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Abstract: This study is designed to leverage ubiquitous mobile computing techniques on exploring
app-based taxi movement patterns in large cities. To study patterns at different scales, we compre-
hensively explore both occupied and unoccupied vehicle movement characteristics through not only
individual trips but also their aggregations. Moran’s I and its variations are applied to explore spatial
autocorrelations among different rides. PageRank centrality is applied for a functional network rep-
resenting traffic flows to discover places of interest. Gyration radius measures the scope of passenger
mobility and driver passenger searching. Moreover, cumulative distribution and data visualization
techniques are adopted for trip level characteristics and features analysis. The results indicate that the
app-based taxi services are serving more neighborhoods other than downtown areas by taking large
proportion of relatively shorter trips and contributing to net increase in total taxi ridership although
net decrease in downtown areas. The spatial autocorrelations are significant not only within each
service but also among services. With the smartphone-based applications, app-based taxi services
are able to search passengers in a larger area and move more efficiently during both occupied and
unoccupied periods. Mining from huge empty trip trajectory by app-based taxis, we also identify the
existence of stationary/stops state and circulations.

Keywords: traditional street-hailing taxicabs; emerging app-based taxi services; spatiotemporal
movement patterns; occupied and unoccupied vehicle movements

1. Introduction

The smartphone application-based taxi services (also called e-hailing or transportation
network companies), such as Uber and Lyft, have grown exponentially in recent years and
are challenging the predominance of traditional street-hailing taxicabs. Although both
app-based and traditional taxi services provide similar door-to-door urban mobility, app-
based taxi services have a few extraordinary features that make them competitive: First,
the smartphone applications adopted by app-based taxi services connect passengers with
driver partners and provide real time feedback that can help learn patterns surrounding
demand or supply; second, the free supply model allows driver partners to begin or end
services anywhere and anytime, thus attracting considerable part-time driver partners;
third, pricing can be adjusted dynamically by a multiplier that is developed based on local
demand and supply; and fourth, various services are included in one single application,
which can meet requirements by different groups, for instance, family trips with children,
disabled, luxury trips, and economic trips. Taking these advantages, on one hand, passen-
gers are more informative on their taxi trips, including how many minutes they should
wait, how much the trips cost, and which service are available, instead of trying your luck
on street-side especially in bad weather. On the other hand, driver partners can choose
appropriate times and locations for service to maximize their revenues. All these innova-
tions are reshaping the urban taxi market. For example, app-based taxi ridership doubled
annually over the last three years to 133 million passengers in 2016 and is approaching
traditional taxicab ridership level in New York City (NYC), where is the largest taxi market
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in North America operating more than 13,000 yellow taxicabs and experiencing severe
declines in ridership, almost reduced by half in the last few years [1].

Beyond the changes in ridership, another key issue is whether the app-based taxi ser-
vice disturbs current mobility patterns by traditional taxicabs. Understanding of mobility
patterns plays an important role in further in-depth discussions on taxi market modeling
and regulations. A comprehensive empirical study of the following questions is necessary:
How do the informative app-based taxi driver partners search for passengers, compared
with traditional uninformative taxicab drivers? How will the introduction of app-based
taxi services redistribute demand or flows across the whole city? How much more efficient
are the app-based taxicabs? What special travel characteristics does an app-based taxi
service have that can differentiate them from traditional taxi services? Moreover, it has been
approved that the app-based taxi service has generated net increases of 31 million trips
and 52 million passengers in NYC since 2013, after accounting for declines in traditional
services [1]. Do these new passengers introduce new mobility patterns that make app-
based taxi services different? Although endless debates over the emerging controversial
taxi services have attracted much attention from various domains, such as economists,
engineers, policy makers, and urban planners, little hard evidence exists to support either
position, i.e., whether there has been change or no change.

Analyzing mobility patterns is a critical but difficult topic, since it is important for
addressing many urban sustainability challenges, and always covers complicated spa-
tiotemporal patterns generated from interconnected heterogeneous groups of individuals.
However, ubiquitous mobile computing and the massive data it generates present new
opportunities to advance our understandings of the complex dynamics in urban system.
For example, mobility data have become increasingly available due to the extensive usage
of location-aware techniques, which consist of a set of moving objects and their trajectory
or time-stamped locations. The datasets such as huge taxi trajectory are always with better
spatial and temporal coverage, compared with traditional survey-based transportation
dataset, and are extensively integrated into studies on taxi movement patterns [2–5].

To understand app-based taxi movement patterns for both occupied trips with pas-
sengers and unoccupied trips for customer-searching, this study will fully leverage current
advances in ubiquitous mobile computing techniques along with real datasets of Uber (i.e.,
the most successful app-based taxi service) and yellow taxicab (i.e., a traditional street-
hailing taxi service) mobility dataset in NYC. The patterns are discussed in four major ways:
(1) spatial distribution of aggregated trip flows and places of interest; (2) trip displacement
patterns in terms of travel time and distance; (3) vehicle movement efficiency across areas;
and (4) characteristics of Uber driver partners’ passenger searching movements. Our main
contributions are two-fold: First, this is one of the first few empirical studies on app-based
taxi movement patterns and their comparisons with traditional taxis; and second, this study
conducts a multi-scale and multi-facet analysis on movement patterns, from flows at the
aggregate level to trajectory at the trip level and from occupied trips to unoccupied trips.
The remaining sections are organized as follows: the second section summarizes current
literature on taxi movement patterns; the third section presents real datasets and prepro-
cessing; the fourth section explores occupied trip movement patterns; the fifth section
discusses unoccupied trip movement and special analyses on Uber passenger searching
behaviors; and the last section concludes empirical findings.

2. Literature Review

Recent work has made great progress in understanding travel patterns of traditional
taxicabs with increasing availability of taxi mobility data. Most work is developed along
four main ways: First, analyzing general temporal/spatial or spatiotemporal patterns
of taxi movements with common statistical properties. Cai et al. combined occupied
and unoccupied taxi trips together as one integrated system, instead of focusing on only
occupied or unoccupied trips, and identified spatial and temporal regularities of travel
time and travel distance in taxi travels [3]. Wang et al. explored the occupied taxi trips on



ISPRS Int. J. Geo-Inf. 2021, 10, 751 3 of 19

holidays through comparing spatial distribution of pickups and drop-offs, trip displace-
ment, and spatial scope of taxi activities with trips on regular days [6]. On the contrary,
Peng et al. focused on millions of weekday taxi trips, extracting three main features by
trip purpose that can approximate all taxi trips in a linear combination, and identifying
spatiotemporal variations of each feature at the small geographical unit level [7]. Zong
et al. uncovered unoccupied taxi trips over multiple days through measuring inter-daily
variations and checked differences in the drivers’ learning ability and routine behaviors [8].
Second, it is possible to figure out subgroups of interests and analyze travel patterns of
those subgroups. Kumar et al. [5] and Matsubara et al. [9] applied clustering techniques on
taxi trip OD points and trajectory to extract featured movements, respectively. Guo et al.
clustered regions by taxi ride origins and destinations and applied spatiotemporal pattern
analysis on in- and out-flows in each cluster [10]. Noboa et al. [11] and Qian et al. [2]
related the spatiotemporal clusters of taxi rides with land use or points of interest and
identified featured taxi movements with trip purpose. Moreover, Ding et al. explored
long break status along each empty taxi trip through clustering corresponding trajectory
points and identified spatiotemporal patterns of those long breaks during taxi customer
searching [12]. In addition to spatial clustering methods, Dong et al. [13] and Tang et al. [14]
extracted top drivers by levels of income or customer searching efficiency and discovered
spatiotemporal patterns of both top drivers and other drivers. Third, representing taxi
movements as a network. Hoque et al. [15] and Pascual [16] transformed taxi trips to a
weighted directed complex network and introduced various network metrics, for instance,
node correlations, assortativity, clustering, and degree of connectivity, to reveal topological
information in the taxi system. Last, interactions with other transportation modes can be
studied. Wang and Ross divided taxi rides into three types based on spatial similarity with
sections of the subway network and examined travel patterns of each type of taxi rides,
as well as associations with built environment [17]. Li et al. utilized both taxi trajectory
data and subway transactions to empirically measure impacts of new subway lines on the
spatiotemporal distribution of taxi rides [18].

Compared to traditional taxicab movements, empirical studies on app-based taxi
trips are much fewer and adopted methodologies have less variety, which is limited
by data availability. Existing analyses are obtaining app-based taxi trips in two ways:
First, they collaborate with transportation network companies and then implement basic
statistical analyses. Hall and Krueger combined survey data with administrative data
provided by Uber and explored socioeconomic status, work durations, and earnings of Uber
driver partners across US major cities [19]. Cramer and Krueger measured the movement
efficiency of UberX and traditional taxicabs in terms of fraction of times and share of
miles with a passenger, respectively, and concluded that UberX are more efficient based on
cumulative distribution of capacity utilization rates. They also listed four possible reasons
for higher UberX utilization rate: more efficient driver passenger matching technology,
Uber’s city scale platform enabling faster matches, inefficient taxi regulations, and Uber’s
flexible labor supply and surge pricing, but failed to provide hard evidence [20]. Second,
researchers can collect data directly from client applications then apply statistical analyses.
Schwieterman and Michel completed 50 trips by UberPool and Chicago transit, respectively,
and concluded that UberPool was an option attractive to far more than extremely time
conscious travelers, not to many commuters, and UberPool tended to perform worst while
traveling from/to central business district due to heavy traffic [21]. This study provided few
empirical efficiency comparisons between UberPool and Transit, but was highly limited
by data coverage. Current progress in web crawlers presents a new opportunity for
obtaining data directly from client applications, which can greatly improve data coverage
in an efficient way. Chen et al. developed an emulation tool that can obtain information
displayed on an Uber passenger’s client application, including up to eight available vehicles’
trajectory information and current pricing structure. Although the tool only covered the
core of Manhattan, the empirical findings from the dataset provided insights on impacts of
dynamic pricing on Uber demand and supply [22]. Guo et al. also wrote a script that can
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track Shenzhou (a Chinese app-based taxi platform) users’ behavior while requesting a
ride, which can enable them to explore the passengers’ reaction to dynamic pricing while
requesting and measure occupied trip displacement, as well as spatial distribution and
surge multiplier generation [4,23].

To sum up, there are extensive discussions on traditional taxicab movements, covering
occupied taxi trips, empty taxi trips, frequent flows, top drivers, and spatiotemporal
patterns. However, we still lack perfect and comprehensive understanding of emerging
app-based taxi movement, especially their differences with traditional taxicab movement.
The information techniques greatly improve data availability of app-based taxis, which
can yield huge mobility data as compared to traditional taxicabs. This further enables us
to leverage current progresses in ubiquitous mobile computing techniques on empirically
uncovering movement patterns based on high-resolution mobility data.

3. Data Description
3.1. Data Source

We selected yellow taxicab, Boro taxicab, and UberX in NYC (all three labeled regions
in Figure 1) as observations due to following reasons: (1) NYC has the largest taxi market
in North America, as well as one of largest Uber markets in US. The Uber ridership is
approaching to the traditional taxicab rides. (2) Yellow and Boro taxicabs are two main
traditional street-hailing taxi services. The only difference is the legal pickup area that
Boro taxicab can only pickup outside downtown and midtown Manhattan but yellow
taxicabs do not have the limitations. (3) Uber has a much higher app-based taxi market
share and is the dominant company. UberX is the economic and most popular product
by Uber. The yellow and Boro taxicab trip records are open access to the public through
the official website of NYC Taxi Limousine and Commission (NYCTLC). However, the
official dataset does not record any identity information such as taxicab medallion id (i.e.,
a unique permit assigned to each cab) or driver id (i.e., issued taxicab driver license id),
due to privacy protection. Thus, we refer to an additional taxicab dataset from Illinois Data
Bank [24] that is a FOIL dataset from NYCTLC but with anonymous vehicle and driver
identify information. The additional dataset can help us estimate taxicab empty trips for
each driver and compare empty taxicab movement patterns with Uber empty vehicles.

Figure 1. The selected regions and corresponding data collection stations.

Except for obtaining traditional taxicab mobility dataset, the main objective of data
preparation is to develop a web crawler that can obtain reliable Uber mobility dataset
with good spatial and temporal coverage. Inspired by Chen et al. [22], we develop a
similar tool for Uber data collection. The difference is, however, that we are able work
and extract directly from the Uber Mobile platform (a web version of Uber client app, ref:
https://m.uber.com, accessed on 12 July 2021) instead of the smartphone-based application.

https://m.uber.com
https://m.uber.com
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More importantly, we can extend our data collection to the whole of NYC, not just the core
of Manhattan, through deploying many more data collection stations across NYC; about
470, as shown in Figure 1. Finally, we run the tool every 5 a.m. to midnight starting from 8
April to 1 May 2017. The obtained raw records are presented in Table 1.

3.2. Data Preprocessing

Before processing all three raw datasets, we should clarify two temporal scale prob-
lems on the three data samples. First, UberX dataset is collected from 8 April to 1 May
2017, yet NYCTLC has not been released for taxicab trip records in this April. Thus, we
take yellow and boro taxicab trip records from 2 April to 25 April 2016 to represent current
taxicab service condition. Second, also limited by data availability, the latest datasets of
yellow taxicab trip records with vehicle and driver ids are in 2013. Thereafter, NYCTLC
does not provide any datasets with driver or vehicle information with the public. Thus,
we take yellow taxicab trip records from 6 April to 29 April 2013 to explore empty taxicab
travel patterns. Boro taxicab was not issued in the month thus it is not included. Although
Yellow taxicab decreased a lot in ridership from 2013 to 2016, the utilization rate remains
steady [25] and the 2013 dataset reflects empty taxicab movement patterns in 2017 to a
certain extent. Moreover, the introduction of yellow taxicab trips in 2013 can allow us to
measure temporal variations in taxicab travel patterns.

The first preprocessing is an active Uber driver filter. We observe about 5 million
unique driver ids but over 4.5 million driver ids only serve in fewer than 5 days, mostly
only in one single day. Thus, we think most driver ids are inactive and only keep active
drivers of interest who serve for more than 10 days. Applying this filter, we obtained a set
of about 43,000 active driver ids that is almost same as the fleet of dispatched Uber drivers
in the for-hire vehicle base aggregate weekly report by NYCTLC (ref: http://www.nyc.
gov/html/tlc/html/technology/aggregated_data.shtml, accessed on 12 July 2021). The
matched numbers provide strong evidence that we very likely capture the whole Uber fleet.

The second preprocessing is the empty or occupied trips estimation. The Yellow
taxicab trip dataset in 2013 only contains occupied trips. We should refer to driver id to
estimate empty trips. Sorting by unique driver id and occupied trip start time, as well as
checking differences in two sequential start times of occupied trips, enable us to generate
a sequence of occupied trips in one same shift. Considering taxicab regulations that one
shift should serve for at least 8 h without intermediate stops or breaks, we think that one
empty taxicab trip may exist between two sequential occupied trip records and the empty
trip information can be estimated based on destination of one occupied trip and origin
of next occupied trip by one same driver, shown in Table 1. In addition, Uber empty and
occupied trips should be estimated from Uber vehicle trajectory through comparing time
and distance differences between two sequential trajectory points by one same vehicle:
(1) empty trips: if the time difference is less than 60 s, or if the time difference is greater
than 60 s but less than 2 h and the distance difference is less than 400 m; (2) occupied trips:
if the time difference is greater than 60 s but less than 2 h and the distance difference is
greater than 400 m; (3) offline or stop service: if the time difference is greater than 2 h.

The last preprocessing step is trip aggregation. Instead of working directly with
massive points in terms of longitude and latitude, the rides are aggregated at census
tracts that are small subdivisions of a city and provide a stable set of geographic units for
presentation of statistical data. This process can enable us to analyze travel patterns at not
only the trip level but also the aggregate level. In NYC, there are about 2164 census tracts,
more than 70% of which have the area less than 0.1 square miles (similar to a 500 m by
500 m grid).

http://www.nyc.gov/html/tlc/html/technology/aggregated_data.shtml
http://www.nyc.gov/html/tlc/html/technology/aggregated_data.shtml
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Table 1. Summary of collected datasets and preprocessing.

Services Duration Records Preprocessing

Yellow and Boro Taxicab 2 April to 25 April 2016 Occupied trips:
{

ti
O, ti

D , lati
O, lati

D , lngi
O, lngi

D , di , f i
}

i∈I

Occupied trip travel time: tti = ti
D − ti

O
Occupied trip aggregation: CTi

O,CTi
D

Yellow Taxicab 6 April to 29 April 2013
Occupied

trips:
{

vidj, didj, tj
O, tj

D , latj
O, latj

D , lngj
O, lngj

D , dj, f j, ttj
}

j∈J

Occupied trip aggregation: CT j
O,CT j

D
Empty trips extraction:{

vidj, didj, tj
D , tj+1

O , latj
D , latj+1

O , lngj
D , lngj+1

O , ttj = tj+1
O − tj

D , CT j
D , CT j+1

O

}
j∈E(J)

UberX 8 April to 1 May 2017

Trajectory of empty vehicles:{
vidk , pidk , tk , dirk , latk , lngk

}
k∈K ;

Surge pricing:
{locs, pids, ts, mults, mEtas, aEtas, ets}s∈S

Uber empty trips:{
vidm, pidm, tm

O , tm
D , latm

O , latm
D , lngm

O , lngm
D , ttm, CTm

O , CTm
D
}

m∈M
Uber occupied trips:{

vidq, pidq, tq
O, tq

D , latq
O, latq

D , lngq
O, lngq

D , ttq, CTq
O, CTq

D
}

q∈Q

Note: tO, trip start time; tD , trip end time; latO, latitude of trip start location; latD , latitude of trip end location; lngO, longitude of trip start location; lngD , longitude of trip end location; CTO, census tract of trip
start location; CTD , census tract of trip end location; d, metered distance in miles; f, charged fare in dollars; tt, trip travel time in seconds; vid, vehicle id; did, driver id; pid, Uber product id; t, current time; dir,
vehicle direction in a degree of 360; lat, latitude of trajectory point; lng, longitude of trajectory point; loc, data collection station; mult, surge price multiplier; mEta, minimum estimated passenger waiting time in
minutes; aEta, average estimated passenger waiting time in minutes; et, expiration time of current surge pricing in seconds; I, set of all records in file of yellow and boro taxicab; J, set of all records in the file of
yellow taxicab; E(J), set of occupied trips followed by empty trips; K, set of all Uber empty vehicle trajectory points; S, set of all surge pricing observations; M, set of all Uber empty trips; and Q, set of all estimated
Uber occupied trips.
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4. Occupied Movements
4.1. Aggregate Flow Patterns
4.1.1. Distribution of Generations and Attractions

From the three datasets, we observed 8,350,007 (including 952,611 Boro Taxicab Occu-
pied Trips) Taxicab occupied trips in 2016, as well as 9,242,133 Taxicab occupied trips in
2013, versus 2,017,500 Uber occupied trips. At the city scale, the app-based taxi not only
competes with taxicab for passengers, considering a significant decline in ridership in the
last few years, but also induces new passengers, considering a net increase in total ridership
of all taxi services. Figure 2 presents the spatial distribution of pickups and drop-offs,
as well as temporal variations, between 2013 and two recent years. Both traditional and
app-based taxis show similar spatial distribution that mainly concentrates at downtown
areas and two airports. The minor difference is that traditional taxicabs pick up more
passengers along the highway among two airports and Manhattan Island, but app-based
taxis take a few more passengers from/to remote areas, such as Staten Island and the upper
part of the city, close to the city boundary. The net increases in traditional and app-based
taxis indicate that most new demand is generated from or travels to outside Manhattan,
especially downtown areas of Brooklyn and Queens. Moreover, app-based taxis are more
popular than traditional taxicabs for these new demands, based on the evidence of a higher
net increase in pickups and drops if we combine both taxis but a much smaller net increase
if we only compare traditional taxicabs. More interestingly, both trips to/from downtown
areas by both taxis, i.e., Manhattan, are experiencing significant decline, compared with
ridership in 2013. This is likely due to severe traffic congestion, more delays, and popu-
larity of shared bikes and other modes. Lastly, the trips also redistribute while traveling
to/from two main airports, JFK (i.e., the remote one at lower right corner) and LGA (i.e.,
the one close to Manhattan). Traditional taxis are serving many more trips from/to JFK but
experiencing higher decline at LGA. This does not mean there is a declining demand for
taxi trips at LGA, since app-based taxis take those decreasing trips by traditional taxis but
also induce new demands at LGA.
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Figure 2. Spatial distributions of pickups and drop-offs (Net increase Uber pickups: difference between the summation of Uber 2017 and Taxicab 2016 and Taxicab 2013; Net increase
Taxicab pickups: difference between Taxicabs in 2016 and 2013).
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4.1.2. Local Spatial Autocorrelations

This section further checks the spatial relationship of taxi rides, including relationship
of the rides in one unit with rides by the same service in surrounding units and relationship
of the rides in one unit with rides by different taxi service in surrounding units. Here, we
introduce a very common statistic global Moran’s I and its variations of local Moran’s I,
as well as Bivariate local Moran’s I [26–28]. The global Moran’s I is designed to measure
spatial autocorrelations at the system level through combining all spatial effects of system
units, shown in Equations (1)–(4). In this case, the negative value of Moran’s I means one
unit with high/low taxi rides is always surrounded by units with low/high taxi rides
and inversely the positive value of Moran’s I means one unit with high/low taxi rides is
always surrounded by units with high/low taxi rides. Thus, positive spatial autocorrelation
always shows clusters on maps, such as the taxi rides distribution. Equations (5) and (6)
present the bivariate version of Moran’s I, which allows us to analyze the relationship
between traditional taxicab rides in surrounding neighborhood and app-based taxi rides,
and vice versa.

I =
n
S0

n
∑

i=1

n
∑

j=1
wi,jzizj

n
∑

i=1
z2

i

(1)

S0 =
n

∑
i=1

n

∑
j=1

wi,j (2)

zi =
xi − x

σx
(3)

Ii =

(n− 1)zi ∑
j∈N(i)

wijzj

∑
j∈N(i)

z2
j

(4)

Ixy =
n
S0

n
∑

i=1

n
∑

j=1
wi,jzx

i zy
j

n
∑

i=1

(
zx

i
)2

(5)

Ixy
i =

(n− 1)zx
i ∑

j∈N(i)
wijz

y
j

∑
j∈N(i)

(
zy

j

)2 (6)

where I and Ii are the global and local Moran’s I value and superscript xy is a bivariate
form of variable x and variable y; wi,j is the spatial weight between two spatial units of i
and j; n is the number of spatial units; z is the deviation from the variable mean value and
superscript denotes variable; and N(i) is the neighborhood of interest of spatial unit i.

As expected, all global Moran’s I statistics are positive, with 0.402 for app-based taxi
rides in 2017, 0.7968 for traditional taxi in 2016, and 0.444 for both, which indicates the
existence of significant spatial autocorrelation. Figure 3 further shows units with significant
spatial autocorrelations and how they interact with surrounding units. Both traditional
and app-based taxis, as well as their combinations, have similar spatial autocorrelation
that units in Manhattan and remote areas are always with similar rides as their neighbors.
Figure 3b classifies relationships into four categories: high-high, low-low, high-low, and
low-high. The first two categories indicate positive spatial autocorrelation and the last two
categories present negative spatial autocorrelation. Manhattan areas are always with a
high-high pattern, yet remote areas are always with a low-low pattern. Other than this,
app-based taxis also have a few special characteristics, for instance, a high-high pattern at
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Brooklyn and Queens downtown and high-low pattern at a few remote areas, not shown
by traditional taxicabs.

Figure 3. Local Spatial Autocorrelations of Uber, Taxicab, and Uber vs. Taxicab.

4.1.3. Places of Importance

Instead of studying on all spatial units, places of interest attract much more attention
in transportation systems. This section introduces the idea of a complex network and
represents taxi flows as a functional network with spatial units as nodes and taxi flows as
weighted directed links, shown in Figure 4a. The degree of centrality based on weighted
PageRank is adopted to measure the importance of each spatial unit. The key idea behind
the definition of weighted PageRank centrality is that the spatial unit with the same
number of outgoing or incoming flows (i.e., node degree in network) may not have the
same importance in the flow network. Generally, an incoming flow from a strongly
connected spatial unit is treated as more important than from a spatial unit with just a
few connections with other spatial units and links with much more traffic flows are more
important than those with just a few flows [15,16,29,30]. The mathematical forms are
shown in Equations (7)–(9). Figure 4b states the ranks of each spatial unit by different taxi
services. We can see that the ranks of spatial units in the app-based taxi flow network
are significantly different from those in the taxicab flow network, by relative higher ranks
of remote spatial units. App-based taxis provide an alternative and better transportation
mode for those remote areas to connect with other hotspots. The ranks of spatial units in
both taxicab flow networks remain almost stable. The only significant difference is that
higher ranks of spatial units are more likely to cluster together in 2016. In brief, the ranks
in all three flow networks do not vary greatly, which are Manhattan areas, followed by
airports, Brooklyn and Queens downtown, and other remote areas.

Win
(v,u) =

N I
u

∑
p∈R(v)

N I
p

(7)
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Wout
(v,u) =

NO
u

∑
p∈R(v)

NO
p

(8)

PR(u) = (1− d) + d ∑
v∈B(u)

PR(v)Win
(v,u)W

out
(v,u) (9)

where Win
(v,u) and Wout

(v,u) are the weight of link between v and u calculated based on inflows
and outflows respectively; N is taxicab or Uber flows or number of trips, superscript
denotes Inflows or Outflows, and subscript denotes census tract; R(u) is the set of census
tracts that census tract u has flows to; PR(*) is the PageRank value of one census tract; d is a
dampening factor that is usually set to 0.85; and B(u) is the set of census tracts that have
flows to census tract u.

Figure 4. Importance of spatial units in aggregated trip flow networks (from red to green: high importance/rank to
lower importance/rank). (a) Illustration of aggregated flow network representation, (b) Importance of locations ranked
by PageRank.

4.1.4. Spatial Scope of Passenger Activities

Gyration radius is a metric to estimate the scope of activities [3,6,16]. Here, we refer to
the idea for passenger movement scope by taxi from each unit, as shown in Equation (10).
Figure 5 summarizes the hourly average gyration radius of each unit, as well as hourly
standard deviation. From almost all units, passengers choose to take app-based taxis within
a short radius of 2 to 6 miles with very small temporal variations. In Manhattan, traditional
taxis also show a similar gyration radius distribution. However, they may drive passengers
for a distant radius of more than 10 miles with small hourly variations. Moreover, the
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passenger movement radius by traditional taxis remains stable from 2013 to 2016, except for
few remote units where are with very few rides and radius are more likely to be influenced
by occasional trips.

rg(i) =

√√√√ 1
ni

∑
j∈O(i)

(
rj − rc(i)

)2
(10)

where rg(i) is the gyration radius of census tract i; ni is the number of trips from census
tract i; O(i) is the set of trips originated from census tract i; rj is the recorded trip j end
location; and rc(i) is the center of mass of all trip start locations in census tract i.

Figure 5. Gyration radius (miles) of spatial units.

4.2. Trip Travel Patterns

Other than the aggregated flow patterns, we also explore the general scaling prop-
erties of occupied trips and their movement efficiency. On one hand, the general scaling
properties are obtained from cumulative distribution of travel time and trip distance. Here,
the occupied app-based taxi travel distance is estimated based on the Euclidean distance
between O and D, due to lack of reported occupied trips. The underlying assumption
is that app-based taxis are designed to transport passengers to a destination as fast as
possible thus likely choose the shortest route. On the other hand, we refer to Google Maps
Direction API for benchmark travel time and distance then compute occupied trip move-
ment efficiency. Due to the API’s usage limits, we divide hours into rush hours (7–9 a.m.
and 3–7 p.m.) and off rush hours, collect around 100 observations for each time slot, and
estimate two travel time distributions for each of most frequent 50,000 census tract-based
OD pairs. The sampling OD pairs cover about 78%, 74%, and 38% of occupied traditional
taxicab trips in 2013 and 2016 and occupied app-based taxi trips in 2017, respectively.

Figure 6a presents the cumulative distribution of travel time and trip distance. For
the traditional taxicabs, it remains stable from 2013 to 2016, although occupied trips in
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2016 tend to have slightly longer travel times. The distribution of app-based taxi trip
distance shows a slight difference, in that app-based taxis have more short trips less than
2–3 miles and fewer trips between 3 and 8 miles. Surprisingly, occupied app-based taxi
trips seem to have a much higher travel time and yield a different distribution of travel
time. The measurement errors may contribute to the condition of having a similar travel
distance distribution but different travel time distribution. The Euclidean distance likely
underestimates real displacement of occupied app-based taxi trips. Moreover, the measured
travel time is the duration between ride request acceptance and ride served, including not
only en-route travel time but also travel time to the ride request location after acceptance
and waiting for passengers after early arrival. The last two times are almost negligible for
traditional taxicabs. This may also increase the occupied app-based taxi trip travel time.

Figure 6. Cumulative distribution of trip displacement and movement efficiency. (a) Cumulative
distribution of travel time (s) and distance (miles), (b) Occupied trip movement efficiency.

Figure 6b explores the movement efficiency through relating travel distance ratio to
travel time ratio. Here, the travel time ratio is the ratio of measured travel time to expected
Google travel time and travel distance ratio is the ratio of measured travel distance to
expected Google travel distance (note that Google travel distance may differ depending on
fastest travel time). The graph can reveal not only each trip efficiency in terms of distance
and time separately, but also the speed comparison with common auto traffic. The diagonal
line represents the same speed as Google common auto traffic and above or below the line
means faster or slower than Google common auto traffic, respectively. Most traditional
taxicabs perform identically (see the cluster in the right two figures) and can send their
passengers efficiently almost as Google common auto traffic. From 2013 to 2016, traditional
taxicabs also show a slight upward shift in movement efficiency. App-based taxi driver
partners are, however, comparatively more efficient than both traditional taxicabs and
Google common auto traffic. Although most app-based taxi trips have almost the same
trip distance as Google (ratio of distance is 1), they can take less travel time to transport
passengers to there, about 70–80% of Google’s expected travel time. Surprisingly, few
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app-based taxi driver partners may detour (see ratio of distance between 1 and 1.5) but
they can still take less travel time to their destination, also being about 70–80% of Google’s
expected travel time.

5. Unoccupied Movements
5.1. Aggregate Flow Patterns
5.1.1. Places of Importance

Same as analyses for occupied trips, we also represent empty traditional and app-
based taxi trips as functional flow networks, respectively and apply PageRank centrality
method. The weights of network links are number of empty trips. Similarly, Manhattan is
still a hotspot for customer finding in Figure 7. However, app-based taxi driver partners
likely extend their customer searching to a larger region, for instance, Brooklyn downtown
and Bronx. Different from high importance in occupied trip network, airports are not
first options for both taxis to search next passengers. This is likely due to potential longer
waiting times at airports and remote locations of airports.

Figure 7. Importance of spatial units on empty flow network (From red to green: higher importance/rank to lower
importance/rank).

5.1.2. Spatial Scope of Search Activities

In this section, we measure gyration radius for each driver. Traditional and app-
based drivers show very different distributions on gyration radius in Figure 8. Almost
all traditional taxicab drivers search for their next passengers in a radius of 2 to 3 miles.
However, Uber drivers have a larger searching region with a radius of 4 to 6 miles. Two
factors may lead to the larger searching region: (1) a considerable number of app-based taxi
drivers are part-time drivers and serve primarily around both their workplace and home
with a certain distance; and (2) the smartphone application provides demand information
in a larger area, which may encourage drivers to search passengers in a remote but high-
demand area.
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Figure 8. Gyration radius of drivers while searching for passengers.

5.2. Trip Travel Patterns

The empty traditional taxicab trips in 2013 are estimated from occupied trips. Al-
though we know where and when those empty trips start and end, we cannot directly refer
to Euclidean or Manhattan distance as empty travel distance. Since the empty vehicles
may circulate around for customer searching, instead of directly driving to a destination,
by most occupied trips. This section only explores the cumulative distribution of empty
trip travel time and app-based taxi movement efficiency. Figure 9a shows that app-based
taxi drivers are more efficient in customer searching by taking fewer empty trip travel
time. Figure 9b presents the comparison between ratio of distance and ratio of time, as
done in occupied trip analyses. Note that the most frequent 50,000 census tract-based
OD pairs cover about 28% of empty app-based taxi trips. Most empty trips are above the
diagonal line, which means app-based taxis are more efficient than Google common auto
traffic. More interestingly, the ratios of real travelled distance to Google’s fastest route
distance are around 2, or even higher. This indicates app-based drivers may circulate
around rather than directly driving to ride request locations. These circulations do not,
however, increase travel time a lot and considerable empty trips can still finish customer
searching efficiently. Compared with occupied app-based taxi trip movement efficiency,
there is a higher percentage of trips that are below the diagonal lines, which reveals the
impacts of customer searching behaviors and circulations on empty vehicle movement
efficiency.

Figure 9. Cont.
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Figure 9. Cumulative distribution of travel time and passenger searching efficiency. (a) Cumulative
distribution of empty travel time, (b) passenger searching efficiency.

5.3. Special Analyses on Uber

The detail trajectory points every two or three seconds provide us a new perspective
for understanding how empty app-based taxis drive around to search passengers. Here,
we randomly choose three days as representatives that are 19 April 2017 (Wednesday), 22
April 2017 (Saturday), and 28 April 2017 (Friday). In a series of trajectory points belonging
to one same empty trip, cumulative distance travelled and cumulative travel time are
measured at each trajectory point. Meanwhile, we also measure the Euclidean distance
(called E-Distance) between the trajectory point and the empty trip origin. Moreover,
instantaneous speed and ratio of cumulative distance travelled to E-Distance are estimated
to detect stationary state and circulations in each empty trip. A set of sequential trajectory
points with zero or very low instantaneous speeds is considered as stationary state where
app-based taxi drivers may wait at somewhere instead of continuous moving. Higher ratio
of cumulative distance travelled to E-Distance indicates more circulations around empty
trip origins. We plot time-distance graph with instantaneous speed as third dimension
(colors) and plot time-E-Distance graph with ratio of distance as third dimension (colors),
shown in Figure 10.

Figure 10. Cont.
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Figure 10. Empty Uber Trajectory. (a) Time-Distance on 4/19, (b) Time-E-Distance on 4/19, (c) Time-Distance on 4/22,
(d) Time-E-Distance on 4/22, (e) Time-Distance on 4/28 (f) Time-E-Distance on 4/28.

From the three subplots at the left side, we can see that the empty trip trajectory
pattern does not vary significantly across days of the week. The movement speed tends to
be much lower at the beginning of empty trips than thereafter. Moreover, app-based taxi
drivers may experience higher speed in the early morning or late night when compared
to daylight, mainly determined by temporal variations in urban traffic. As expected, we
also capture stationary state along empty trajectory (see short horizontal lines with deep
blue colors in the upper of plot). In addition to the stationary state at the beginning of
empty trips, Uber drivers may stop somewhere waiting for new ride requests after driving
more than 1.5 miles. From the three subplots at the right side, we can also identify similar
trajectory patterns across days of te week, except for fewer circulations on 19 April 2017.
Generally, the circulations decrease as OD distance increases. The more distant the empty
trips are, the less likely it is that the empty trips circulate around origins. The higher ratio
of distance around zero or very low E-Distance indicates that considerable empty Uber
trips likely circulate back to origins.

6. Conclusions and Discussion

This study integrates current advances in urban mobility computing techniques with
our three real datasets collected from the case of Yellow taxicabs, Boro taxicabs, and UberX
in NYC. Introducing various quantitative metrics allows us to explore how traditional
and app-based taxi vehicles move around a city, as well as their differences. The better
spatiotemporal coverage of datasets also provides multi-scale perspectives for movement
explorations, including: aggregated occupied flow patterns, scaling properties of trip
displacement, and trip trajectory feature extraction.
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Beyond the spatial distributions of ridership that are shifting outside of downtown
areas, we also identify the significant local spatial autocorrelations of intra- and inter-
service rides. The network representation combined with PageRank centrality uncovers
almost same spatial connections and critical hubs of both taxis other than a few remote
areas of importance by app-based taxi. The gyration radius discovers the different scope
of passengers and drivers’ activities that passengers by app-based taxis have shorter and
stable travel distances and app-based taxi drivers tend to have a greater passenger searching
radius. A few scaling properties on travel time and trip distance are explored based on
cumulative distribution. Although there are minor differences in occupied movements,
the empty trips show different movement patterns between both taxis. Moreover, the
movement efficiency is also compared with a benchmark traffic obtained from Google
API. Both taxis have comparative movement efficiency as Google common auto traffic
and app-based taxis show slightly higher efficiency. Finally, we leverage detailed Uber
trajectory on movement feature extraction and confirm the existence of stationary/stops
and circulations.

Our study is one of the first few empirical discussions on traditional and app-based
taxi movement patterns, as well as their comparisons. The findings are useful for both
city authority and transportation network companies. On one hand, the city authority can
acknowledge the operation status of every region and develop strategy plan in the city.
For example, how urban residents move around city by taxi, where are hot places for taxi
services, and how does the taxi industry change after app-based service emerges. On the
other hand, the transportation network companies will learn more demand pattern and
trip characteristics. In particular, the patterns of unoccupied trips may help evaluate the
quality of customer searching and enhance drivers’ efficiency.

However, the data availability limits further in-depth explorations, although we have
introduced three taxicab- and Uber-related datasets. First, we do not have app-based
taxi request and ride records. The current study estimates occupied app-based taxi trips
indirectly from empty trajectory data. This may introduce a few phantom occupied trips
considering frequent vehicle offline or online states and complicated behaviors. Second,
we do not have traditional taxi empty trip records in recent years and can only refer to an
old dataset from 2013. Moreover, we do not have this year’s traditional taxicab occupied
trip records. However, the last one is easier to be fixed once NYCTLC releases new datasets
in the next few months.
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