report that the methods mentioned above discover
links correctly, that is, the F-score of most of them is 1.0 (apart from OntoIdea, whose
F-score lies between 0.91 and 0.99, and did not take part in the tasks for link discovery
between linestrings and polygons).

Strabon [37] is an open-source geospatial RDF store. It is based on the RDF4J (pre-
viously Sesame) RDF store and adds geospatial capabilities to it by implementing the
OGC-standard GeoSPARQL, where, as part of the implementation, the stored geome-
tries in Strabon are indexed with an R-Tree-over-GiST. Implementing GeoSPARQL means
that Strabon includes topological functions; thus, queries that use these functions can be
viewed as a means to discover topological relations. Sherif et al. [26] compares the per-
formance of Silk, Strabon, and RADON, where they are applied to discover links between
different subsets of NUTS and CORINE Land Cover [38] datasets, which map land and
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land-usage, respectively. The biggest dataset used in their experiments consists of 2,209,538
resources. The evaluations compare the running times of these methods with different
dataset sizes. It has already been acknowledged that a significant portion of big data is
geospatial data [39,40]; thus, our interest lies in the performance of these systems on large
datasets. Table 2 summarizes how well the methods described above perform, regarding
the criteria for useful geospatial link discovery systems, discussed in Section 1, as reported
in the literature [26,33,35].

As can be observed in Table 2, the LIMES system, that implements RADON, was the
one that completed all the link discovery tasks for all topological relations and performed
best for most of them. We, therefore, took LIMES as our main reference point. Nevertheless,
LIMES as it is (we used version 1.5.5, the latest version available at the time of writing) is
not sufficiently flexible to accommodate geospatial linked data of different formats, and
requires an external pre-processing of the input. Additionally, LIMES assumes an error-free
download and curated datasets, which is not always the case in reality. This motivated us
to incorporate advantages of existing techniques in a single solution and test what existing
technologies might be used for an efficient, flexible, robust, and interoperable system for
on-the-fly semantic linking of geospatial data.



ISPRS Int. J. Geo-Inf. 2021, 10, 712 6 of 18

Table 2. Comparison of properties of systems for topological link discovery.

System Scalability and Efficiency Robustness Interoperability and Flexibility

Silk − long running time on large datasets − instances limited to size of 64 K
− not evaluated for relations cover and covered by

+ standalone framework
+ has REST and programmable APIs
− linkage definition language is restricting
− does not support transformation of geospatial linked

data

AML

+ achieves best run time for touches and intersects
for LineStrings

− long running time on large datasets for
LineString/ Polygon tasks for contains, within,
and covers

− reaches time limit for disjoint (75 min)
− no information is given about error handling

+ uses ESRI, an external module for handling geometries
− strict linkage definition

OntoIdea − long running time on large datasets
− not evaluated for large datasets

− not evaluated for disjoint
− no information about error handling − no specification given

Strabon + run time for intersects on smaller datasets is better
than that of LIMES

− does not finish any experiment on a large dataset
within the time limit (2 h)

− does not provide feedback about progress of its
task

− no transparent error handling

+ implements GeoSPAQRL; thus, is able to transform
geospatial object in retrieval time

LIMES

+ addresses all tasks regarding topological link
discovery

+ achieves the best runtime performance for most
of the topological relations (except intersect,
and touches)

− data or server error interrupt whole process

+ can be applied as part of a framework or as a part of an
application via its API

− strict linkage definition (XML), no direct
SPARQL support

Geo-L

+ addresses all tasks regarding topological link
discovery

+ achieves the best runtime performance for all
topological relations

+ storing chunks of datasets regularly minimizes
data loss if connection is interrupted due to, e.g.,
server error

+ provides feedback about task progress

+ can be applied as an independent application or
through its API (as well as via REST API)

+ supports dataset definition via SPARQL query
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4. Geo-L

We developed a system for topological link discovery for geospatial linked data, which
provides the required functionality and shows a high performance and accuracy. Geo-L
also offers flexible configuration options for the SPARQL affine user as well as accurate
error handling.

4.1. Input

The input for a link discovery task provides the resources to be linked and the condi-
tions upon which the links are generated, in a simple, yet flexible manner. In particular, our
method offers a way to retrieve relevant properties from the endpoint, which may be either
remote or local, via a SPARQL query; thus, it natively supports the manipulation of data
without any need for external pre-processing. This is useful, for example, when geometry
values at the endpoint are not represented in a format that directly allows computations of
topological relations.

4.2. Download

Downloading from a SPARQL endpoint might occasionally be interrupted before the
complete dataset has been delivered. To avoid a total loss of data, our solution does not
store all the data in memory while downloading, but, instead, periodically writes smaller
chunks to the disk. In addition, a download might take a relatively long time due to the
application implementation itself. Our solution seeks to improve this state by reducing the
application overhead when querying the remote endpoint.

4.3. Caching

To accelerate access to the source and target resources, we incorporated a caching
mechanism. Data retrieved from the SPARQL endpoint are stored in a central data store
with an internal index. Further requests for data items from the same endpoint were first
served from the cache if the items were already indexed. This ensures a single local resource
parallel to the endpoint, which may handle many configurations; thus, saves both time and
storage. This differs from the behaviour of LIMES, where data items may be downloaded
multiple times, and duplicates of the data may then be stored. Algorithm 1 sketches the
caching process. The method essentially compares the required triples range to the triple
indices stored in an internal database, based on the offset and limit parameters given in the
configuration. It detects the indices of triples which are not already stored, retrieves the
respective triples in chunks from the endpoint, and stores them in the database.

4.4. Link Discovery

The task of topological link discovery requires to identify topological relations between
geometries, according to the DE + 9IM model, and to efficiently process spatial data.
Therefore, we used R-trees [41] as our underlying data structure. An R-tree is a data
structure used to store and query multi-dimensional objects, in a way that preserves spatial
relations, as vicinity and nesting, among the indexed objects. An R-tree represents each
object by its minimum bounding box (MBB) and a leaf node stores the MBB of that object
and a pointer to the actual geometry. An R-tree is organized hierarchically; it groups MBBs
by proximity and represents them by their MBB in a higher level of the tree. This process
proceeds until all the MBBs are nested in a single bounding box—the tree root. R-Trees
have shown to be efficient in processing spatial joins, to find topological relations between
different datasets [42]. R-Trees support both individual element searches as well as a range
search, where all the items within a rectangle are retrieved.

A practical problem occurs when the data contain errors, i.e., invalid geometries. The
implications of using such data are wrong results, application performance issues, etc. For
this reason, geometries are examined before indexing; invalid geometries are not indexed
and, thus, do not participate in the link discovery.
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Algorithm 1: Dataset Caching
Input: resource.endpoint, resource.id resource.geo, config.offset, config.limit
/* create table if not exists for resource */

1 T← get-table(resource,DB)
2 if T 6∈ DB then
3 T← create-table(resource.id,resource.geo, server-offset)
4 create GIST-index(T.geo)
/* checking cache */

5 min-offset← offset
6 [min-server-offset,max-server-offset]← get-stored-offsets()
7 max-offset← offset + limit - 1
8 if min-server-offset > 0 and max-offset < min-server-offset then // all queried records are before all stored ones

/* download triples with from the given offset, save after every chunk */

9 retrieve-triples(resource.endpoint, offset,limit,chunksize,T)
10 else if min-offset > max-server-offset then // all queried records are after all stored ones

11

12 if endpoint-has-more-entries(min-offset + 1) then // are there any more entries at this offset?

13 retrieve-triples(resource.endpoint, offset,limit,chunksize,T)

14 else // queried entries and stored entries overlap
/* find intervals of triple indices to be downloaded */

15 intervals = list() // list of range pairs, i.e., (start-range, end-range)

16 if offset < min-server-offset then
17 interval.append((offset, min-server-offset - 1))
18 min-offset = min-server-offset

19 if max-offset > max-server-offset then
20 if endpoint-has-more-entries(max-server-offset + 1) then
21 intervals.append((max-server-offset + 1,max-offset))

22 max-offset←max-server-offset

23 missing-limit = max-offset - min-offset + 1
/* find intervals of triple indices to be downloaded */

24 missing-intervals = find-missing-data(min-offset, missing-limit)
25 missing-intervals = concat (intervals, missing-intervals)
26 if length(missing-intervals) > 0 then
27 foreach interval ∈ missing-intervals do
28 interval-offset← interval[0]
29 interval-limit← interval[1] - interval-offset + 1
30 retrieve-triples(resource.endpoint, interval-offset,interval-limit,chunksize,T)
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4.5. Implementation

We used Python as our preferred programming language, since it became the language
of choice for data science in general, and provides useful tools for handling geospatial data,
in particular. We experimented with the following technologies:

4.5.1. GeoPandas

Our initial implementation involved custom-built caching and mapping mechanisms.
We used Python’s GeoPandas library [43], which implements data structures for storing
geometric types, as well as analysis tools for geospatial data. In particular, GeoPandas
provides an interface for spatial joins, which allow combining observations stored in these
data structures based on their spatial relations. For this purpose GeoPandas indexes ge-
ometries using R*-Tree [44], a variant of R-Tree —both have a similar hierarchical structure,
and aim at minimizing the total area covered. R*-Tree, however, provides a better search
performance, at the cost of an increased construction time. GeoPandas currently supports
finding the following spatial relations: within, intersects, and contains.

We further experimented with Cython [45], a language which is a superset of Python,
where code can be compiled directly to C, generating efficient code. GeoPandas has been
reimplemented in Cython in a way that optimizes the storage of geometries and should
improve the performance of spatial operations.

4.5.2. PostgreSQL

Furthermore, we implemented the system using PostgreSQL, an open source object-
relational DBMS, withthe PostGIS extension, which provides functionality to manage
geospatial data, such as geometry data types, efficient indexing, and spatial joins, and is
compliant with the Open Geometry Consortium (OGC) OpenGIS “Simple Features for SQL”
specifications [46]. PostGIS implements spatial indexing with an R-Tree-over-GiST [47].
GiST, Generalized Search Tree [48], is a height-balanced tree structure and allows arbitrary
indexing schemes. The choice to use this as the backend of our system was multi-fold:

• GiST indexes are “null safe”; therefore, attempting to build an R-Tree on data which
contain an empty geometry field will fail.

• GiST uses a compression technique which results in fast indexing.
• The database facilitates the implementation of the resource caching mechanism

The source code of Geo-L is available at https://github.com/DServSys/Geo-L (ac-
cessed on 11 October 2021 ).

5. Experimental Settings
5.1. Datasets

The evaluation was performed by finding different relations between points to poly-
gons, and polygons to polygons in the following datasets.

• SPOI—Smart Points of Interest: A dataset which contains over 30 million Points of
Interest important for tourism around the world [49].

• OLU—Open Land-Use: Maps land use on a local and regional level; contains over
11 million geometries—Polygons and MultiPolygons [50].

• NUTS—Nomenclature of Territorial Units for Statistics: A standard for referencing
European countries and their regions, for statistical processes [15].

These datasets are stored in the SPARQL endpoint of the FOODIE project [51] (see
also Data Availability Statement).

While SPOI and OLU are excellent examples for big (open) linked data, NUTS is
a standard schema. NUTS geometries are not represented in WKT format, but use the
NeoGeo vocabulary [52], and must be manipulated to conform to the form required by the
procedures of topological relations computation. Tools such as LIMES, however, do no
support such cases.

https://github.com/DServSys/Geo-L
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We compared the performance of LIMES and Geo-L with respect to both topological
relations discovery and data retrieval time from endpoints.

5.2. Experiments

The performance of the Geo-L systems was evaluated in terms of runtime by conduct-
ing experiments on simulation test sets, as well as real-world scenarios. We also noted
differences in linking results if they occurred. In order to compare the performance of
our system with that of LIMES, which was implemented in a parallelized framework,
the task was viewed as consisting of two stages: download and caching, and linking; we
report the performance for each of them. The simulations enabled the evaluation of system
performance under realistic conditions, with scenarios which otherwise might not have
been explored and, at the same time, providing a reliable way to confirm their results. All
experiments were performed on a 64-bit Linux machine with an Intel Core i7-7800X CPU @
3.50 GHz and a total of 12 threads (six CPU cores × two threads per core).

5.2.1. Simulation

Our simulations consisted of finding topological relations where the subsets of OLU
dataset were used as both source and target datasets. This setting had multiple advan-
tages: First, it allowed to demonstrate the benefits of caching, regarding datasets retrieval.
Additionally, the structure of the OLU set, which consisted of separate geometries with
non-hierarchical relations, facilitated the link quality evaluation. We used this approach to
perform a preliminary comparison of three implementations on a subset of 165,000 entities
(as source and target sets) and observed that the implementations which used GeoPandas
performed considerably slower than the one which employed PostgreSQL with PostGIS.
For example, the mapping time required for calculating the within relation was 38 s for the
implementation which used GeoPandas, about 20 min for the GeoPandas Cython imple-
mentation (apparently, GeoPandas has an open issue about the performance of the Cython
implementation; see https://github.com/geopandas/geopandas/issues/563, accessed
on 11 October 2021), and less than 4 s for the implementation which used PostgreSQL.
Therefore, in the following experiments, the latter served as our reference system.

We tested the systems with two subsets: the one containing the first 165,000 geometries,
and the other with the first 400,000 geometries. Figure 2 compares the retrieval times of
OLU subsets for both LIMES and Geo-L. The first scenario showed that retrieval time for
LIMES was about twice as long compared to Geo-L. The reason was that LIMES does not
detect whether data already exist or not, and downloads the same OLU subset twice, both
as source and target datasets. The second scenario emphasized this phenomenon: whereas
Geo-L retrieved only the data which have not been already downloaded, and performed
this only once, LIMES retrieved the subset of 400,000 geometries twice, which took more
than six times longer.

Moreover, LIMES stored redundant data, e.g., as we tested with two subsets—the first
165,000 geometries and the first 400,000 geometries—, and used them as both source and
target datasets, the subset of the first 165,000 geometries was stored four times, as it was
contained in the 400,000 geometries subset.

Experiments were repeated ten times for each topological relation type per subset,
and the average mapping times are shown for both LIMES and Geo-L in Figures 3 and 4.
As can be observed, Geo-L discovered topological links faster than LIMES, for all relations
in these experiments. The coefficients of the variation (CV) of runtimes for the different
experiments were found to be low in all cases (CV < 0.1), which indicated that these results
were consistent.

https://github.com/geopandas/geopandas/issues/563
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Figure 4. Performance OLU–OLU; size: 400 · 103 × 400 · 103.

In addition, we found discrepancies between the links discovered by each system. For
example, when looking for links of entities which stood in the within relation in two sets
with identical entities, the expected result was that each item in the source set would stand
in this relation with exactly one entity of the target set, and that the size of the returned set
would be equal to the size of each set. However, for the 165 · 103 OLU subset, Geo-L found
164,935 links, whereas LIMES found 155,083. The 65 entities which Geo-L did not include
had invalid geometries, which were detected already during construction and were omitted
from the search space. We examined the result computed by LIMES and noticed that the
difference of 9852 consisted mostly of “false negatives” errors, i.e., valid geometries which
were omitted from the result set (9849 links). Furthermore, there were three links that
Geo-L did not find and LIMES did. These, however, were “false positives”, i.e., the links
contained invalid geometries, which were included in the result set by LIMES, whereas
Geo-L already omitted them before computing the links. Similar errors also occurred for
other topological relations.

5.2.2. Real-World Scenarios

We experimented with the topological relation discovery between pairs of geospatial
resources mentioned in Section 5.1, and compared their performance to that of LIMES.
Figure 5 shows the performance, in terms of mapping runtime, on different subsets of
SPOI and OLU. In this example, the largest subset did not contain the other two: the first
500 · 103 entities of OLU contained geometries which caused the LIMES system to crash
and, therefore, we chose a subset of the same size but specified a different offset.

Figure 6 shows the running times for mapping SPOI to NUTS with different subset
sizes of SPOI. Since NUTS geometries were not represented in WKT format, we used a
configuration feature which defined a resource via a SPARQL query. In this case, the query
also transformed the geometries into the required format. This, however, was not possible
in LIMES and, therefore, the comparison of the systems was not presented.

Figure 7 shows the mapping runtime for different subsets of OLU to NUTS, for
different topological relations.
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5.2.3. Practical Use Cases

The system has been employed as part of DataBio, an EU Horizon 2020 project. A
major goal of the project is to show the benefits of Big Data technologies in the raw material
production from agriculture for the bioeconomy industry. The project uses linked data as a
federated layer to integrate cross-organizational heterogeneous data.

In particular, Geo-L has been successfully applied to various use cases in field man-
agement, as is demonstrated through the examples:

Riparian buffer zones are vegetated or forested strips around lakes and along water
courses. Their purpose, in the context of agricultural management, is to protect water
bodies from pollutants such as pesticides, nutrients, and sediment [53]. It is, therefore,
crucial to detect cases where field areas and buffer zones intersect. We applied Geo-L to
identify plots from the Czech registry of farmland, which intersect with buffer zones around
water bodies, and Figure 8 depicts such a case where a buffer zone of a lake intersected
with a field. The intersection was marked with orange.
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Figure 7. Performance OLU–NUTS; size: X · 103 × 1782.

Figure 8. Buffer zone of a lake which intersects with a field.

Soil erosion is the detachment and deposition of soil particles. It may be caused by
natural physical forces, e.g., wind, rainfall, ice, gravity, or due to human-induced land
use [54]. As the latter results in much faster erosion rates, it can affect the soil quality
dramatically due to the loss of nutrients, as well as the ability to accept and hold them.
Soil erosion, therefore, impacts biological productivity and sustainability negatively and
it is of high importance to control erosion zones [55,56]. We used Geo-L to identify soil
erosion zones in farms; Figure 9 shows the erosion zones overlapping with a plot marked
in dark blue.
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Figure 9. Erosion land zones of a field.

Farm management and agricultural landscape planning include, among others, prac-
tices of crop rotation or diversification to improve soil organic matter, maintain field pro-
ductivity, and control plant diseases [57]. A method for identifying fields with the same
crop type for a specific year can, thus, serve as an assisting tool for policy makers to
implement and coordinate such strategies at different territorial levels. In order to support
the management of crop diversity, Geo-L was used to locate fields within a specific region
which grew the same type of crop as a reference field. A reference field, for example, is
presented in Figure 10 marked in brown. Geo-L extracted its crop type for 2019 from the
endpoint—in this case, maize for silage—and identified all other fields recorded for this use
case in which maize for silage was grown in that year within the South Moravian Region
(region borders marked in grey).

Figure 10. Fields which grew maize for silage during 2019 within the South Moravian Region.

6. Discussion

This paper presents Geo-L, a system for discovering the RDF links between geospatial
entities, based on topological relations. We conducted experiments to detect topological
relations between points and polygons, and between polygons and polygons. The ex-
periments showed that Geo-L outperformed LIMES [27], a state-of-the-art link discovery
system, for this task in several aspects.
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• Scalability and efficiency: Geo-L configuration allowed to form a dataset directly by
the SPARQL query that defined it. This feature was, in particular, useful when data at
the SPARQL endpoint were stored differently than specified for the linking task, but
could be transformed into the required format through SPARQL functions.LIMES, on
the other hand, allowed only the detection of relations applied directly to entities of
the datasets:

– Download time: Datasets were cached not for a single task, but were regarded
as resources of their own. Thanks to its caching mechanism, Geo-L accessed the
SPARQL endpoints only when data required in the dataset were missing, and
expanded existing datasets where possible. LIMES, on the other hand, performed
a download for each dataset query; previously downloaded datasets were re-
downloaded and, as a result, its operation required more time and space.

– Mapping time: Geo-L utilized PostgreSQL with the PostGIS index for the storing
and indexing of the data. This enabled efficient spatial joins between source and
target datasets.

• Robustness: Geo-L included multiple features that strengthened the robustness of
the application.

– Caching: Geo-L cached portions of the data as they were downloaded, rather than
writing the whole dataset after being downloaded, as LIMES did. This property
prevented data loss when, e.g., connection to the remote endpoint was lost.

– Mapping accuracy: Geo-L detected entities with invalid geometries (compliant
to OGC OpenGIS “Simple Features for SQL” specifications) and did not include
them in the search space. In addition, in several cases, LIMES did not include
valid geometries in the result set, whereas Geo-L correctly did.

• Interoperability and flexibility: Geo-L could be used as a stand-alone application or
as a REST service (in a docker), which would allow it to be integrated with other
applications. The easy SPARQL-based and slim set-up of the target and source
configuration (as JSON) enabled a very free usage of the tool.

Future work will examine relations between other types of geometries as well as ex-
plore geospatial relations based on various distance measures. The current implementation
recalled the same items for each dataset once they were cached. In the future, we will also
address re-caching to reflect the latest data on the SPRAQL endpoint, an issue which is, to
the best of our knowledge, not handled by other geospatial linking systems.
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