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Abstract: Point-of-interest (POI) data from map sources are increasingly used in a wide range of
applications, including real estate, land use, and transport planning. However, uncertainties in
data quality arise from the fact that some of this data are crowdsourced and proprietary validation
workflows lack transparency. Comparing data quality between POI sources without standardized
validation metrics is a challenge. This study reviews and implements the available POI validation
methods, working towards identifying a set of metrics that is applicable across datasets. Twenty-
three validation methods were found and categorized. Most methods evaluated positional accuracy,
while logical consistency and usability were the least represented. A subset of nine methods was
implemented to assess four real-world POI datasets extracted for a highly urbanized neighborhood
in Singapore. The datasets were found to have poor completeness with errors of commission and
omission, although spatial errors were reasonably low (<60 m). Thematic accuracy in names and
place types varied. The move towards standardized validation metrics depends on factors such as
data availability for intrinsic or extrinsic methods, varying levels of detail across POI datasets, the
influence of matching procedures, and the intended application of POI data.

Keywords: point of interest; volunteered geographic information (VGI); data quality

1. Introduction

Points of interest or POI refers to places of interest frequently visited by human traffic
throughout the day, including restaurants, supermarkets, transportation hubs, parks, cafes,
and tourist attractions. Given the ubiquitous use of mobile devices and advancements in
various location-aware technologies [1,2], it is now possible for mobile service providers
and technology companies to analyze users’ mobility data at increasing geospatial-temporal
resolutions to identify neighboring POIs [3]. Location-based social networks (LBSNs), such
as Google Maps and Swarm by Foursquare, also emerged. LBSNs rely on their community
of end-users to maintain their geospatial database. This is accomplished by soliciting
reviews and different semantic information about a recently visited location, benefiting
other users in the process [4]. Government agencies and commercial data providers
also maintain their own proprietary databases of business establishments and critical
facilities, which support various purposes such as market research, policy-making, and
urban planning.

Given the availability of geospatial information from different sources, POI data were
used in a wide range of applications, from real estate valuations [5], disaggregated employ-
ment size estimation [6] and land use classification [7], to the transportation domain, with trip
purpose inference [8], stop activity prediction [9] and travel demand modeling [10].
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However, there are concerns about data quality of the POI information stored in
these data sources, especially those that rely heavily on crowdsourced data or voluntary
contributions from their end-users [11]. While different POI data providers implemented
their own set of data validation workflows, the detailed documentation of these workflows
is often kept proprietary and/or lacking. Furthermore, it is often challenging to compare
between different POI sources as they do not follow a standard set of validation metrics that
comprehensively and objectively evaluate different aspects of their databases’ data quality.

This study first provides a review of POI validation methods that evaluate different
aspects of data quality, with the further aim of identifying a set of validation metrics
that can be applied across POI datasets. To demonstrate the application of the validation
methods identified, they will be implemented and applied to four different POI datasets
within a study area in Singapore. The POI datasets are obtained from OpenStreetMap
(OSM), Google Maps, HERE Maps, and OneMap, while POI data from the Singapore Land
Authority (SLA) is used as reference data. With the variety of commercial and governmental
data sources available, users of POI data are likely to encounter the mentioned challenges
when comparing different data sources. As a secondary contribution to the literature, a
thorough analysis of the validation results will be conducted between the different datasets
evaluated in this study to provide readers with the means of interpreting the results.

2. Review of Approaches for Validating POI Data Quality

A literature review of approaches for validating POI data quality was conducted with
the search terms “POI”, “points-of-interest”, “data quality”, “assessment”, “validation”,
and “methods” on the search engine Google Scholar and Web of Science, seeking publica-
tions published from year 2010 onwards. The search returned 40 studies, including 7 review
papers or editorials [11–17]. In addition, to ensure that the review is as representative as
possible, further validation approaches were obtained from previous review articles [16,17]
and the most recent review by Fonte et al. in 2017 [11].

As shown in Figure 1, the total number of articles found in the literature review
fluctuates across the years. The highest number of articles (seven) were found in 2014,
with about one review or editorial per year on average from 2014 onwards. Articles from
the peak in 2014 generally focus on laying the frameworks for assessing volunteered
geographic information (VGI) quality [18,19], along with the development of methods
for assessment [20–23]. In recent years, despite the lower number of articles, the field
developed in several new directions, such as in more sophisticated statistical machine
learning methods for quality assessment [24,25] and POI matching [26,27]. Recent studies
also explore novel data sources beyond OSM, such as LBSNs and review websites [27,28],
and broader applications of POI data [10,29,30].

Figure 1. Number of articles found in literature review, by year and type.

The relevant approaches applicable to POI data sources were extracted from the
surveyed literature and categorized into the six elements of data quality defined by ISO
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19157:2013 [31], which are completeness, logical consistency, positional accuracy, temporal
quality, thematic accuracy, and usability. Each element will be elaborated upon in the
following subsections.

The approaches were also categorized into intrinsic or extrinsic approaches. Intrinsic
approaches do not require the use of external knowledge to evaluate a POI source against—
such as a ground truth reference dataset—while extrinsic approaches do require the use
of such data [17,18]. There was a focus on intrinsic approaches in the context of research
assessing crowdsourced POI data or VGI, as such sources are increasingly “more complete
and accurate than authoritative datasets” [16]. However, extrinsic approaches using
reference data still have value as intrinsic approaches are limited in their power to make
definitive evaluations of data quality [32]. In this paper, Deval refers to the dataset under
evaluation and Dref refers to the reference dataset.

This review focuses on point-based POI data, which have location information repre-
sented with a pair of latitudinal and longitudinal coordinates. Evaluation methods that
rely on a building’s or area’s footprint data are excluded from the review as such data
are often not available in POI datasets. As such, two studies [22,23] did not have relevant
approaches extracted, as they used the geometric properties (e.g., land area of parks and
gardens) of entities in validating POI data quality. The focus on point-based data allows
the approaches evaluated in this study to be easily transferable and applicable to datasets
that are commonly encountered.

2.1. Completeness

Completeness refers to the presence or absence of POIs in a data source compared
to reality. Errors can arise from commission, where excess data exists in a dataset, or
omission, where data are missing from a dataset. The simplest approach for measuring
completeness is to compare the number of points in Deval and in Dref [10,33–36]. If a
correspondence between points in Deval and in Dref was established, the proportion of
points in Deval that are found in Dref, and vice versa, serves as a measure of completeness.
This measure is superior to “simple feature counts” as errors of commission and omission
can be detected [36].

When Dref is unavailable, the intrinsic approach of analyzing community activity and
growth rates over time can give an indication of completeness [10,18,21,30,35].

2.2. Logical Consistency

Logical consistency is defined as the “degree of adherence to logical rules of data
structure, attribution, and relationships” [31] and can be further broken down into con-
ceptual consistency, domain consistency, format consistency, and topological consistency.
Logical consistency was assessed by analyzing the spatial relations between POIs and other
map features within the same data source [4,37]. These can be done through a series of
topo-semantic checks, where different relational rules are applied according to the type of
POI. For example, ’bus_stop’ POIs must lie outside of roads, buildings and nature poly-
gons [37]. This approach can also evaluate the positional accuracy of POIs as elaborated in
the subsequent subsection.

Logical consistency can also be evaluated by assessing the positional plausibility of
POIs using coexistence patterns [24], which was proposed within the context of evaluating
OSM POIs at the data entry stage. The positional plausibility of a candidate POI is evaluated
with spatial association rules, which are determined by the frequency of occurrence of
other POI types within varying distance bands. In OSM, POI types are expressed with tags,
which consist of key-value pairs. The authors [24] demonstrated the concept of positional
plausibility with Automated Teller Machines (ATMs) in Paris, where adding an ATM POI
(amenity: ATM) to the middle of a park would be less plausible as supposed to the Paris
downtown area. As its authors note, the success of the method depends on the inherent
frequency of POI types and the strength of the underlying patterns in the POI data, if they
exist. While some generic patterns in the coexistence of POIs were found across cities,
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the method was recommended to be trained and implemented within a single city, thus
limiting its ability to be easily applied to new urban areas.

2.3. Positional Accuracy

The positional accuracy of POIs refers to the accuracy of a POIs spatial location,
expressed in geographic coordinates, with reference to its true position. When a corre-
spondence between points in Deval and in Dref was established, positional accuracy can be
directly measured by calculating the distance between the locations of the corresponding
points in Deval and in Dref. The distance metric can be in the form of Euclidean distances or
in terms of distances in the x- or y-dimensions [4,28,29,33,34,36,38–41], after transforming
geographic coordinates into a planar coordinate system. While the Euclidean distance
provides a single value of the distance between points, the x and y distances also indicate
the direction of biases, which might arise from systematic data errors that could cause
points in Deval to be shifted by a fixed amount in a particular direction.

If other features are available in Dref or Deval, the spatial relation to other features
such as roads, rivers, or buildings could provide indication of the positional accuracy of
POIs [4,28,37]. Similar to the approach of identifying coexistence patterns for evaluating
logical consistency, certain POIs are more likely to be colocated with other POI types,
and deviations from the pattern could indicate errors in position. However, interpreting
these spatial relations is still necessary to make judgments on positional accuracy [4].
Additionally, large stacks of POIs with the same location coordinates could occur. If these
stacks occur in unlikely areas, such as in a sparse rural neighborhood, then the positional
accuracy of the POI stack is doubtful and manual verification is necessary [28].

Spatial analysis tools can also be used to evaluate positional accuracy, such as by
comparing the nearest neighbor index (NNi) or the Cross-K function between Deval and
Dref [28]. The NNi expresses the extent of clustering (NNi < 1) or dispersion (NNi > 1) of a
point pattern relative to complete spatial randomness. While the magnitude of the NNi is
not a quality criterion, it can reveal differences in the spatial distributions of POI between
data sources. On the other hand, the Cross-K function depicts the relative clustering
between points from different data sources. When executing the Cross-K function between
Deval and Dref, the relative clustering can give an indication of positional accuracy in terms
of the similarity in their spatial coverage.

When Dref is unavailable, intrinsic approaches focusing on the POI contributions and
contributors can provide an indication of positional accuracy. Machine learning methods
can estimate positional accuracy based on the spatial, temporal and user characteristics
of contributions [42]. Some external data will first be required to train the estimation
model, although unsupervised learning methods can be used to glean insights into the
characteristics of contributors [25].

Otherwise, the map scale and screen resolution at which POI is entered by the user
can quantify positional errors due to POI placement [43], if such data are available. Finally,
the number of contributors in an area has also been shown to be an indicator of positional
accuracy [44] by the concept of Linus’ Law, which states that quality is assured when
sufficient parties are involved.

2.4. Temporal Quality

The temporal quality refers to the time-related aspects of POIs. This could be related
to the accuracy of temporal details of POI, such as the opening hours of a restaurant, or
currency, which refers to the time when the POI was created or updated. Most of the
temporal-related approaches reviewed are applicable to OSM POI data, which allows for
temporal analysis because POI modifications are tracked and published. The most basic
approach is to observe the object capture dates and object versions in OSM [34], which will
indicate the currency of the POI data. Analyzing the number of annual contributions, the
number of features edited over time [45], or the frequency and magnitude of changes in
POI position and attributes [4] can also be indicators of temporal quality. Going further,
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the temporal evolution of trustworthiness can be analyzed based on the changes in the
thematic, geometric, and qualitative spatial aspect of POIs [46].

2.5. Thematic Accuracy

Thematic accuracy refers to the correctness of the thematic tags of each POI. Thematic
tags could refer to any further information associated with a specific POI, but the most
common tags encountered in this review are related to the POI attributes of name and
place type.

When a correspondence between points in Deval and in Dref was established, the string
similarity in POI names in Deval and in Dref can be quantified with several string distance
measures like the Levenshtein distance, Longest Common Subsequence (LCS), or the mean of
the Token Sort Ratio and Token Set Ratio [4,19,29,40]. For POI place types, similar comparisons
can be made, ranging from a simple calculation of the proportion of POIs in Deval with the
same place type as the corresponding point in Dref [20,34,41,47,48], or by comparing semantic
similarity (such as with the WordNet Similarity Metric) between the place types in Deval and
Dref [40,49–51]. When Dref is unavailable, calculating the proportion of POIs in Deval with
missing attributes provides an indication of thematic accuracy [20,41,52].

2.6. Usability

Usability is a broad element of data quality which refers to the extent to which the
data fits the user requirements and could involve multiple data quality elements previously
mentioned. The fitness-for-use of POIs can be defined by splitting the data into different
use cases, each having different areas of focus. Examples of use cases could be object-
referencing and geo-referencing [53]. POIs can also be incorporated into models to evaluate
their ability to explain urban phenomena, such as in the relationship between coffee shop
density and housing prices [29].

2.7. Summary of Reviewed Approaches

Table 1 shows 23 distinct approaches for evaluating POI data quality that were ex-
tracted from the literature. These approaches were categorized according to the element of
data quality it applies to, its intrinsic or extrinsic nature, and if POIs in Deval and Dref need
to be matched (matching procedure described in Section 3.4). A subset of these approaches
will be chosen to evaluate four datasets labeled A to D. More details on the datasets are
provided in Section 3.2, while the rationale for implementing a subset of approaches can be
found in Section 3.3.

In general, of the six elements of data quality, positional accuracy had the most number
of possible approaches (8), followed by thematic accuracy (4) and temporal quality (4).
Logical consistency and usability were the least represented elements with only two
approaches found. While there was an even spread of intrinsic and extrinsic approaches,
some elements of data quality appeared to be better represented with either an intrinsic
or extrinsic approach. For example, completeness, thematic accuracy, and usability had
more extrinsic approaches, while all of the reviewed approaches for temporal quality
were intrinsic.

Some approaches appeared to be more frequently used in the literature compared
to others. Analyzing the distribution of spatial error between corresponding points in
Deval and Dref was the most popular approach, with 10 studies using this approach for
evaluating positional accuracy. Another common approach was the proportion of POIs in
Deval with the same classification as the corresponding point in Dref, which was used in
five studies.
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Table 1. Reviewed approaches for evaluating POI data quality. Deval refers to POI dataset being evaluated (A to D), while
Dref refers to reference POI dataset. Checks and crosses indicate if approach was chosen for implementation in case study.
Elaboration on why an approach was not chosen is provided in remarks column.

Measure Approach Reference(s) A B C D Dref Remarks

Completeness Ex Comparison of number of points in Deval and Dref [10,33–36] X X X X X

Ex, M Proportion of points in Deval found in Dref, and vice
versa

[4,29,30,39] X X X X X

In Community activity, growth rates over time [10,18,21,30,
35]

7 7 7 ◦ 7

Logical Con-
sistency

In Evaluates the positional plausibility of incoming
POI using coexistence patterns

[24] 7 7 7 7 7 Specific to validation of
new POI, not general-
ized for application on
verifying entire dataset.

Ex/In Spatial relation to other features (e.g., roads, rivers,
buildings) (Also: positional accuracy)

[4,28,37] 7 7 7 7 7 Manual verification
not scalable to large
datasets.

Positional Ac-
curacy

Ex, M Distribution of spatial error (euclidean distance, x-
y distance) between corresponding points in Deval
and Dref

[4,28,29,33,
34,36,38–41]

X X X X X

Ex/In Spatial relation to other features (e.g., roads, rivers,
buildings) (Also: logical consistency)

[4,28,37] 7 7 7 7 7 Manual verification
not scalable to large
datasets.

Ex Manual verification of large POI stacks (POIs with
the same location)

[28] 7 7 7 7 7 Manual verification
not scalable to large
datasets.

Ex Comparing Nearest Neighbour Index of Deval and
Dref

[28] X X X X X

Ex Comparing relative clustering with Cross-K func-
tion

[28] X X X X X

In Machine learning methods on spatial, temporal and
user characteristics of contributions

[25,42] 7 7 7 ◦ 7

In Map scale and screen resolution at which POI is
entered by the user

[43] 7 7 7 7 7 Metadata at the point of
data entry is not avail-
able.

In Number of contributors in an area (Linus’ Law) [44] 7 7 7 ◦ 7

Temporal
Quality

In Frequency and magnitude of changes in POI posi-
tion and attributes

[4] 7 7 7 ◦ 7

In Object capture date, object version [34] 7 7 7 ◦ 7

In Number of nodes, way, and relations contributed
annually in OSM, Number of features edited over
time

[45] 7 7 7 ◦ 7

In Measures trustworthiness based on the changes in
the thematic, geometric, and qualitative spatial as-
pect of each feature in any map that supports ver-
sioning

[46] 7 7 7 ◦ 7

Thematic Ac-
curacy

Ex, M Distribution of string similarity of POI names be-
tween corresponding points in Deval and Dref using
Lowest Common Subsequence (LCS), Levenshtein
distance, and the mean of Token Sort and Token Set
Ratio.

[4,19,29,40] X X X X X

Ex, M Proportion of POIs in Deval with the same classifica-
tion as corresponding point in Dref

[20,34,41,47,
48]

X X X X X

Ex, M Comparing semantic similarity between category
name from Deval and Dref(e.g., WordNet Similarity
Metric)

[40,49–51] X X X X X
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Table 1. Cont.

Measure Approach Reference(s) A B C D Dref Remarks

In Proportion of POIs in Deval with missing attributes [20,41,52] X X X X X

Usability Ex Modeling POIs in Deval with urban phenomena
(e.g., coffee shop density and housing prices)

[29] 7 7 7 7 7 Method’s success de-
pends on data availabil-
ity and quality of chosen
urban phenomena.

Ex Defining Fitness for use for POI by splitting into
2 different use cases (Object-referencing and geo-
referencing) each having different focuses

[53] 7 7 7 7 7 Dependent on use
case, not applicable for
generic validation of
data.

Legend: Ex—Extrinsic. In—Intrinsic. M—Matching required. X—Implemented. ◦—Possible to implement. 7—Not implemented.

3. Case Study: Implementation of Reviewed Approaches in Singapore

As a case study, a selection of the reviewed approaches was implemented on four POI
data sources in the study area of Singapore to demonstrate their applicability. The source
code for all of the POI validation methods implemented in this study is shared in a public
code repository (Appendix A) to ensure reproducibility and enable the adoption of these
methods in other study areas of interest.

3.1. Study Area

The area of interest in this study is the town of Tampines located in the east of
Singapore (Figure 2). The Tampines Planning Area has a total land area of 20.97 km2 [54]
housing a population of 261,230 people [55] in 2015, giving an average population density
of 12,457 people per km2. Tampines has several large public transit nodes surrounded by
multiple large retail malls. The town also houses several industrial estates and business
parks, in addition to community services like schools, places of worship and medical
facilities. The high population density and the wide representation of diverse land uses and
activities make Tampines a good study area for implementing and testing the approaches
for validating POI data quality.

Figure 2. Overview of study area of Tampines (red polygon), located in east of Singapore (inset).
Map tiles by Carto, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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3.2. POI Dataset Description

This section provides a thorough description of the four POI data sources selected for
evaluation in this case study. These data sources are OpenStreetMap (OSM), Google Places,
HERE Maps, and OneMap. These datasets are selected based on various factors, namely,
their popular use in the literature, popularity among users, and availability. Heatmaps
showing the geographic distribution of POIs from each data source within the study area
are available in the Appendix A (Figure A1).

OSM is the result of a community-driven initiative to develop a global geospatial data
source maintained by a community of volunteers. Due to the initiative’s dedication towards
the growth, development, and distribution of free geospatial data, the database is made
freely available online for use by any parties and for any purposes. Users are provided with
a wide range of alternatives to download the data through various online channels and at
different geospatial scales, from the entire planet down to individual continents, countries,
metropolitan areas, and specific user-defined areas using the Overpass API [56]. Given
that the data procurement process for OSM is heavily reliant on a crowdsourcing approach
in maintaining the database, this led to some inconsistencies in how new locations are
added or updated in the database by different contributors [57]. While several guidelines
are generally in place to reduce such inconsistencies between different contributors, it is
challenging to enforce.

Google Maps is a commercial mapping service developed by Google, providing users
with different features such as satellite imagery, aerial photography, street maps, panoramic
views of streets, real-time traffic conditions and route planning. Users of the platform
can also obtain detailed POI information about a specific region using the Places API by
including its geospatial coordinates and the search radius [58]. To maintain the relevancy
of its geospatial database, the platform currently relies on various approaches such as
vetting the current database against authoritative sources and encouraging its end-users to
provide timely feedback on any discrepancies. Recently, the Google Maps team also began
leveraging satellite imagery and computer vision advancements to automate the mapping
process of building outlines [59].

HERE Maps is another example of a commercial mapping service provider that pro-
vides a rich set of geospatial POI data to its end-users. While the company advertises
state-of-the-art technology and leading mapping processes to compile its database of
geospatial data [60], specific details about the platform’s data validation process were
not available from their documentation. Users of the mapping service can obtain dif-
ferent attributes about a POI, such as the name and address information, by using the
Places (Search) API [61] as well as report any mapping discrepancies by using the Map
Feedback API [62].

Apart from commercial data providers, another authoritative source of geospatial data
are government agencies that rely on such datasets to support land development, housing,
employment, and transportation policies. An example is the authoritative national map of
Singapore named OneMap. OneMap allows the general public to access a wide variety of
up-to-date information and services supported by various government agencies through
a mobile or web application. Some examples of such services include allowing users to
query for different information on a particular location, such as land information and
nearby amenities, as well as traffic conditions and travel directions using various modes of
transportation [63]. Users can also utilize the OneMap RESTful API to query for different
thematic information from various government agencies, such as parking lots, healthcare
centers, food establishments, parks, historic sites, and museums [64].

In addition to the four POI data sources considered, Singapore Land Authority’s
(SLA) POI dataset will be used as the authoritative reference dataset for extrinsic validation
approaches. SLA is the national mapping agency of Singapore and maintains the POI
dataset. This dataset was chosen as the reference dataset due to its authoritative source
which is assumed to provide reliable and accurate data. The SLA POI dataset was chosen
over OneMap as SLA, being the national mapping agency, is deemed to be more reliable
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than the combination of sources that makes up OneMap. The licensed SLA dataset con-
tains detailed attributes of 27 different place types within Singapore, such as education
institutions, transportation hubs, religious buildings, local government offices, and key
medical facilities.

3.3. Choice of Approaches for Implementation

From the range of approaches reviewed in Section 2, a subset of approaches were
selected for implementation in the case study. Table 1 shows the applicability and suitability
of implementing each approach on the different POI sources. Except for Dref, each evalu-
ated data source (Deval) is relabeled from ‘A’ to ‘D’ to bring attention to the interpretation
of the results and avoid comparing the superiority of data sources. The implemented ap-
proaches were selected for their fit with inherent features of the POI data sources identified
in this study. More specifically, the selected approaches utilized particular POI attributes
that were present in the data sources considered, such as the POI’s name, address, or place
type information. Furthermore, identifying commonly found attributes across datasets can
be used to inform the future development of standardized POI validation metrics.

The remaining approaches were not implemented for one of the following reasons:
(1) the approach required highly specific data that was not present across all POI datasets,
(2) the approach was not scalable to large datasets, or (3) the approach fell outside the
study scope of large, existing, generalized POI sources. In the first case, some approaches
were only applicable to POI sources that contain historical data of POI edits, contribu-
tions, and details of the contributors (such as with data source D). Examples of these
approaches are the use of community activity and growth rates over time to evaluate com-
pleteness [18,21,35], or analyzing the capture date and version of POIs to evaluate temporal
quality [34]. In the second case, approaches such as observing spatial relations [4,28] or
the verification of large POI stacks [28] relied on human input and thus are not scalable to
large datasets.

The reasons for excluding certain approaches from further implementation are provided
in Table 1. In total, the list of reviewed approaches was narrowed down to nine approaches,
most of which are extrinsic, and cover the elements of completeness, positional accuracy, and
thematic accuracy.

3.4. Matching Procedure

Given that several of the extrinsic approaches first require the POIs in Deval to be
matched with their corresponding counterparts in Dref before evaluation, a POI matching
procedure was implemented in this study and applied to each of the four POI data sources
(i.e., OSM, Google Places, HERE Maps, and OneMap—Deval) to identify the matching POIs
in the SLA reference dataset (Dref).

The POI matching procedure, adapted from previous work [65], considered three
similarity measures (i.e., spatial similarity, name similarity, and address similarity) in a
two-stage matching process to identify POI matches between Deval and Dref. The first
stage begins by considering the spatial similarity between the POIs in Deval and Dref by
filtering out all neighboring POIs that fall within 100 m around the POI to be matched. The
second stage of the POI matching process subsequently compares each neighboring POI
against the POI to be matched based on their name and address similarity measures to
identify matches.

The name similarity measure between each POI pair is calculated by first tokeniz-
ing the POIs’ name information and alphabetically sorting the resulting tokens before
calculating the Levenshtein distance between the two formatted name strings.

However, given that the address information between two neighboring POIs is likely
to be very similar with slight differences in terms of their street or block numbers, a string
comparison approach, which places an equal weight on each matching string, would
likely be unsuitable. Therefore, a weighted approach was adopted when calculating
the address similarity measure between each POI pair by placing a smaller weight on
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string matches that occur more frequently (i.e., street name and country), while placing a
larger weight on string matches that occur less frequently (i.e., block number and street
number). Based on these requirements, the address similarity measure is calculated by first
vectorizing the address information for all neighboring POIs and the POI to be matched
using Term Frequency-inverse Document Frequency (TF-IDF) before calculating the cosine
similarity score between each pair of address vectors. TF-IDF is a numerical statistic that
can represent the significance of a word t within the document and other documents in
the same collection by increasing proportionally based on the number of times it appears
in document d but is offset when it repeatedly appears in the entire collection D (refer to
Equation (1)).

TF-IDF(t, d) = TF(t, d) ∗ IDF(t, d) (1)

where

TF(t, d) =
∑j∈d 1j=t

|d| (2)

IDF(t, d) = log
|D|

∑k∈D 1t∈k
(3)

In the context of this study, d corresponds to the address string of a neighboring POI,
while D represents the address list of all neighboring POIs that fall within 100 m from the
POI to be matched. After calculating the address similarity metric based on the cosine
similarity score between each POI pair’s address vectors, the result is combined with their
name similarity scores and passed into a machine learning classifier to infer if they are
a match.

A detailed evaluation of the POI matching procedure described above was conducted
in a previous study [65] using a ground truth POI dataset that was collected in the eastern
region of Singapore (Southwest: 1.331747, 103.961258; Northwest: 1.339397, 103.961258;
Northeast: 1.339397, 103.969027; Southeast: 1.331747, 103.969027) and manually labeled
to indicate all 200 POI matches and 8498 POI non-matches in the region of interest. By
performing a 75/25 train-test split on the ground truth dataset, the machine learning
classifier was trained using a combination of hybrid sampling techniques and ensemble
learning algorithms such as Gradient Boosting [66] and Bootstrap Aggregation [67] to
overcome the imbalance between the POI matches and non-matches in the training dataset.
By evaluating the resulting model on the test dataset, the model was able to report matching
accuracies up to 97.6% for balanced accuracy and 97.2% for overall accuracy, outperforming
all baseline approaches considered in the study.

4. Validation Approaches and Results

The following results will be presented for the four evaluated POI data sources
mentioned in Section 3.2. As previously mentioned in Section 3.3, the evaluated data
sources (Deval) are labelled A to D. In the approaches that require a correspondence between
POIs in Deval and Dref, the matching procedure described in Section 3.4 was used.

4.1. Completeness

Table 2 shows the comparison of the number of points in Deval and Dref and the
proportion of points in Deval found in Dref, and vice versa. As some data sources might be
more abundant in POIs of a particular place type compared to the others, the comparison
was also conducted for a subset of POIs of a particular place type (school-related POIs),
such as ‘school’, ‘university’, ‘secondary_school’, ‘primary_school’ and ‘college’. School-
related POIs were chosen because the place type was common across most of the data
sources, except data source A, and was relatively abundant in Dref.

Considering all POIs, data source C has the highest number of POIs, with about
8-times as many points as the next largest data sources (data source A and B). Data source
D and Dref have the least number of points. The larger number of points for data source



ISPRS Int. J. Geo-Inf. 2021, 10, 735 11 of 27

C could indicate a true wider coverage of points or errors of commission in the form of
duplicate or excess POIs that do not truly exist.

Table 2. Results for completeness across all POI place types and a subset of school-related POIs.

Data
Source

(1) Number of
Points

(2) Number (Proportion) of
Points in Deval Found in Dref

(3) Number (Proportion) of Points
in Dref Found in Deval

All POIs
A 1206 34 (0.028) 30 (0.054)
B 1210 493 (0.407) 245 (0.44)
C 9618 702 (0.073) 315 (0.566)
D 631 167 (0.265) 193 (0.346)

Dref 557 — —

School-Related POIs
A — — —
B 143 118 (0.825) 100 (0.99)
C 248 55 (0.222) 63 (0.624)
D 38 22 (0.579) 31 (0.307)

Dref 101 — —

Overall, the proportion of points in Deval found in Dref and vice versa (columns 2 and 3)
is low (less than 0.566). In terms of the proportion of points in Deval found in Dref (column 2),
data source A has the lowest proportion of points found in Dref (0.028), indicating that the
level of completeness is lacking relative to Dref. This is followed by data source C with a
slightly higher proportion of 0.073. Data source D has the next highest proportion (0.265),
followed by data source B with the highest proportion of 0.407.

In terms of the proportion of points in Dref found in Deval (column 3), data source A
still has the lowest proportions of 0.054, followed by data sources D (0.346), B (0.44) and
C (0.566). A low proportion of POIs in data source C could be found in Dref, but a much
higher proportion of points in Dref can be found in data source C. Other sources have a
more balanced proportion (e.g., 0.407 vs. 0.44 for data source B).

A low proportion of points in Deval found in Dref could indicate errors of commission,
where there are excess points in Deval which do not exist in Dref or in reality. On the other
hand, a low proportion of points in Dref found in Deval could indicate errors of omission,
where Deval is lacking in points that exist in Dref. In both cases, a low proportion could also
be due to differences in coverage for specific place types between Deval and Dref. This is
evidenced by the considerably higher proportion of points in Deval found in Dref and vice
versa when considering the subset of school-related POIs. Additionally, it was observed
that data source A has a higher proportion of POIs relating to restaurants, food outlets and
shops. On the other hand, being a government source, a majority of POIs in Dref are related
to ATMs, schools, political venues, and doctors.

By comparing the number of points in Deval that were found in Dref and vice versa
(columns 2 and 3), it is observed that for data sources B and C, about twice as many points
in Deval were found in Dref (column 2) compared to the number of points in Dref that were
found in Deval (column 3). This is an indication of the extent to which many-to-one matches
in the data sources are present.

4.2. Positional Accuracy
4.2.1. Distribution of Spatial Error (Euclidean Distance, x-y Distance) between
Corresponding Points in Deval and Dref

Figures 3 and 4 show the distribution of spatial error between corresponding points in
Deval and Dref, where spatial error is measured with both the euclidean distance and the x-y
distance. All points were projected to the planar SVY21 coordinate reference system (EPSG:
3414) before distances were calculated. In general, the points in Deval are within 70 m of the
corresponding point in Dref. In terms of mean euclidean distances, Data sources B and D
have lower spatial error compared to data sources A and C. The lower spatial error for data
sources B and D might be a result of possible bulk POI imports from governmental sources.
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The spatial error of data source A has a comparable mean and distribution compared to
data source C, but the low number of points in data source A limits any further conclusions
on its positional accuracy. Visually, the distribution of x-y errors (Figure 4) do not exhibit
bias in any direction, and the errors are scattered radially about the origin (0, 0).

The wider spread of spatial errors for data sources A and C could be due to the data
sources having more detailed POIs of individual establishments. When located within
a larger complex, these detailed POIs are matched to the aggregated version of the POI
in Dref, which might be located at the centroid of the complex. This phenomenon will be
elaborated in the subsequent section on many-to-one matches (Section 5.1).

Figure 3. Distribution of spatial error based on euclidean distance between corresponding points
in four data sources A to D (Deval) and Dref. Numbers on right of distribution indicate number of
corresponding points in each data source.

4.2.2. Comparing Nearest Neighbor Index of Deval and Dref

The Nearest Neighbor Index (NNi) provides an indication of how a point pattern
is clustered relative to a point pattern with complete spatial randomness (CSR). NNi is
calculated with the equation:

NNi =
rA
rE

, (4)

where rA is the average distance to the nearest neighbor in the analyzed point pattern, and
rE is the expected nearest neighbor distance in a CSR point pattern. For a CSR point pattern
with intensity λ (points per unit area), rE is given by:

rE =
1

2
√

λ
(5)

When the NNi of a point pattern is less than one, the point pattern is interpreted to
have a greater degree of clustering relative to a CSR point pattern, as the average distance
to the nearest neighbor in the point pattern is less than the expected average distance in a
CSR point pattern (rA < rE). In the extreme case where all the points in a point pattern are
in exactly the same location, the average distance to the nearest neighbor (rA) will be zero,
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giving an NNi of zero. On the other hand, a point pattern with an NNi greater than one
indicates a tendency towards evenly spaced points, or dispersion.

Figure 4. Distribution of spatial error in X (longitude) and Y (latitude) axes between corresponding
points in Deval and Dref for the four data sources A to D (a–d).

The NNi values for each of the data sources, along with the observed mean and
expected average distance between points are shown in Table 3. Similar to the findings
of Hochmair et al. (2018) [28], the NNi values across maps are less than one, indicating
clustering. Data sources A and B have the highest degree of clustering (lowest NNis) while
data source D and Dref have the lowest degree of clustering (highest NNis). Data source D
is clustered in the manner that is closest to Dref (0.51 vs. 0.47), while data source A is much
more clustered compared to Dref (0.23 vs. 0.45).

The differences in NNi could be explained by the different types of POIs being covered
with different spatial characteristics. For example, as noted by Hochmair et al. (2018) [28],
restaurants and shops tend to be clustered along the same commercial areas, which might
have a higher representation in data source A and C. More investigation is needed to examine
clustering patterns within each data source to explain the different NNi values observed.

Table 3. Nearest Neighbor Index (NNi) values for four evaluated data sources (Deval) and reference
data source (Dref).

Data Source Mean Distance, rA (m) Expected Distance, rE (m)
Nearest Neighbour

Index (rA ÷ rE)

A 20.69 88.23 0.23
B 22.94 92.86 0.25
C 10.11 30.02 0.34
D 63.39 124.72 0.51

Dref 60.90 128.42 0.47
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4.2.3. Comparing Relative Clustering with Cross-K Function

The cross-K function is a method for analyzing how two point patterns cluster relative
to each other. This is the bivariate version of Ripley’s K function [68]. The value of Kij(r) of
points from sources i and j as a function of distance r is given by:

Kij(r) =
E(# of points from j within distance r of a randomly chosen point in i)

λj
, (6)

where λj is the density of the points in j, or the number of points per unit area.
This is followed by a test for statistical significance using a Monte Carlo simulation in

which the points from i and j are randomly relabeled. The observed cross-K function is then
compared with the simulation envelope of cross-K functions with random relabeling. If
the observed cross-K function falls within the simulation envelope, then the point patterns
cluster similarly to each other. If the observed cross-K function falls below the simulation
envelope, then the point patterns are spatially segregated from each other. In this case, it is
suggested that conflating POIs from different spatially segregated sources can be beneficial
in improving data coverage [28].

Figure 5 shows the cross-K functions for the various POI data sources (Deval) when
compared with Dref. The vertical axis shows the value of Kij(r) against various values
of distance r. The observed cross-K function, simulated mean, and simulation envelopes
are plotted. As observed in the plots, for data sources A, C, and D, the observed cross-K
function falls within the simulation envelope, indicating that the point patterns cluster
similarly to each other. However, the observed cross-K function for data source B falls
below the simulation envelope to a small degree, indicating that the POIs from data source
B and Dref are spatially segregated from each other.

Figure 5. Cross-K functions of Deval against Dref for the four data sources A to D (a–d).
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4.3. Thematic Accuracy
4.3.1. Distribution of String Similarity of POI Names between Corresponding Points in
Deval and Dref

String similarity scores are normalized to range between zero and one, where a score
of one corresponds to an exact match. The equations below detail the calculation of string
similarity scores, S(i, j), between two POI names i and j of length Li and Lj for the three
string distance measures: the Longest Common Subsequence (LCS), Levenshtein distance,
and the mean of token sort and token set ratios.

The Longest Common Subsequence (LCS) measure, LLCS(i, j), refers to the subse-
quence with the most number of characters that appears in both strings that are being
evaluated. If two strings are exactly equal, then the LCS will be equal to the length of the
strings. The equation is as follows:

SLCS(i, j) =
2× LLCS(i, j)

Li + Lj
(7)

The Levenshtein distance, LLev(i, j), is the minimum number of edits (insertions,
substitutions, and deletions) required to transform one string to another. The similarity
score based on the Levenshtein distance is given by:

SLev(i, j) = 1− LLev(i, j)
max (Li, Lj)

(8)

The mean of the Token Sort Ratio and Token Set Ratio uses the corresponding functions
from the ‘fuzzywuzzy’ Python package of the same name. Taking the mean of the two
ratios was found to have higher accuracy scores when identifying matching POIs compared
to that of using the ratios individually [69]. The two functions tokenize the words in the POI
names and rearrange the tokens in alphabetical order. The Token Sort Ratio “computes the
similarity of the two re-ordered strings” while the Token Set ratio “computes the similarity
between the intersection and the shorter of the two strings (i.e., the string with the least
amount of characters)” [69]. The mean of the two ratios is taken as the string similarity
measure as follows:

Smean token sort, token set =
Ltoken sort ratio(i, j) + Ltoken set ratio(i, j)

2
(9)

Figure 6 shows the distribution of string similarity of POI names for the three measures
and data sources. Across the three string measures, data sources B and D have a higher
proportion of exact name matches and higher mean similarity scores compared to data
sources A and C. Regardless of the string similarity measure, data source A has lower
string similarity scores compared to that of the other data sources. Similar to the case of
distribution of spatial error, data sources B and D might have high similarity scores due to
bulk imports from governmental sources.

Comparing between the string similarity measures, the Levenshtein measure has the
lowest string similarity scores, followed by LCS and finally the mean of Token Sort and
Token Set ratios, which has the highest string similarity scores across the data sources. This
could be due to the matching procedure used in this study, which evaluates similarity in
POI names with the Token Sort Ratio. The relative differences between the string similarity
scores of the data sources is maintained regardless of the string similarity measure used.
While this might suggest that the choice of string similarity measure is not critical, each
string similarity measure has its advantages when dealing with spelling errors, differences
in word order and partial name matches.

The LCS and Levenshtein measures differ in that the LCS uses insertions and deletions
to convert one string to another, while the Levenshtein distance allows for substitutions,
in addition to insertions and deletions. Apart from this, LCS and Levenshtein measures
are highly similar, as observed by the similar distributions in string similarity scores. On
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the other hand, the Token Sort and Token Set Ratios differ from the LCS and Levenshtein
measures due to the additional step of tokenization. As a result, compared to the LCS and
Levenshtein measures, the Token Sort and Token Set Ratios are more robust to differences
in word order and partial name matches, but less robust to spelling errors. Between the
two ratios, the Token Set Ratio provides some independence from name differences arising
from varying levels of detail. For example “Noodle Restaurant” and “Chicken Noodle
Restaurant” gives a Token Set Ratio of 1. The Token Sort Ratio provides some independence
from changes in naming order. For example “Chicken Noodle Restaurant” and “Restaurant
Chicken Noodle” gives a Token Sort Ratio of 1.

Figure 6. Distribution of string similarity scores of POI names between corresponding points in
four data sources (Deval) and Dref. String similarity scores were calculated according to three string
similarity measures. Numbers on right of the distribution indicate number of corresponding points
in each data source.
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4.3.2. Proportion of POIs in Deval with the Same Place Type as Corresponding Point in Dref

For each pair of corresponding points in Deval and Dref, the place types from each data
source were compared. Then, the proportion of POIs in Deval which shared at least one
place type with the corresponding point in Dref was calculated. The results are shown in
Table 4. Using this evaluation criteria of having at least one exact match, the proportions of
POIs with the same classification are generally low (<0.29). Data sources B and D have the
highest proportion, while data source A has none of the matched POIs sharing the same
classification as Dref.

Table 4. Proportion of POIs with same place type using exact match, manual place type mapping,
and WordNet similarity metric.

Data Source
Proportion of POIs in Deval with Same Place Type (3)

WordNet
Similarity Metric

(1)
Exact Match

(2)
With Manual Place Type Mapping

A 0.000 0.043 0.163
B 0.217 0.235 0.366
C 0.126 0.138 0.529
D 0.293 0.329 0.479

A major reason for the low scores can be attributed to different categorization schema
(or taxonomy) of place types. For example, under an exact match, a POI with the place type
‘school’ would not be considered as having the same classification as another POI with the
place type ‘primary school’. To consider the case of similar place types, the place types of
corresponding points in Deval and Dref were manually mapped, and the proportion was
recalculated. An example of the manually mapped place types for the case of data source
D is shown in Figure 7.

As shown in column 2 of Table 4, the proportions increased slightly when using the
manually mapped place types as compared to using exact matches. This increase is expected
as place types without an exact string match but are highly similar in semantic meaning are
now considered as having the same classification under the manual mapping process, as
previously mentioned with the example of the ‘school’ and ‘primary school’ place types.
However, manually mapping place types is a labor-intensive process and is dependent on
how the place types are interpreted or understood by the individuals doing the mapping.
This is especially evident when broad or ambiguous place types are involved. For example,
a POI with a ‘service’ place type might be interpreted as locations where physical services
are offered, such as a repair shop or a dry-cleaning shop. The place type could also be
interpreted more broadly as a location offering any type of service, such as a bank (financial
service), restaurant (food service) or transit station (transportation service). In this study,
place types were mapped as conservatively as possible with minimal interpretation.

In addition to using manually mapped place types, the WordNet Similarity Metric
was also used to compare semantic similarity between category names from Deval and Dref.
For each pair of category names, the names are first tokenized before using WordNet’s lin’s
similarity to compute the similarity score. It is done so using the following equation [70]:

Nsim(N1, N2) =
∑l1∈L1

[maxl2∈L2 sim(l1, l2) + ∑l2∈L2
[maxl1∈L1 sim(l1, l2)]

|L1|+ |L2|
, (10)

where |L1| and |L2| are the length of the token set and sim(l1, l2) is the lin’s similarity metric
in WordNet. For example, when evaluating the category pair N1 = “Secondary School” and
N2 = “school”, the pair will be tokenized to the token sets L1 = [“Secondary”, ”School”]
and L2 = [“school”]. The similarity of the sets will then be computed as stated in
Equation (10). In the scenario where each pair of matched POI has multiple place types,
the maximum score out of every combination will be taken as the final score. Taking the
maximum score results in higher scores for datasets with multiple place types for each POI,
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as there is a higher probability to find a place type that has a similar semantic meaning
to the reference place type. This is intended as we are looking to measure the semantic
similarity of the two closest place types. For a matched pair of POIs, it is unlikely that all
the place types are semantically similar to all the reference place types.

The results of the WordNet similarity metric are shown in column 3 of Table 4. Using
the WordNet similarity metric results in higher scores overall compared to columns 1
and 2. Similar to the case of manual place type mappings, the WordNet similarity metric
introduces new links between place types which were absent in the manual mapping.
As observed in the place type mapping between Dref and data source D (Figure 7), the
WordNet similarity metric assigns a relatively high score (>0.5) for place type pairs that
did not appear in the manual mapping. For example, ‘police’ in Dref was only mapped to
‘police’ in Deval under manual mapping, but WordNet also assigned scores greater than
0.5 for ‘office’ and ‘service’. This would lead to the overall inflation in WordNet similarity
scores observed in Table 4. As such, users seeking to evaluate place type similarities with
either manual mapping or WordNet should take into account the strengths and limitations
of each method, and strike a balance between scalability and accuracy.

Unlike the other data sources, the WordNet similarity score (column 3) for data
source C is much higher than that of the exact match and manual place type mapping
(columns 1 and 2). This is likely due to the broad naming used in data source C’s taxonomy
(e.g., establishment). As observed in the case of ‘establishment’, the broad category is
semantically similar to most place types, with the WordNet similarity metric assigning
relatively high scores (>0.5) with most place types in Dref (Figure 8). Combined with the
fact that ’establishment’ is one of the most common place types in the data source C, these
factors lead to the much higher WordNet similarity scores for data source C in Table 4. In
addition, ‘establishment’ was not manually mapped to any of the place types in Dref due
to its broad nature.

By matching the semantic information of place types, the WordNet similarity metric is
able to accommodate the different place type taxonomies used by different datasets in an
automatic manner, which is more scalable than mapping place types manually. However,
it is possible that WordNet might not be able to account for all place type taxonomies as it
is dependent on the data that WordNet was trained on.

4.3.3. Proportion of POIs in Deval and Dref with Missing Attributes

Table 5 shows the proportion of POIs in Deval and Dref that have missing attributes.
While some map services might offer additional POI attributes like opening hours, websites,
contact numbers, and user reviews, this study will only evaluate the POI attributes that are
common between the data sources considered. These attributes relate to the POI’s name,
coordinates, place type, and address string.

Across all POI sources, coordinates and place types are fully present. However, a
significant proportion (0.67) of points in data source D do not have name information. Most
of the points are parking spaces, and swimming pools and sports pitches that are mostly
located within private property. It can be argued that these place types are ancillary in
nature and thus name information would be less critical. Furthermore, it may be possible to
automatically generate logical place names, such as by combining place type and address
(e.g., “Swimming pool at 1 Example Street”).

A small proportion of points in data sources B, C, and D have missing address strings
(<0.107). In the case of data source B, most of the points with missing address strings are park
facilities within parks and bicycle racks, where addresses are less applicable. While missing ad-
dresses can be recovered by reverse geocoding services, examining the prevalence of missing
attributes is still a key step, especially when using POI sources for human-facing applications.
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Figure 7. Example of mapping place types between Dref and data source D (Deval) manually (left) and with WordNet
similarity metric (right). Square red nodes on left are place types from Dref, while circular blue nodes on right are place
types from data source D (Deval). Darker lines indicate a higher WordNet similarity metric. Only pairs with a WordNet
similarity score greater than 0.5 are displayed.

Figure 8. WordNet similarity scores between ‘establishment’ place type in data source C and various
place types in Dref.
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Table 5. Proportion of POIs with missing attributes. None of POIs have missing coordinates and
place types. These attributes were excluded from table.

Data Source POI Name Address String

A 0.0 0.000
B 0.0 0.107
C 0.0 0.010
D 0.67 0.016

Dref 0.0 0.000

5. Discussion: Towards Standardized POI Data Quality Metrics

While an industry standard currently exists for the elements of geographic data quality,
these standards can be further enhanced to include standardized validation methods for
POI data. Having a set of standardized quality indicators would allow potential data
users to have a quick, transparent overview of data quality to pick the most suitable data
source(s) for their needs. Data administrators adopting these standards can use them
to track changes in data quality as POI data are enhanced and augmented with diverse
data sources and processed with more sophisticated algorithms. The development of a
standardized set of metrics for POI data quality should account for the following issues:
(1) differences in the levels of detail between POI datasets, (2) differences between extrinsic
and intrinsic methods and the corresponding data and algorithmic requirements, and
(3) the intended application(s) of POI data.

5.1. Varying Levels of POI Detail: Presence of Many-to-One Matches

As previously mentioned in Section 4.1, comparing the number of points in Deval that
were found in Dref and vice versa suggested the presence of many-to-one matches between
Deval and Dref. Closer examination of the matches indeed highlighted several instances
where multiple POIs in Deval are matched with a single POI in Dref. More specifically,
27.5%, 71.2%, 40.6% and 13.3% of the matches in data sources A to D respectively, involved
many-to-one matches, while the rest were one-to-one matches. An example of many-to-one
matching is provided in Figure 9, where multiple POIs in data source C were matched to a
single POI in Dref. In this example, 68 POIs in data source C matched to a single POI in Dref,
which represented a large mall in the study area. All POIs fall within the building outline
in grey, with the exception of one point which was related to a nearby road intersection.
The POIs in data source C contained shops, restaurants, and other establishments located
within and around the mall. The higher level of detail in POI data sources like data source
C, as compared to that of Dref, is a contributing factor to the many-to-one matches observed.

While duplicated POIs in data source C were removed based on their ID information,
duplicates could still remain if they were assigned different IDs. Removing such duplicates
could be addressed with more sophisticated data cleaning procedures, which are beyond the
scope of this study.

With the wide range of POI data sources in many cities around the world, and
increasing urbanization and density of activities, there will be a need to match points
between data sources with differences in coverage and levels of detail when implementing
extrinsic validation methods. The many-to-one matches results in an imbalance in the
number of points in Deval found in Dref and vice versa. The distribution of spatial error
and string similarity scores would also be artificially increased, since the disaggregated,
fine-grained POIs would be matched to the aggregated, coarser version of the POI, which
would typically be spatially located at the centroid of the cluster of disaggregated points,
and have different POI names and place types (for example, “IKEA Restaurant” being
matched to “IKEA”).

The differences in levels of detail can also manifest semantically in the form of (A)
differences in word order and length of POI names, or (B) differences in the level of
specificity of POI place types. In the former (A), measuring differences in POI names with
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the mean set sort ratio is superior to the LCS and Levenshtein measures as it is more robust
to differences in word order and length. In the latter (B), comparing place types using
an exact match might have an edge over the WordNet similarity metric, as the WordNet
similarity metric tends to overcompensate for generic place types. Therefore, the selection
and interpretation of POI validation metrics should account for differences in the levels
of detail between POI datasets, especially when extrinsic methods are used to evaluate
datasets with reference data of different levels of detail.

Figure 9. An example where multiple POIs from data source C are matched to a single POI in Dref.
Building outline is shown in grey.

5.2. Extrinsic and Intrinsic Methods

Extrinsic and intrinsic methods have their unique characteristics and applications, and
these differences should be taken into account. Extrinsic methods focus on measuring the
similarities between the evaluation and reference datasets, and a high degree of similarity
confers the reliability and accuracy of the reference dataset to the evaluated dataset.

However, there are many limitations with regards to extrinsic methods. Firstly, it
might be difficult to obtain reference data if the data are not open-sourced. The validity of
the reference data might also be unknown if the method of data collection and verification
is not published. As such, extrinsic methods can only evaluate the quality of a dataset up
to the extent of the reference dataset’s quality. Lastly, the matched data are a subset of the
evaluation dataset, which leads to the assumption that the unmatched data points would
have a similar data quality compared to the matched data points.

Apart from its inherent limitations, extrinsic methods also have additional issues that
have to be considered. These are the potential effects of bulk imports into datasets and
the influence of the methods used to match points between the evaluation and reference
datasets. Bulk imports refer to additions of geographic data from external sources into a
dataset at a large scale. This was reported to occur in OSM and its effect on completeness
was assessed for the case of road data in the U.S. [45]. Bulk imports were also raised as
a possible reason for similar distributions in tags for OSM relations between cities [71].
However, the impact of POI bulk imports on positional and thematic accuracy is less
understood and could be an area of future work. This would be especially relevant if the
reference data chosen for extrinsic validation methods is the source of the bulk imports.

The results from extrinsic approaches that require matching corresponding points in
Deval and Dref will be subject to the accuracy of the matching method used. Furthermore,
matching procedures could make use of POI attributes like geographical coordinates, POI
names and/or place types [26,27,40]. This could confound the interpretation of results
when these attributes are used in approaches for validating POI data, making it difficult to
ascertain if the observed results are due to artefacts of the matching procedure, or truly
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reflect POI data quality. As it is not currently known if matching procedures definitively
cause POI data sources to appear more or less accurate, isolating the influence of the
matching procedure on the results of validating POI data via extrinsic means can be an
area of future work.

Intrinsic methods, on the other hand, have the ability to reveal internal statistics of the
dataset and allows for data quality analyses without the regional or financial limitations
arising from obtaining reference data. It gives us a better understanding of what the
dataset has, allowing us to infer the usability of the dataset. For example, by checking the
proportion of missing attributes, a dataset with a large proportion of missing postal code
information is less usable for postal services.

However, compared to extrinsic methods using reference datasets, intrinsic methods
are less able to provide definitive evaluations of data quality [32]. The review of current
POI validation approaches revealed that the majority of intrinsic methods currently require
temporal data in the form of edit histories to analyze changes in POI data over time.
However, with the exception of OSM, change logs for POI data are not easily accessible to
researchers or external users. Therefore, evaluations of POI data using intrinsic methods
are mostly restricted to industry players who manage or produce the datasets. Sharing
these change logs would allow the wider geospatial research community and future users
to conduct independent assessments of POI data quality with intrinsic methods. Further
developing intrinsic methods that do not require temporal data or edit histories would also
reduce reliance on such data.

5.3. Use-Cases

As previously mentioned in Section 2.6, the usability of a dataset relates to how well
it fits user requirements, and evaluating this can involve a combination of approaches
which are deemed to be suitable for the specific use case. At its minimum, geographical
information should contain enough information to allow users to know what objects are
located where. As such, it can be argued that positional and thematic accuracy should be
adequately validated before POI data are used, regardless of the data’s eventual use case.

Depending on the specific use cases of the data, attention should be paid to the
respective aspects of POI data that users wish to gain insight from. For example, a mobility
application running on POI data might require a high level of positional accuracy so that
passengers and goods are transported to their intended destinations. In this case, analyzing
the distribution of spatial error between corresponding points would be useful in validating
spatial accuracy. On the other hand, researchers seeking to understand urban form using
big data [72] might be more interested in the spatial distribution of points in an urban area.
In this case, the tools of spatial statistics would be more relevant, such as by calculating
NNis and analyzing the Cross-K function.

If POI data are used for urban planning and policy decisions, then more attention
should be given to how representative the dataset is. For example, it was found that OSM
data tends to be more developed in wealthier communities [44]. Basing policy decisions
solely on POI data without an understanding of the inherent biases and the local context
could exacerbate existing social inequalities. In such situations, more attention should be
paid to the completeness of the dataset, where the proportion of points found in datasets
under consideration can provide an indication of errors of commission or omission.

POI data has also been used for real estate valuations [5], real estate search websites
and calculating walkability scores [73]. In these contexts, thematic accuracy in the POI’s
place type would be most critical, especially if there are errors in the place types of key
amenities such as supermarkets or transit nodes. The discrete nature of place types
might also cause the resulting model outputs (such as the real estate values or walkability
scores) to be more sensitive to place type misclassifications, as compared to deviations in
POI location.

In addition to the established use cases of POI data, the development of standardized
quality metrics will have to keep pace with upcoming advancements in the field, such as
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(1) the use of POI data in dense, high-rise urban environments and (2) POI unification.
In the urban context, activities are increasingly conducted in vertical environments with
multiple floors. For example, in a large retail mall, shoppers and delivery personnel will
have to navigate within a 3D indoor environment to accomplish their objectives. Given
that the vast majority of POI locations are currently represented in 2D space, it is important
that vertical information—such as the floor and unit number, which are typically found in
the address attribute of POI data—are present and accurate. This implies that until POI
data are able to meaningfully represent points in 3-dimensional space, accuracy in address
strings will have an increased importance in very dense, high-rise urban environments.

The field has begun to look towards the unification of POI data from various sources
with the goal of obtaining a POI dataset that is more comprehensive and of a higher
quality than the individual sources. Data validation approaches can play a key role in POI
unification and data fusion, such as in developing a unification process that is sensitive to
the varying qualities of each POI data source. A novel set of validation approaches might
also be required to evaluate the quality of unified POI datasets to quantify improvements
relative to the computational or algorithmic requirements of the unification process.

6. Conclusions

A review of POI validation methods led to the identification of 23 methods which
were then categorized into the various elements of data quality. Methods that evaluated
the positional accuracy of a dataset were the most common, while very few methods were
found to evaluate logical consistency and usability. A selection of nine validation methods
covering the aspects of completeness, positional and thematic accuracy was implemented
to assess four real-world POI datasets (Google Maps, HERE Maps, OSM, and OneMap)
within the study area of a town in Singapore.

The low proportion of points found in both the evaluated (Deval) and reference (Dref)
datasets suggests errors of commission and omission. Positional accuracy was good
across the evaluated datasets, with reasonably low levels of spatial error (<60 m), and no
significant difference in relative clustering. Finally, thematic accuracy in POI names and
place types were highly dependent on the types of metrics used, and key attributes such as
place type and coordinates were present in all datasets.

The key issues in the development of standardized POI validation metrics can be
broadly categorized into three areas. The first relates to the characteristics of the POI
datasets, such as the availability of datasets for intrinsic and extrinsic methods, and the
varying levels of detail across POI datasets. This is followed by the methods and processes
employed to conduct the validation, such as the inherent differences between extrinsic
and intrinsic methods, and the influence of matching procedures. Lastly, the selection of
metrics should be tailored to the intended application of POI data and be adapted to suit
specific needs.

This work demonstrates the real-world application of POI validation methods and
guides the development of standardized POI validation metrics. As the applications of
POI data continues to grow and become more tightly integrated with society, assuring POI
data quality will be increasingly relevant. Therefore, improving the methods for assessing
and improving POI data quality is essential to instill confidence in the use of POI data,
ultimately harnessing its full potential.
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Appendix A

All of the methods applied in Section 3 were implemented with the Python program-
ming language in Jupyter notebooks, which also contain further details of the methods.
The notebooks can be found in a public repository at this link: https://doi.org/10.6084/
m9.figshare.14839644 (accessed 25 June 2021).

Figure A1. Heatmaps of POIs from each data source within study area. Numbers on top-right corner
are number of POIs in data source. Map tiles by Carto, under CC BY 3.0. Data by OpenStreetMap,
under ODbL.
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