
 International Journal of

Geo-Information

Article

Efficient Group K Nearest-Neighbor Spatial Query Processing
in Apache Spark

Panagiotis Moutafis 1 , George Mavrommatis 1 , Michael Vassilakopoulos 1 and Antonio Corral 2,*

����������
�������

Citation: Moutafis, P.; Mavrommatis,

G.; Vassilakopoulos, M.; Corral, A.

Efficient Group K Nearest-Neighbor

Spatial Query Processing in Apache

Spark. ISPRS Int. J. Geo-Inf. 2021, 10,

763. https://doi.org/10.3390/

ijgi10110763

Academic Editor: Wolfgang Kainz

Received: 30 August 2021

Accepted: 7 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Data Structuring & Engineering Lab, Department of Electrical and Computer Engineering,
University of Thessaly, 38221 Volos, Greece; pmoutafis@uth.gr (P.M.); gmav@uth.gr (G.M.);
mvasilako@uth.gr (M.V.)

2 Department of Informatics, University of Almeria, 04120 Almeria, Spain
* Correspondence: acorral@ual.es

Abstract: Aiming at the problem of spatial query processing in distributed computing systems,
the design and implementation of new distributed spatial query algorithms is a current challenge.
Apache Spark is a memory-based framework suitable for real-time and batch processing. Spark-
based systems allow users to work on distributed in-memory data, without worrying about the
data distribution mechanism and fault-tolerance. Given two datasets of points (called Query and
Training), the group K nearest-neighbor (GKNN) query retrieves (K) points of the Training with the
smallest sum of distances to every point of the Query. This spatial query has been actively studied in
centralized environments and several performance improving techniques and pruning heuristics
have been also proposed, while, a distributed algorithm in Apache Hadoop was recently proposed by
our team. Since, in general, Apache Hadoop exhibits lower performance than Spark, in this paper, we
present the first distributed GKNN query algorithm in Apache Spark and compare it against the one
in Apache Hadoop. This algorithm incorporates programming features and facilities that are specific
to Apache Spark. Moreover, techniques that improve performance and are applicable in Apache
Spark are also incorporated. The results of an extensive set of experiments with real-world spatial
datasets are presented, demonstrating that our Apache Spark GKNN solution, with its improvements,
is efficient and a clear winner in comparison to processing this query in Apache Hadoop.

Keywords: big spatial data; spatial query processing; group nearest-neighbor query; Apache Spark;
spatial query evaluation

1. Introduction

Nowadays, a huge amount of spatial data is generated daily from GPS-enabled devices,
such as smart phones, smart watches, cars, sensors, location-tagged posts in Facebook,
Instagram, etc. The term big spatial data is related to the process of capturing, storing,
managing, analyzing, and visualizing huge amounts of spatial data, not using traditional
tools and systems. How to process such big spatial data efficiently has become one of the
current research hotspots. To carry out this target, distributed computing using shared-
nothing clusters on extreme-scale data has become a dominating trend in the context of
data processing and analysis.

Hadoop MapReduce [1] and Apache Spark [2] are the dominating distributed frame-
works for processing and managing big data on a cluster of computers. MapReduce is a
disk-based distributed framework more suitable for batch processing and not suitable for
iterative processing. Apache Spark is a memory-based framework suitable for real-time
and batch processing. Following these two distributed frameworks, two types of research
prototype systems to manage large-scale spatial data query processing have emerged. One
is the Hadoop-based prototype systems, where SpatialHadoop [3] is the most represen-
tative system to manage efficiently massive spatial datasets stored on disk. The other
type is Spark-based prototype systems, where Sedona (formerly GeoSpark [4]) is actively

ISPRS Int. J. Geo-Inf. 2021, 10, 763. https://doi.org/10.3390/ijgi10110763 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-4156-0827
https://orcid.org/0000-0003-3018-5416
https://orcid.org/0000-0003-2256-5523
https://orcid.org/0000-0002-0069-4642
https://doi.org/10.3390/ijgi10110763
https://doi.org/10.3390/ijgi10110763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10110763
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10110763?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2021, 10, 763 2 of 31

under development and several companies are currently using it, because it is very efficient
to manage spatial datasets that can all fit into main memory. These research prototype
systems provide some basic spatial query operations for big spatial data, such as spatial
join, range query and other common spatial operators, but they do not provide more
specific spatial queries.

The Group (K) Nearest-Neighbor (GKNN) query [5] belongs to the big family of
nearest-neighbor searches [6], which has been widely studied in computer science and
has numerous modern applications, such as GIS [7], mobile computing [8], clustering [9],
outlier detection [10], facilities management [5], etc. Between two datasets of points, the
GKNN query retrieves the K points of one dataset (called Training) with the smallest sum
of distances to every point of the other dataset (called Query). The Training dataset is
considered a static dataset queried by multiple Query datasets. As an example, consider a
group of friends (Query points) residing in different areas of a city, arranging for a meeting
to a public place (Training point), e.g., restaurant, or pub. They would make a list of K such
places with the smallest sum of distances to all friends (as a group) and then choose among
these places the one that best suits most of them. Such an example can be constructed for
several similar problems. For instance, consider a conference organizing company that
wants to find the building location (where the conference could be organized), minimizing
the sum of distances (displacement) of all possible assistants to the conference. Another
example could be to consider a supermarket chain that wants to find the warehouse location,
minimizing the sum of distances to all stores served by the new warehouse. Finally, another
application case could be related to a franchise that wants to open a restaurant in order to
attract the maximum number of customers from a set of urban areas. A GNNQ reports the
restaurant location that minimizes the sum of distances to all urban areas. The evolution of
mobile devices, the WWW and sensors create an explosion of data and more applications
based on larger datasets, which will require this query to rise.

Without effective pruning and calculation techniques, this query can be very demand-
ing (time consuming) because it involves distance calculations that may be in the order of
millions or more. The GKNN query has been actively studied in centralized environments;
several performance improving techniques and pruning heuristics have also been proposed
and used ([5,7,11,12]). Our recent research works [13,14] are based on the MapReduce
programming framework to solve this query in parallel. We have proposed and studied
the first algorithm for the GKNN query in Hadoop [13]. This algorithm was significantly
improved and implemented in Hadoop and SpatialHadoop [14]. Since Hadoop is a general
purpose (not spatially oriented) distributed system, in this paper, we present the first algo-
rithm for this important and demanding query, in another, general purpose and popular
distributed system, Apache Spark. In general, Spark is considered more efficient than
Hadoop. Examining the performance of these two widely used systems for processing a
demanding query like the GKNN, one further highlights their relative efficiency.

More specifically, our contribution in this paper is summarized as follows.

• We present the first Apache Spark based algorithm for the GKNN query, which is
based on the MapReduce algorithm of [13,14], suitably modified to take advantage of
Spark specific features.

• We present improvements of this algorithm, based on specific functionalities of the
Spark framework.

• We extensively compare the new algorithm against the best Hadoop based algorithm
of [14], using big real and synthetic datasets.

• Using synthetic datasets, we experimentally study the scalability of the Spark-based
algorithm and the effect of each of its embedded improvements on performance.

The work presented in this paper is the first step for the development of a GKNN
algorithm in a spatially enabled Spark-based system, such as Sedona [4], since extending
such a system with more useful spatial operators, processed by efficient algorithms is
important for exploiting its potential in emerging big-data applications.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 3 of 31

The rest of this paper is organized as follows. Section 2 reviews spatial query pro-
cessing in Spark and distributed GKNN query processing. In Section 3, we present the
formal definition of the GKNN query and the basic features of Spark. Section 4 follows,
where we present in detail the new algorithm for processing the GKNN query in Spark,
while in Section 6, we present the improvements of this algorithm. Next, in Section 7, we
present the experimentation we performed and the results we obtained, while in Section 8,
we evaluate and interpret these results. Finally, in Section 9, we present the conclusions
arising from our work and our future plans for extending it.

2. Related Work

In this section, we present a comprehensive overview of the state of the art of spatial
query processing in Apache Spark, the spatial-aware platforms that are based on it and, finally,
a literature review of the papers aiming to solve the GKNN query in distributed environments.

2.1. Spatial Query Processing in Apache Spark

Recently, several spatial analytics systems (SASs) were proposed to support different
type of spatial queries (e.g., range queries, nearest neighbor queries, and spatial joins) over
large-scale spatial datasets on shared-nothing clusters in distributed environments. These
SASs are mainly based on Hadoop MapReduce or Spark, and several surveys were recently
published to describe and classify them [15–18]. The most representative Spark-based SASs
are SpatialSpark [19], GeoSpark (currently Sedona) [4], Simba [20], LocationSpark [21],
STARK [22], SparkGIS [23], Elcano [24] and Beast [25]. These Spark-based SASs and the
spatial queries that they support are shown in Table 1.

For a better understanding of Table 1, the meaning of the supported spatial queries of
previous SASs is described as follows. The range query (RQ) finds all spatial objects located
within a query area. The query area is often a rectangular or circular region represented by
two corner points or a point and a distance threshold, respectively. A KNN query (KNNQ)
takes a set of spatial points, a query point, and an integer K as input, and returns the K
closest points to the query point in the dataset. A spatial join query (SJQ) takes two spatial
datasets and a spatial join predicate (e.g., overlaps) as input, and returns the set of all the
possible different pairs of spatial objects, where the join predicate is true. A KNN join query
(KNNJQ) takes two sets of spatial points and an integer K as input, and the purpose of this
distance-based join query is to find for each point in one dataset, its KNN points from the
other dataset. Typically, the distance join query (DJQ) or spatial range join query takes
two sets of spatial points and a distance threshold as input, and returns all the possible
different pairs of spatial points that have a distance of each other smaller than, or equal to
the distance threshold.

Table 1. Spatial queries supported in the most representative existing SASs based on Spark.

Spatial Analytics System RQ KNNQ SJ KNNJQ DJ

SpatialSpark [19] 3 7 3 7 7
GeoSpark [4] 3 3 3 7 3

Simba [20] 3 3 7 3 3
LocationSpark [21] 3 3 7 3 3

STARK [22] 3 3 3 7 7
SparkGIS [23] 3 3 3 7 7

Elcano [24] 7 7 3 7 7
Beast [25] 3 7 3 7 7

The previous SASs are either using the on-top or the built-in implementation approach
for spatial query processing, utilizing well-known partitioning and indexing techniques.
However, other spatial queries have been implemented directly in Apache Spark with
sophisticated processing strategies. For instance, in [26] a Spark-based indexing scheme
(called Spark-based interpolation search—SPIS) was presented that supports range queries

ISPRS Int. J. Geo-Inf. 2021, 10, 763 4 of 31

in such large-scale decentralized environments and scales well with respect to the number
of nodes and the data items stored. In [27], a generic framework for optimizing the
performance of K nearest-neighbors queries by using clustering methods on top of Apache
Spark is introduced. To also improve the KNNQ in Apache Spark, in [28] an in-memory
partitioning and indexing system (SparkNN) is presented. SparkNN is implemented on top
of Apache Spark and consists of three layers: (1) a spatial-aware partitioning layer, which
partitions the spatial data into several partitions ensuring that the load of the partitions is
balanced and data objects with close proximity are placed in the same partitions; (2) a local
indexing layer, which provides a spatial index inside each partition to speed up the data
search within the partition; (3) a global index layer, which is placed in the master node of
Spark to route spatial queries to the relevant partitions.

Spatial join is one of the most important and studied spatial operators because during
its processing, a spatial dataset may need to be scanned more than once, and the super-
linear cost of the spatial operator renders its efficient processing of great importance [29].
The spatial joins processing methods can be classified as (1) algorithms that do not consider
indexes, (2) single-index join methods and (3) index-based methods; the most representative
algorithms are plane-sweep, iterative spatial join, partition-based spatial-merge (PBSM)
join, size separation spatial join, slot index spatial join, index nested-loop join using
R-trees [30,31] or quadtrees [32], etc. Distributed processing is an effective technique for
improving the efficiency of spatial joins. With the emergence of cloud computing, many
studies use open source big data computing frameworks, such as Hadoop MapReduce and
Apache Spark, to improve spatial join efficiency. Apart from the distributed spatial join
algorithms included in the SASs of Table 1, in [33] the spatial join with Spark (SJS) was
presented, and it used a simple, but efficient, uniform spatial grid to partition datasets and
joins the partitions with the built-in join transformation of Spark. Additionally, SJS utilizes
the distributed in-memory iterative computation of Spark, then introduces a calculation-
evaluating model and in-memory spatial repartition technology, which optimize the initial
partition by evaluating the calculation amount of local join algorithms without any disk
access. Recently, in [34] two methods for spatial joins in Spark were proposed, called
broadcast join and bin join, and the type of join used for any given operation is dependent
on the effective size of both datasets. Experimental results demonstrated that the most
effective and efficient distributed spatial join algorithm depends on the characteristics
of the two input datasets; broadcast join is generally fastest when one of the datasets is
modest in size (and only one is large) but cannot complete when both datasets are large.
In [35], a comparative study of common join algorithms in MapReduce was provided. The
join algorithms (map-side join, reduce-side join, broadcast join, bloom join and intersection
bloom join) based on general cost model and experiments in Spark were evaluated. As a
general conclusion from the experimental results, joins based on intersection bloom filters
dominated over the other joins because they require no special input data and minimize
non-joining data as well as communication costs.

Other more sophisticated spatial queries have also been implemented in Spark. In [36]
a Spark-based top-K spatial join (STKSJ) query processing algorithm was proposed. This
algorithm uses a grid partitioning method to divide the whole data space into grid cells
of the same size, and each spatial object in one dataset is projected into a grid cell. The
minimum bounding rectangle (MBR) of all spatial objects in each grid cell is also computed.
The spatial objects overlapping with these MBRs in another spatial dataset are replicated
to the corresponding grid cells, thereby filtering out spatial objects for which there are no
join results, thus reducing the cost of subsequent spatial join processing. An improved
plane-sweeping algorithm was also proposed to accelerate the scanning mode and applies
threshold filtering. In [37], a K nearest neighbor join query algorithm using locality-
sensitive hashing (LSH) was implemented on Spark for high-dimensional data. The LSH
algorithm first maps similar objects onto the same bucket, which can reduce the set of
K nearest neighbors; then, the distance of objects in the cluster can be calculated, based
on Spark. In [38], an effective high-performance multiway spatial join algorithm with

ISPRS Int. J. Geo-Inf. 2021, 10, 763 5 of 31

Spark (MSJS) was presented to overcome the multiway spatial join bottleneck. MSJS
realizes a natural solution of multiway spatial join via cascaded pairwise join, which means
that the whole query problem is decomposed into a series of pairwise spatial joins. By
making full use of the in-memory iterative computation characteristics of Spark, MSJS
is able to improve a cascaded pairwise join and achieve better performance by caching
the intermediate results in memory with minimal disk-access costs. MSJS also uses an
efficient fixed uniform grid to partition the spatial datasets. It then executes a pairwise
cascade join via a cycle of in-memory operations (partition join, nested-loop join, merge,
and repartition). In [39], a Spark-based spatio-textual skyline query processing algorithm
(multi-PSS) was presented. Multi-PSS consists of the computing of spatio-textual distance,
data partitioning and filtering, local skyline computing and global skyline computing. An
interesting property of multi-PSS is that a regular grid partition approach is used to divide
the multi-dimensional data space into equal cells, and the data objects are projected onto
these cells to form RDD. The experimental results of multi-PSS algorithm showed good
performance and scalability for large synthetic datasets.

The problem of answering the K closest pairs (KCPQ) and distance join (DJQ) queries
in Spark was studied in [40–42]. In [40], a specialized and fast algorithm for KCPQ and
DJQ in Apache Spark (called SliceNBound, SnB) was presented. SnB is a family of new
parallel algorithms on big spatial datasets, utilizing parent–child and common-merged
strip partitioning, local/global bounding and the plane-sweep technique; it can easily be
imported in any spatial-oriented or general Spark-based system. In [41], a distributed
algorithm for processing KCPQ in Apache Spark was also presented. This algorithm splits
the datasets in strips, and processing is done by plane-sweep within each strip, similarly
to the KCPQ algorithm proposed in [43] when the datasets reside in secondary storage.
Finally, Ref. [42] extends [41] with two variations of the binary space partitioning (BSP)
technique to partition the datasets according to two different criteria: equal size (R-split)
and equal width (Q-split) of the child strips. Experimentally, R-split was shown to work
better than Q-split.

Table 2 shows the syntheses of the implementations directly on Apache Spark of
distributed algorithms with sophisticated processing techniques for other spatial queries,
not using the previous SASs.

Table 2. Spatial queries implemented directly on Apache Spark.

Spatial Query Ref. Algorithms/Applied Techniques for Query Processing

RQ [26] Spark-based Interpolation Search (SPIS)
KNNQ [27] Generic framework using clustering methods

[28] In-memory partitioning and indexing system (SparkNN)
SJQ [33] Spatial Join with Spark (SJS), uniform grid partitioning

[34] Distributed join methods: Broadcast Join and Bin Join
[35] Comparative study of common join algorithms in Spark

TKSJQ [36] Uniform grid partitioning and improved plane-sweeping
KNNJQ [37] Locality-Sensitive Hashing (LSH) algorithm in Spark
MwSJQ [38] Multiway Spatial Join algorithm in Spark (MSJS), using

cascaded pairwise join technique
STSQ [39] Spark-based spatio-textual skyline query alg. (Multi-PSS)
KCPQ, DJQ [40] SliceNBound (SnB), parent-child and common-merged

strip partitioning and, plane-sweep technique
[41] Strip-based partitioning and plane-sweep technique
[42] Binary Space Partitioning (BSP). Two criteria: R-split

(equal size) and Q-split (equal width) of the child strip

2.2. GKNN Query in Distributed Environments

To the best of our knowledge, the first algorithm in the literature for the GNN query on
a parallel and distributed environment was presented in [13]. In this work, a multi-phased

ISPRS Int. J. Geo-Inf. 2021, 10, 763 6 of 31

algorithm, using the MapReduce programming framework, was designed to effectively
process the GNN query in the case that the Query dataset fits in the memory and the
Training dataset belongs to the big data category. The algorithm, consisting of four local
and three distributed alternating phases, was extensively tested in four setup combinations,
for several query datasets. More specifically, the algorithm uses grid or quadtree space
partitioning and brute-force or plane-sweep during the two distributed phases when the
actual parallel computation of the candidate group nearest neighbors sets is performed.
Additionally, the algorithm makes use of some of the pruning heuristics and effective
calculation techniques from the literature. As was reported, the local phases cost less than
10% of the total execution time. The algorithm generally worked better with a larger number
of splitting cells, and the brute-force technique achieved better performance compared
to the plane-sweep technique. On the other hand, grid and quadtree were reported to
perform similarly in almost every case.

A significantly improved algorithm was presented in [14]. The algorithm incorporates
a new high performance refining method that uses the centroid of the Query and an expand-
ing circle to select cells containing suitable Training points. Additionally, a fast technique
to calculate distance sums for pruning purposes is added. This (“Fast Sums”) technique
breaks an iterative sum calculation each time the target value is exceeded. Furthermore,
along with several other minor coding and algorithmic improvements, the algorithm mini-
mizes the output size of MapReduce phases, by drastically reducing the information that
is not necessary to be transmitted to subsequent phases. This new improved algorithm
was implemented on the MapReduce framework, but was also ported to SpatialHadoop,
the popular spatial-aware distributed framework. The major special characteristics of the
implementation on SpatialHadoop are that it starts with a partitioning step, using any
available built-in partition technique from SpatialHadoop followed by a repartitioning
step (grid) to better redistribute the workload. Additionally, the use of spatial indexes
and filter functions occurs in different phases than in the implementation on MapReduce.
Both variations of the algorithm were extensively tested on various aspects of their design
characteristics; it was shown that the algorithm outperforms the one presented in [13] by
96% and 97% on Hadoop MapReduce and SpatialHadoop, respectively.

In both of the above algorithms, there is a repeated reading of the Training dataset in
every distributed phase, a process that is costly and affects the total execution time. In [44],
this is treated by applying prepartitioning on the Training dataset, as a first step, before
the actual algorithm starts. Prepartitioning is performed once, and the resulting cells and
their contained training points are stored on the HDFS and subsequently used during
the algorithm execution. Experiments showed that this technique reduces the total time
of a single query by 11% to 24%. It has to be noted here that prepartitioning consumes
almost half of the total execution time, so if we plan to use multiple queries on the same
Training dataset, this time gradually becomes negligible and finally the performance may
almost double. To the best of the authors’ knowledge, Refs. [13,14,44] are the only papers
in the literature that solve the group K nearest-neighbor (GKNN) query in parallel and
distributed systems.

3. Background

This section deals with the major constituent parts of the research being presented
in the current paper. We first present the problem being tackled, namely the group K
nearest-neighbor (GKNN) query. By relying on the description that appears in [5] also
presented in [13,14,44], we elaborate a formal definition of the query. Next, we present the
major characteristics of Apache Spark, the framework that our algorithm relies on.

3.1. Group (K) Nearest-Neighbor (GKNN) Query

As it was introduced in [5], the GKNN query retrieves the K points from a set P
(Training dataset) that has the smallest sum of distances from all points in another set Q
(Query dataset).

ISPRS Int. J. Geo-Inf. 2021, 10, 763 7 of 31

GKNN query can be seen as an extension of the well-known and studied KNN query,
where we search for the K closest points of a dataset to a given point.

Definition 1 (kNN). Given a point p, a dataset S and an integer K, the K nearest neighbors of
p from S, denoted as KNN(p, S), is a set of K points from S such that ∀r ∈ kNN(p, S), ∀q ∈
S− kNN(p, S), dist(p, r) ≤ dist(p, q).

The distance function dist is a distance metric defined on points in the data space.
A very commonly used such distance function in spatial applications is the Euclidean
distance, which is the one we will be using in this paper.

Definition 2 (GKNN). Given a dataset of points P = {P1, P2, P3, ..., PN}, a dataset of query
points Q = {Q1, Q2, ..., Qn} and a number K ∈ N, 1 ≤ K ≤ N, the group K nearest-neighbor
query is an ordered subset of P, denoted by GNN(P, Q, K), where

GNN(P, Q, K) = {p1, p2, ..., pK : pi ∈ P, pi 6= pj, 1 ≤ i, j ≤ K}

and
∀p ∈ P− GNN(P, Q, K) :

n

∑
j=1

dist(p1, Qj) ≤
n

∑
j=1

dist(p2, Qj) ≤ ... ≤
n

∑
j=1

dist(pK, Qj) ≤
n

∑
j=1

dist(p, Qj)

So, the KNN query is a special case of the GKNN query, if the Query dataset only
had one point. However, our algorithm incorporates several distinguishing characteristics
that set it apart from other distributed KNN query solutions, such as sums of distances
computations, with or without using the fast-sums technique, pruning heuristics for distant
points and cells, cell-refining methods, and the mixing of local and distributed phases.
These were thoroughly presented in [14] and are also briefly revised in Section 4.

In order to fully clarify the above definition, we present an easy to follow numerical
example. For the sake of the example, consider the points in Figure 1. Suppose that we
seek in P the 3 nearest neighbors (K = 3) of the group of points Q, namely GNN(P, Q, 3).
We also find the three nearest neighbors of every single Q point, namely KNN(Q1, P) and
KNN(Q2, P). The (naive) approach for GKNN would be to calculate for each point in P the
distances to every point in Q. Then, for each point in P, we find the sum of distances to all
points in Q, then sort in increasing order, and select the 3 points of P with the smaller sum.

Table 3 shows their coordinates and the calculated distances, from which we easily
deduce that KNN(Q1, P) = {P3, P1, P9}, KNN(Q2, P) = {P4, P7, P8} and GKNN(P, Q) =
{P8, P1, P2}, ordered by ascending distance.

Table 3. Distance calculations.

Q1(0.75, 1.25) Q2(2.5, 2.5) sumdist(Q1, Q2)

P1(1, 2) 0.79 1.58 2.37
P2(2, 1.5) 1.27 1.12 2.39
P3(1, 1) 0.35 2.12 2.47
P4(2.5, 2) 1.9 0.5 2.4
P5(1, 2.5) 1.27 1.5 2.77
P6(3, 1) 2.26 1.58 3.84
P7(2, 2.8) 1.99 0.58 2.57
P8(1.6, 2) 1.13 1.03 2.16
P9(1.5, 0.5) 1.06 2.24 3.3
P10(2, 1) 1.27 1.58 2.85

ISPRS Int. J. Geo-Inf. 2021, 10, 763 8 of 31

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Q1

Q2

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

KNN-GKNN Example

P Q

Figure 1. KNN-GKNN example.

3.2. Apache Spark

Apache Spark [45] was first released in 2014 as an enhancement of Hadoop MapRe-
duce [46–48]. Its later version is 3.1.2 and during these years of development it was proven
to be much faster than Hadoop MapReduce in many cases [49–51]. Although the Spark
machine aims to exploit the computing power of multi-core networked computers, recent
efforts are underway toward integrating GPU acceleration within Spark.

Spark provides in-memory caching of data to a user application and allows the user
to decide what data are cached and at what point of execution. By means of the in-
memory caching, the disk I/O and network load are reduced, and data from intermediate
computations are becoming directly available when needed. Spark offers APIs (with
unequal maturity level) for writing code in R, Python, Scala and Java, but there exist several
other interfaces for languages, such as JavaScript or C#. The most “natural” programming
language to develop an application for Spark is Scala, but other JVM-based languages (and,
of course, Java) may be used without serious performance overhead.

A Spark system consists of a driver running on a node designated as master of the
cluster. Several executors are run within JVM instances on the slave nodes, communicate
with the driver and perform the operations on data in parallel. In most cases, there is a
single executor running per slave.

Spark is usually used in combination with a distributed file system, such as HDFS,
where data are kept, and a cluster manager that coordinates the distribution of executors on
the system, subject to the parameters set by the application. Its API relies on the abstraction
of the resilient distributed dataset (RDD). Data are represented as RDDs in the Spark
context, immutable collections of objects, and are distributed among slaves of the cluster.
RDDs consist of logical partitions, regardless of the actual physical location of data (for
example, in an HDFS file system) and Spark tries to allocate to each executor a task that
requires data as close as possible to it in order to minimize network traffic. Several methods
that operate on the RDDs and finally on the underlying data are provided. Additionally,
Spark provides two kinds of shared variables: the broadcast variables that are written by
the driver and read by the executors, and the accumulators that are written on the executors
and read on the driver. By using a broadcast variable, one can broadcast a relatively small

ISPRS Int. J. Geo-Inf. 2021, 10, 763 9 of 31

set of data from the driver to all executors, thus reducing traffic, and afterwards combine it
with a larger dataset on them.

One significant characteristic of Apache Spark is that it exploits RDD dependencies
and creates a directed acyclic /graph (DAG) of the execution plan, which allows executors
to work in parallel on the data. To do so, Spark distinguishes two types of operations on
the data: transformations and actions. The former returns a new RDD and is evaluated
lazily, which means that it is not actually executed until an action is involved. A trans-
formation may cause narrow or wide dependencies on the involved RDDs. In the case
of narrow transformations, a single input partition creates a (modified) output partition,
while in the case of wide transformations, data from more than one partitions need to be
used/combined in order to create the child partitions of the new RDD. Typically, a wide
transformation causes data shuffling, that is, network traffic.

Each time an action is invoked, the system inspects the lineage and creates an opti-
mized execution plan, known as a job. Each job contains a number of stages, corresponding
to wide transformations, and each stage consists of several tasks—one task per each par-
tition of the output RDD, the actual parallel part of the execution, running locally on
the executors.

Spark supports two built-in data partitioning schemes of RDDs on the nodes of the
cluster. A hash partitioner spreads data across partitions by using a hash function on the
key–value pairs of RDDs. A range partitioner assigns each partition data whose keys are in
the same range. Since the default Spark partitioning techniques do not take into account
the special characteristics of spatial data, it is obvious that they may not work well in
spatial applications because, unless taken care of, Spark will distribute the data in a more
or less random manner, ignoring the proximity among points. Therefore, implementing a
proximity-aware partitioning of the data could significantly speed up performance because
data points would be assigned to partitions depending on their spatial proximity [28]. In
order to do so, one can either use a distributed spatial data management system built on
top of Spark, as we will see in the next paragraph, or, if one wants to remain in plain Spark,
then one must appropriately prepare the data and apply a custom partitioner.

4. GKNNQ Algorithm Essentials

While our algorithm for solving the GKNNQ in Spark is based on our MapReduce
algorithm, as presented in [13,14], it is modified to exploit several Spark specific features,
such as in-memory processing, functional programming and re-usability of local variables
and RDDs.

4.1. MapReduce Algorithm Overview

The MapReduce algorithm consists of seven phases, four local and three distributed,
with each local phase followed by a distributed one:

1. Preliminary step. Local calculation of a sample-based quadtree, the sorted list of
query points, query MBR and centroid coordinates, the sum of distances from centroid
to Q. These are needed by most of the pruning heuristics.

2. Phase 1. Distributed computation of the number of training points per cell (needed
by Phase 1.5).

3. Phase 1.5. Local discovery of a group of cells that contain at least K training points in
total. Two methods are available so far: MBR and centroid circle overlapping. The
second method is proved to be much more efficient because it includes fewer but
generally better candidate points.

4. Phase 2. Distributed computation of GKNN lists, one per intersected cell. Pruning
heuristics are applied.

5. Phase 2.5. Local merging of the GKNN lists into one with the best points found so far.
6. Phase 3. Distributed computation of GKNN lists for the non-intersected cells. Heuris-

tics are applied to prune distant cells to save unnecessary calculations. All new
candidate neighbors are checked against the best ones from Phase 2.5.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 10 of 31

7. Phase 3.5. Local phase (final) that merges the list of Phase 2.5 with lists from Phase 3
into the final one.

The experiments of [14] showed that between grid and quadtree partitioning, brute-
force and plane-sweep reducers and MBR and centroid circle overlaps, the best performing
combination is grid with brute-force using centroid cell overlaps, so this is the combination
we use in this paper. We now briefly present these methods.

4.2. MBR and Centroid Circle Selection Methods

In local Phase 1.5, we seek a first estimation of the final GKNN query, that would be
as close as possible to optimal. This may be achieved by discovering a (small as possible)
“target” group of cells that are more likely to obtain this good estimation. Needless to say,
these cells must contain at least K training points in total. In Phase 1, we have counted the
points within each cell, so we can use this result.

In the MBR selection method, all cells that intersect with the query MBR are eligible
for searching for candidate neighbors. The problem is that there are too many points to
examine, and Phase 2 has an excessive amount of work to do. In the centroid circle method,
the eligible cells are significantly reduced so that only those who intersect with a generally
small circle around the centroid (expanded if necessary to include at least K training points)
are checked for neighbors. Both methods are shown in Figures 2 and 3. See [14] for the
pseudo-codes.

Query MBR

Intersecting cells

Figure 2. Cells overlapping with MBR.

Intersecting cells

Query MBR

centroid

Expanding circle

Figure 3. Cells overlapping with centroid’s circle.

4.3. Pruning Heuristics

In Figure 4 we can see the query dataset’s MBR and centroid, surrounded by the
Training dataset and an arbitrary node (cell), created by partitioning.

The centroid, which we use quite frequently, is a point in space that has the minimum
sum of distances to all query points. If it coincides with a Training point, it would make
it the ideal nearest neighbor for this query. However, it generally is an imaginary point,
and its coordinates are calculated numerically in the preliminary phase of the algorithm
(see [5,14]).

ISPRS Int. J. Geo-Inf. 2021, 10, 763 11 of 31

 T

Q

Query MBR

centroid

Node

dist(Node, MBR)

dist(Node, centroid)

Figure 4. Query MBR and arbitrary node.

Table 4 contains the symbols used to describe the pruning heuristics that help us prune
lots of non-eligible Training points and cells.

Table 4. Symbols.

Symbol Description

|Q| cardinality of Q
sumdist(p, Q) sum of distances from point p

to all points of Q
best_dist K-th nearest-neighbor distance

dist(Node, p) min distance between Node and point p
dist(Node, MBR) min distance between Node and Query MBR

• Heuristic 1: Node can be pruned if:

dist(Node, centroid) ≥ best_dist + sumdist(centroid, Q)

|Q|

• Heuristic 2: Node cannot contain qualified points if:

dist(Node, MBR) ≥ best_dist
|Q|

• Heuristic 3: Node can be pruned if:

∑
q∈Q

dist(Node, q) ≥ best_dist

• Heuristic 4: Training point p can be pruned if:

dist(p, centroid) ≥ best_dist + sumdist(centroid, Q)

|Q|

Heuristics 1, 2 and 4 are visualized for better understanding, in Figure 5. The geometric
data are taken from datasets used in experiments and depicted in Figure 6.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 12 of 31

Figure 5. Heuristics 1, 2 and 4 visualization.

Figure 6. Road networks (gray) and synthetic 706,000 (black) datasets.

The circle has its center on the query centroid, and its radius is calculated from the right
member of the Heuristic 1 inequality. The rounded rectangle’s perimeter has a distance
from the query MBR equal to the right member of the Heuristic 2 inequality.

Any cell from any partitioning method that intersects with the circle will not be pruned
by Heuristic 1. Any cell from any partition method that intersects with the rounded rectan-
gle will not be pruned by Heuristic 2. All cells outside these two shapes are automatically
pruned. The circle also works for Heuristic 4; every single training point outside the circle
is pruned. The cells that pass Heuristics 1 and 2 will be checked by Heuristic 3, which is
more costly (Figure 7); those cells which will not be pruned at all and will be checked for
neighbors inside Phase 3.

Figure 7 shows a visualization of Heuristic 3. The node depicted either intersects the
circle or the rounded rectangle of Figure 5 or is located inside them; in any case, it was

ISPRS Int. J. Geo-Inf. 2021, 10, 763 13 of 31

not pruned by Heuristics 1 and 2. If Q = {Q1, Q2, Q3, Q4}, then the left member of the
Heuristic 3 inequality takes the form

dist(Node, Q1) + dist(Node, Q2) + dist(Node, Q3) + dist(Node, Q4)

In simple words, if the node’s sum of distances to all query points is bigger than the
K-th nearest-neighbor’s distance, then any of its points will have an ever bigger sum of
distances and thus, will not qualify as the better nearest neighbors. The gain is that we
have to calculate only |Q| distances, instead of

(number o f training points inside Node)× |Q|

Heuristics 1, 2 and 3 are found in the first filter function of Figure 8, while Heuristic
4 is applied in Figures 8 and 9 when we map the points to a priority queue (inside the
brute-force algorithm).

𝑄 = {𝑄1, 𝑄2,𝑄3, 𝑄4}

∑𝑑𝑖𝑠𝑡(𝑁𝑜𝑑𝑒, 𝑞)

𝑞∈𝑄

= 𝑑𝑖𝑠𝑡(𝑁𝑜𝑑𝑒, 𝑄1) + 𝑑𝑖𝑠𝑡(𝑁𝑜𝑑𝑒, 𝑄2) + 𝑑𝑖𝑠𝑡(𝑁𝑜𝑑𝑒, 𝑄3) + 𝑑𝑖𝑠𝑡(𝑁𝑜𝑑𝑒, 𝑄4)

Heuristic 3 involves more distance calculations (equal to|Q|) than Heuristics 1 & 2 (only one

distance calculation each), but it ignores all the training points inside Node. So, we only have

|Q|, instead of [(number of training points in Node) x |Q|] distance calculations.

T

Q

MBR

Node
Q1

Q2

Q3

Q4

dist(Node,Q1)

dist(Node,Q2)

dist(Node,Q3)

dist(Node,Q4)

Figure 7. Heuristic 3 visualization.

(cell, number of training points) RDD

non-pruned cells RDD

.filter(cell not in overlaps, apply heuristics)

.map((cell, num train points → cell)

non-pruned cells local list

.collect

Training points RDD

(non-pruned cell, training points) RDD

.map(point→(cell, point))

.filter(cell in non-pruned cells)

.groupByKey

priority queues of neighbors per cell RDD

.map((cell, points) → priority queue)

local priority queue of K best neighbors from non-pruned

cells

.reduce((pq1, pq2) → pq)

Figure 8. Discover neighbors in non-pruned cells (Phase 3).

ISPRS Int. J. Geo-Inf. 2021, 10, 763 14 of 31

Training points RDD

(overlapped cell, training points) RDD

.map(point → (cell, point))

.filter(cell in overlaps)

.groupByKey

priority queues of neighbors per cell RDD

.map((cell, points) → priority queue)

local priority queue of K best neighbors from overlaps

.reduce((pq1, pq2) → pq)

Figure 9. Discover neighbors in overlapped cells (Phases 2 and 2.5).

4.4. Grid Partitioning

Only grid partitioning is used in this paper. In grid partitioning, the space is divided
into N × N equal square cells. N is a user-defined parameter, and it plays a major role
in the algorithm’s performance. When changing N, we modify each cell’s size (bigger N
means more, smaller cells, smaller N means fewer, bigger cells) and thus, its ability to
contain more or less points. When a cell contains many points, the number of calculations
inside it grows quadratically. Few but big cells will give the executors a lot of calculations
to perform. Many but small cells will result in faster computations, but will generate many
executor processes, which is also undesired.

The grid’s advantage is fast point and cell location. If we know N, we are just a
few easy algebraic calculations away from knowing where each cell and point is located.
Its disadvantage is that we cannot control the number of points inside each cell; it just
applies blind cuts. Some cells may have few or no points, while others may have thousands
or more.

4.5. Brute-Force Computation Method

In [14], we used two computational methods: brute-force and plane-sweep. Plane-
sweep is more sophisticated, but also more complicated, and it loses to naive brute-force
because of the heuristics described in Section 4.3 that practically overcomes plane-sweep’s
superior pruning capabilities. Brute-force in GKNNQ works as shown in Figure 10.

Imagine a single cell containing several training points, from which we want to find
the best K ones. We start calculating the sum of distances from every training point to
all query points. The first K points are inserted into a max heap, along with their sum of
distances. We continue to check every other training point in the cell; and if we find a
smaller sum of distances, we replace the top of the heap with this point, and so on. Only
Heuristic 4 (Section 4.3) is applied here. The brute-force pseudo-code is presented in [14].

In [14], we also introduced a technique, called “Fast Sums”, to avoid performing
repetitive sums of distances computations in pruning heuristics and also when checking
each individual candidate neighbor. In Heuristic 3, when we calculate the left member
of the inequality, if and when the sum becomes bigger than the K-th neighbor’s distance,
the calculation stops and the function returns. The same thing happens when we check
the sum of distances of a candidate neighbor against the K-th neighbor’s distance in the
priority queue in the brute-force method. The experiments showed that it can indeed save
many needless calculations. Thus, we have it turned on by default.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 15 of 31

p

q1

q2

q3

𝑝 ∈ 𝑇

𝑄 = {𝑞1, 𝑞2, 𝑞3}

𝑠𝑢𝑚𝑑𝑖𝑠𝑡ሺ𝑝, 𝑄ሻ = 𝑑𝑖𝑠𝑡ሺ𝑝, 𝑞1ሻ + 𝑑𝑖𝑠𝑡ሺ𝑝, 𝑞2ሻ + 𝑑𝑖𝑠𝑡ሺ𝑝, 𝑞3ሻ

Figure 10. Brute-force.

4.6. Usage of Techniques per Phase

In our previous works we have presented two partitioning methods (grid and quadtree),
two cell selection methods (MBR and centroid circle) and two computation methods (brute-
force and plane-sweep). Out of these eight possible combinations, our experiments showed
that the best performing one is grid partitioning with centroid circle selection and brute-
force computation, which we use in this paper.

Partitioning is used in distributed phases 1, 2 and 3, to map the training points to
their cells. Centroid circle selection method is only used in local Phase 1.5. Brute-force
computation is used in distributed Phases 2 and 3 to find the candidate neighbors out of
the selected training points.

5. A Spark-Based GKNN Query Processing Algorithm

Utilizing the ideas and techniques from Section 4, we now present the Spark-based
algorithm. The presentation compares each phase and step to the MapReduce version in
order to manifest the differences and similarities in implementation.

5.1. Preliminary Phase

In the Spark approach, only the preliminary phase runs separately (Figure 11), while
all the others are unified and run inside the main function.

On the other hand, in MapReduce, the preliminary phase and also every other phase
runs separately.

Read query dataset and get MBR - centroid coordinates

Compute sum of distances from centroid to all query points

Figure 11. Preliminary phase.

5.2. Starting Spark Session

First (Figure 12), we read the required values and the query dataset file into a local list
of point objects (id, x, y). The query dataset is considered small enough to fit into a local
list. Then (Figure 13), we read the training dataset file into an RDD of point objects.

In Spark, these values are read only once and stored into local variables, and then are
passed as parameters in functions. In MapReduce, these values are read/written from/to
HDFS or given as user parameters every time they are needed in each phase. The process

ISPRS Int. J. Geo-Inf. 2021, 10, 763 16 of 31

of Figure 13 does not occur at all; instead, the training dataset file is read again and again
each time it is needed.

Start Spark session

Read values:

K, partitioning, fast sums, computation method, overlapping

method, preliminary phase output

Read query textfile → local list of points

Figure 12. Starting Spark session.

Training points textfile

Training points RDD

.map((id, x, y) → point)

Figure 13. Create training points RDD.

5.3. Computing the Number of Training Points per Cell (Phase 1)

We now need to create a “density map” which will provide us with the information
of the number of training points per cell (Figure 14). Mapping a point to its cell requires
information from partitioning.

In MapReduce, we employ a Mapper and a Reducer separately to implement the
corresponding functions. The training points dataset is read from HDFS, while in Spark,
we transform the previously prepared training points RDD into a new one, using concise
functional programming code.

Training points RDD

(cell, number of training points) RDD

.map(point → (cell, 1))

.reduceByKey((a, b) → a + b)

Figure 14. Create cell-training points RDD (Phase 1).

5.4. Searching for Overlapped Cells (Phase 1.5)

Then we run a function similar to local Phase 1.5 to discover the cells that overlap
with a circle around centroid and contain at least K training points in total. This function
runs on the driver only. Partitioning gives us the information of where the cells are located,
and the locally collected RDD from Phase 1 tells us how many training points each one
contains. The procedure is depicted in Figure 15.

This process in MapReduce is almost identical, except for the obvious difference of the
input being read from HDFS files and the output being written in HDFS as well, instead of
already prepared RDDs and local data structures.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 17 of 31

(cell, number of training points) RDD

(cell, number of training points) local map

.collectAsMap

overlapped cells local list

K, partitioning, MBR-centroid coords

Figure 15. Discover overlapped cells (Phase 1.5).

5.5. Creating a First Approach of the Neighbors List (Phases 2 and 2.5)

Afterwards, we use the training points inside the overlapped cells to create an inter-
mediate RDD of (cell, training points in this cell) tuples, using the groupByKey function, on
which we apply the appropriate calculation method, using the map function to create a
priority queue of the best K neighbors per cell. These priority queues are finally merged
into a single one, using a proper reduce function, and it is locally stored on the driver. The
procedure is depicted in Figure 9.

Each priority queue contains the (training point id, sum of distances from all query points)
tuples, ordered by the sum of distances. The second map function uses the selected
calculation method (brute-force in this case) to discover the best neighbors from each cell
and insert them into a priority queue.

In MapReduce, the Mapper reads again the training dataset from HDFS and converts
it to point objects, giving the intermediate output <overlapped cell, training points>, which
is written to HDFS. The Reducer reads the output, converts the string values to cell and
point objects, and passes them to the function that discovers the K nearest neighbors in
each cell. The result is written to HDFS as text files containing the id’s and distances of the
neighbors. Then, the local Phase 2.5 reads all these text files, converts the string values to
objects and inserts them into a single priority queue. In Spark, we use transformations on
previously prepared RDDs, without reading and converting any text files. Local Phase 2.5
is incorporated here as the reduce command, which also acts on an RDD.

5.6. Searching for Neighbors in Distant Cells (Phase 3)

Now that we have created a preliminary list of neighbors from the overlaps, we must
also check the rest of the cells. The sum of distances of the K-th neighbor, which was
found in the previous phase, is used in the pruning heuristics (Section 4.3). We use the
cell-training points RDD from Phase 1 (Figure 14), keeping the cells only and excluding the
overlapped cells; then, we apply cell pruning heuristics. If any cells pass through, they are
collected into a local list. The procedure is displayed in the upper half of Figure 8. Phase
3 neighbors are derived from the training points RDD, using a series of transformations,
similar to Figure 9, and are presented in the lower half of Figure 8.

In MapReduce we employ two Mappers; the first one reads the output of phase 1 from
HDFS and applies heuristics to prune cells, while the second one reads again the Training
dataset file from HDFS and performs point location giving the output
<cell, training point id and coordinates>. Both Mappers’ outputs are then grouped by cell
and fed to the Reducer. The Reducer merges both Mappers’ outputs and passes the eligible
training points to the function that discovers the K nearest neighbors in each cell. Another
difference between Spark and the MapReduce version is that MapReduce’s Reducer creates
multiple priority queues (one per cell) as text files in the end of Phase 3, while Spark merges
them into a single one, using the reduce function of Figure 8.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 18 of 31

5.7. Creating the Final List of K Neighbors (Phase 3.5)

MapReduce’s local Phase 3.5 is now a merging of the priority queues of Figures 8 and 9
on the driver, which produces the final neighbors list, as shown in Figure 16. The Spark
session ends here.

Merge both local priority queues (overlaps + non-pruned

cells) into the final priority queue of best K neighbors

End Spark session

Figure 16. Create final list of neighbors (Phase 3.5).

In MapReduce, a local function reads the text files from HDFS that contain the multiple
neighbor lists of Phase 3 and the single one from Phase 2.5 and merges them to the final
one, after performing the necessary conversions from strings to doubles. In Spark, there
are only two lists of neighbors as objects (one from Phase 2 and one from Phase 3) already
loaded in RAM.

5.8. Review of the Similarities and Differences in Spark and MapReduce Implementation

It should be obvious at this point that the original MapReduce GKNN query algorithm
has undergone several improvements in its Spark implementation.

MapReduce’s programming model demands reading and writing text files only in the
form of <key, value> to and from the distributed file system. In a multi-phase algorithm,
such as this one, this happens in every phase; the same big files have to be re-read several
times, and their string values are converted to other structures and vice versa.

In Spark, we have to read each big file only once and then, applying suitable trans-
formations, convert it to an RDD of objects, which can be loaded in distributed memory
once and used many times afterwards. We did this with the training points and the query
points datasets and also with the intermediate results that derived from transformation
on the aforementioned RDDs. We also merged together Phases 2 and 2.5 and reduced the
output size of Phase 3. In addition, by persisting some RDDs, the disk I/O was kept at a
bare minimum. Spark’s functional programming model allowed us to simplify the whole
process and reach the same results per phase in a more concise way.

There are, however, some functions and classes from the MapReduce version, which
were transferred to the Spark version with minimal changes, such as the local phases, the
partitioning, the pruning heuristics and other minor computational functions.

6. Improvements on the Spark-Based GKNN Query Processing Algorithm

The previously presented algorithm proved to be quite efficient, compared to Hadoop,
but there are still a couple of improvements that may further boost its performance. We
make use of two facilitations of the Spark framework, which are broadcasting local variables
and persisting RDDs into memory or disk for repeated usage.

Firstly, we broadcast the local list of query points (Figure 12) to all workers as soon as
it is created. This list is available locally to all workers, instead of being transmitted every
time it is needed for calculations, which is for every mapping of (cell, points) tuple to a
priority queue in Phases 2 and 3 (Figures 8 and 9). Depending on the query dataset size
and the network speed, this could significantly decrease the overall time.

Secondly, we persist the most frequently used RDDs, which are the training points
RDD, created right after starting the Spark session (Figure 13) and used in Phases 1, 2 and
3 (Figures 8, 9 and 14) and the (cell, number o f training points) RDD, created in Phase 1
(Figure 14), used in Phases 1.5 and 3 (Figures 8 and 15).

The efficiency of both these improvements are tested in the experiments.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 19 of 31

Spark DAG

A deeper look on the algorithm from Spark’s point of view and also a proof of the
effectiveness of persisting the training points RDD comes from the Spark DAG.

We know that Spark’s web UI displays the DAG for each job, where vertices represent
the RDDs and edges represent the transformations applied on them. We show one part of
the DAG created for this algorithm and analyze it.

In Figure 17, we can see the DAG generated by the reduce action of Figure 8, where the
local list of neighbors from distant cells is formed. Stage 20 reads the training dataset text
file from HDFS (box A) and transforms it into an RDD of point objects (box B), as shown
in Figure 13. Then, it maps each point to a (cell, point) tuple (box C) and filters out the
pruned cells (box D), as shown in the lower half of Figure 8. All these commands belong to
the same stage because they are narrow transformations and they do not require shuffling
of data. Stage 20 is marked as “skipped” because we have persisted the training points
RDD, so the transformations of boxes C and D are applied on the previously computed (in
an earlier step) and cached RDD of box B.

However, when the wide transformation groupByKey (box E) is applied, data are
shuffled and a new stage is created (21). mapValues of box F typically follows groupByKey,
while mapValues of box G is the transformation of points into a priority queue of neighbors,
as seen in the last map function of Figure 8. The map function in box H stands for the
values command, which is not displayed in Figure 8 for simplicity, and is used in order to
remove the cells inside the (cell, priority queue) tuples. The reduce action is then executed.

textFile

map

map

map

mapValues

mapValues

filter

groupByKey

Stage 20 (skipped) Stage 21

A

B

C

D

E

F

G

H

Figure 17. DAG of final stages. Boxes with letters A–H represent transformations on RDDs.

7. Experimental Results

The Spark algorithm, as presented in Section 5, is thoroughly tested against its Hadoop
counterpart (from [14]), using a variety of dataset combinations. A per phase direct
comparison is also included. Furthermore, it is tested for scaling as K grows larger and
computing nodes become fewer. Finally, we present experiments testing the improvements
discussed in Section 6.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 20 of 31

7.1. Datasets and Test System Configuration

We use three real-world datasets as training and one real and two clustered synthetic
ones as query. The training datasets contain the coordinates of parks, buildings and
road networks around the world from OpenStreetMap (http://spatialhadoop.cs.umn.
edu/datasets.html, accessed on 16 August 2021) [3] and have 11.5M, 114.7M and 717M
points, respectively. The real query is based on one that contains linear hydrography
coordinates inside the U.S.A., but we have trimmed the farthest points and halved it, so
it now contains 2.8 million points. The synthetic query datasets originally contain 10M
and 50M points, scattered in concentrated regions all around the globe. We have cropped
them to a rectangle that roughly covers the African continent and they now contain fewer
points. All datasets’ coordinates are normalized in the [0, 1] range, in order to simplify
the algorithms. We also performed experiments with one query dataset moved to other
locations, for performance comparisons. Figure 6 shows the smaller clustered synthetic
query and the road networks training datasets. Figure 18 shows the default and new
hydrography query dataset locations over the road networks training dataset. Figure 19
shows the larger clustered synthetic query and the parks training datasets. Table 5 shows
some properties of the datasets used.

Figure 18. Road networks (gray), hydrography datasets in default (black, below South America) and
new (black, over Sahara desert) location.

Table 5. Datasets.

Type Dataset Num. of Pts Disk Size

Training
parks 11.5 million 373 MB

buildings 114.7 million 3.7 GB
roads 717 million 30 GB

Query

hydro (def. loc.) 2.8 million 91.4 MB
hydro (new. loc.) 2.8 million 91.4 MB

small synth. 706,000 29.5 MB
large synth. 39 million 165.7 MB

http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html

ISPRS Int. J. Geo-Inf. 2021, 10, 763 21 of 31

Figure 19. Parks (gray) and synthetic 3.9M (black) datasets.

We have set up a cluster of nine virtual machines (one Namenode/Driver and eight
Datanodes/Workers) running Ubuntu Linux 20.04 64-bit. Each machine is equipped with a
Xeon quad core at 2.1 GHz and 16 GB RAM, connected to a 10 Gbit/sec network. Hadoop
experiments are run on version 3.2.2, while Spark experiments are run on version 3.1.2.
Each virtual machine corresponds to a single Hadoop Datanode/Spark Worker and each
Worker runs one Executor process, which means that there are eight Workers/Executors in
the cluster, plus the driver. Each Executor has 4 cores and 12 GB of memory allocated.

Grid partitioning is used, the cell overlapping method is the centroid circle, and
neighbors discovery is performed using the brute-force approach. The fast sums method is
used for pruning distance sums computations. The grid space decomposition parameter is
N, which means that the training dataset is divided in N×N square cells. The broadcasting
of local variables and persisting of RDDs is used, as analyzed in Section 5, unless otherwise
stated. The value of K is 10 and the number of computing nodes is 8, except for the
scaling experiments.

Each experiment was executed three times, and the running time was averaged. We
ran the preliminary phases separately and did not include them into the performance
graphs. Using these particular query datasets (on which ones the preliminary phase runs
exclusively), their running time was less than a minute. So, the total running time of each
experiment was from the start of the Spark session to its end (Figures 12–16).

We present the graphs of the experiments in this section and discuss the results
in Section 8.

7.2. Hadoop vs. Spark Experiments

In Figures 20–22, we can see Spark’s performance as a function of N and compared
to Hadoop. The datasets are the small synthetic queries versus the three training ones,
ordered by cardinality.

The range of values of N in each graph are derived from experiments to determine
the optimal N, and then we present the algorithm’s performance near it.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 22 of 31

2243

1958 1908
1986

1791

1562

1176

870 864 843
736 741

0

500

1000

1500

2000

2500

1400 1600 1800 2000 2200 2400

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH1 (706K POINTS − 29.5MB) VS PARKS (11.5M POINTS − 373.4MB)

Hadoop Spark

Figure 20. Hadoop vs. Spark, small synthetic query and small training datasets.

6239
6547 6525

5836
6188

5910

3427

2894 2947
3362 3206

2666

0

1000

2000

3000

4000

5000

6000

7000

2600 2800 3000 3200 3400 3600

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH1 (706K POINTS − 29.5MB) VS BUILD (114.7M POINTS − 3.7GB)

Hadoop Spark

Figure 21. Hadoop vs. Spark, small synthetic query and medium training datasets.

2261 2186 2198
2086 2116

2401

479 478 461 421 434 378

0

500

1000

1500

2000

2500

3000

1000 1200 1400 1600 1800 2000

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH1 (706K POINTS − 29.5MB) VS ROADS (717M POINTS − 30GB)

Hadoop Spark

Figure 22. Hadoop vs. Spark, small synthetic query and large training datasets.

In Figures 23–25 the small synthetic query is replaced by the large one.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 23 of 31

1638 1597

1289 1324

1480

1153

865

991

681 685

825
709

0

200

400

600

800

1000

1200

1400

1600

1800

1400 1600 1800 2000 2200 2400

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH2 (3.9M POINTS − 165.7MB) VS PARKS (11.5M POINTS − 373.4MB)

Hadoop Spark

Figure 23. Hadoop vs. Spark, large synthetic query and small training datasets.

2591 2532

2285 2363
2170 2239

1448
1555

1158 1166 1230 1227

0

500

1000

1500

2000

2500

3000

3000 3200 3400 3600 3800 4000

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH2 (3.9M POINTS − 165.7MB) VS BUILD (114.7M POINTS − 3.7GB)

Hadoop Spark

Figure 24. Hadoop vs. Spark, large synthetic query and medium training datasets.

2398 2357 2372 2439
2597 2595

571 588 550 623 630 678

0

500

1000

1500

2000

2500

3000

1000 1200 1400 1600 1800 2000

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

SYNTH2 (3.9M POINTS − 165.7MB) VS ROADS (717M POINTS − 30GB)

Hadoop Spark

Figure 25. Hadoop vs. Spark, large synthetic query and large training datasets.

Finally, Figures 26 and 27 show how the real query dataset, in both default and new
locations, behaves against the large training.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 24 of 31

2175 2115 2179 2182 2230 2211

239 273 247 257 252 262

0

500

1000

1500

2000

2500

2400 2600 2800 3000 3200 3400

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

WATER1 (2.8M POINTS − 31.5MB) VS ROADS (717M POINTS − 30GB)

Hadoop Spark

Figure 26. Hadoop vs. Spark, hydro (def. loc.) query and large training datasets.

2380 2394
2575 2555

2459 2446

514 467 461 508 520 541

0

500

1000

1500

2000

2500

3000

3000 3200 3400 3600 3800 4000

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

N

WATER2 (2.8M POINTS − 31.5MB) VS ROADS (717M POINTS − 30GB)

Hadoop Spark

Figure 27. Hadoop vs. Spark, hydro (new loc.) query and large training datasets.

Figure 28 shows the absolute and relative performance differences per distributed
phase and in total for a certain dataset combination.

68 252

6204
6525

18 193

2730 2947

0

1000

2000

3000

4000

5000

6000

7000

Phase 1 Phase 2 Phase 3 Total

se
c

per phase time

SYNTH1 VS BUILDS

Hadoop Spark

−73% −9%

−51% −50%

Figure 28. Hadoop vs. Spark, per phase performance (N = 1200).

7.3. Scaling Experiments

In this section, we will test Spark’s capability of scaling with K and the number of
available workers. The datasets used are small synthetic query vs. medium training
(Figure 21), using the best performing N = 3600.

In Figure 29, we see how the algorithm scales on Spark with much bigger values of K.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 25 of 31

2666 2699 2657

3116

0

500

1000

1500

2000

2500

3000

3500

10 1000 10 ,000 100 ,000

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

K

SCALING WITH K

Figure 29. Spark scaling with K, small synthetic query vs. medium training datasets.

In Figure 30, we see both frameworks running a specific combination of datasets with
some computing nodes decommissioned.

2036

2532

3042

257
483

1570

0

500

1000

1500

2000

2500

3000

3500

8 4 2

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

nodes

Scaling with nodes

Hadoop Spark

Figure 30. Spark vs. Hadoop scaling with number of nodes, hydro (new loc.) query vs. large
training datasets.

7.4. Spark Algorithm, Improved vs. Base

We now test the improved algorithm (the one used so far in the experiments) against
the base one, which has some features turned off. One such feature is the broadcasting of
the query dataset, and another is the persisting of the training points RDD, as described
in Section 5.

Firstly, we deactivate the broadcasting of the query dataset (Figure 12) so that every
time it is needed, it is transmitted to all workers. This will happen for every cell examined
by Phases 2 and 3. Secondly, we try not persisting the training points RDD (Figure 13) to
see if its re-computation will gain an advantage over the cached one’s serialization/de-
serialization CPU overhead. The results are depicted in Figures 31–33.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 26 of 31

864

681

841

654

886

682

0

100

200

300

400

500

600

700

800

900

1000

SYNTH1 (N = 1800) SYNTH2 (N = 1800)

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

QUERY DATASETS

PARKS (11.5M points − 373.4MB)

Improved Query not broadcasted Training points RDD not persisted

Figure 31. Small training dataset broadcast and persist tests.

2947

1158

2996

1128

2986

1302

0

500

1000

1500

2000

2500

3000

3500

SYNTH1 (N = 3000) SYNTH2 (N = 3400)

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

QUERY DATASETS

BUILD (114.7M points − 3.7GB)

Improved Query not broadcasted Training points RDD not persisted

Figure 32. Medium training dataset broadcast and persist tests.

421

588

257

461
420

582

266

483

580

735

414

626

0

100

200

300

400

500

600

700

800

SYNTH1 (N = 1600) SYNTH2 (N = 1200) WATER1 (N = 3000) WATER2 (N = 3400)

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

(S
EC

)

QUERY DATASETS

ROADS (717M POINTS − 30GB)

Improved Query not broadcasted Training points RDD not persisted

Figure 33. Large training dataset broadcast and persist tests.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 27 of 31

8. Discussion

Having presented all the graphs from the experiments, we can now discuss and
interpret them. First of all, it must be noted that space partitioning is exactly the same for
both systems; utility classes and functions are mostly unchanged; pruning heuristics and
fast sums technique are applied similarly; and each phase processes the same points for
each dataset couple and N. Consequently, Spark’s superior performance derives primarily
from its in-memory handling of data and the algorithmic and coding adaptations performed
toward that direction, instead of Hadoop’s constant read/write to disk.

Looking at graphs in Figures 20–28, we observe the following:

• Spark finishes 50–90% faster than Hadoop. Similar percentages apply to each dis-
tributed phase of the algorithm.

• Spark’s performance remains mostly unchanged for a wide variation of N; it is an
almost flat line in many graphs. However, the best performing Ns are the larger
ones, as can also be observed for Hadoop in these experiments and in the litera-
ture (Section 2.2). More cells mean fewer points inside each and, therefore, fewer
calculations per cell.

• The optimal value of N varies significantly for each dataset couple, and it is hard if not
impossible to foresee it without experimentation, mostly because of the unpredictable
behavior of the fast sums calculation savings and the pruning heuristics, both of which
depend on partitioning.

• The per phase time is proportional to the number of training points it has to process
(not shown in the graphs), for a specific query dataset. Phase 2 is generally very fast
because of the few cells that Phase 1.5 feeds it (usually about 10), while Phase 3 gets
several hundred or even thousands of cells (after pruning has finished), which means
thousands or millions of points. As an example, in Figure 21, we can see that the total
time is much larger than any other graph, for both frameworks, which is the result of
about 11 million training points not pruned and processed by Phase 3. In other dataset
combinations, Phase 3 processes only a few hundreds or thousands of training points.

• In most figures, the performance curves of both systems are almost parallel. Both
curves have the same slope with varying N, meaning that differences in partitioning
have the same effect in both frameworks (number of points per cell, number of pruned
cells and points, etc.). This is further proof that Spark’s constant performance distance
must derive mostly from its I/O savings.

Figure 28 deserves a closer look under the hood. From Hadoop’s console output, we
see that Phase 1 reads 3.7 GB from HDFS (the training dataset) and writes 1.4 MB to it
(the phase output, number of points per cell). It also locally reads 3 GB and writes 4.5 GB
(mappers’ output to local disks and shuffling, all of which are read by the reducers).

Hadoop’s phase 2 only reads and writes a few megabytes locally, but reads 4.5 GB from
HDFS (both datasets plus metadata). HDFS output is only a few bytes (the K neighbors list).

Phase 3 reads 5.2 GB from HDFS (both datasets and phase 1 output), but locally reads
9.6 GB and writes 14.4 GB. There are two distinct mappers here, one of which is creating
lists of cells and all their training points, while the other creates lists of non-pruned cells
only. Both these outputs are joined. This means that there is a huge amount of intermediate
and shuffled data that puts a significant load on disks and network.

Spark’s web UI shows that once persisted, the training points RDD resides in RAM
until the end. Phase 1 includes a wide transformation (reduceByKey), but is still more
economical than Hadoop’s shuffling. Phase 2 reads the persisted training points RDD from
RAM and includes one wide transformation (groupByKey) applied on very few cells and
points. Finally, Phase 3 reads two persisted RDDs, training points and the Phase 1 output,
and also includes one wide transformation (groupByKey). All the other transformations
are narrow, meaning that data are processed locally and in-memory, which explains the
performance differences.

In Figure 29, we can see that for a wide range of K, from 10 to 10,000, performance
remains unchanged. However, when K becomes 100,000 (comparable to query dataset’s

ISPRS Int. J. Geo-Inf. 2021, 10, 763 28 of 31

cardinality of 706,000 points), the running time becomes about 17% higher. This increase is
probably caused by the size of the priority queue structure that has to hold a very large
number of neighbor objects (during Phases 2 and 3, hundreds or thousands of candidate
neighbors are checked, inserted, sorted and popped).

Figure 30 shows how both frameworks scale with some nodes deactivated, using two
specific datasets. Hadoop gets a 24% penalty from 8 to 4 nodes and 20% from 4 to 2 nodes.
Spark’s running time is almost doubled from 8 nodes to 4 nodes and then almost tripled
from 4 nodes to 2 nodes. The last abnormally big increase can be explained by the caching
of the large training dataset to the disk (as web UI tells us), because the two nodes do
not have the required total available RAM to host it. However, it still outperforms the
8-node Hadoop.

Looking at Figures 31–33, we observe that broadcasting the query dataset barely has
an impact on performance. This may have to do with its small size (30 MB to 165 MB),
the high bandwidth network and the relatively few number of workers (8). Much bigger
sizes in larger clusters may undergo a serious performance hit. Similarly, persisting the
training points RDD has little effect on small and medium training datasets and seems
to counterbalance the serialization/de-serialization CPU overhead. However, it severely
affects performance in the large training RDD, where the caching of transformations on
the rather large data file (as shown in Figure 17) outweighs the aforementioned overhead.
Since these improvements do not hurt performance for smaller datasets, while they have a
positive performance on larger datasets, we keep them enabled in our final algorithm.

9. Conclusions

In this paper, we presented the first Apache Spark based algorithm for the GKNN
query. Although, it has evolved from a MapReduce algorithm in Hadoop [13,14], an
extensive performance evaluation between the two algorithms (using big real and syn-
thetic datasets) showed that the Spark algorithm is significantly better that its Hadoop
counterpart. Studying information on the running of these algorithms provided by the
two systems, we conclude that the key factor making Spark faster is the exploitation of
RAM, instead of Hadoop’s reading, or rereading data and intermediate results from disk.
Studying the effect of persisting data and intermediate results and broadcasting data (ex-
tra Spark features), we conclude that persisting improves performance when processing
large datasets, paying for its overhead, while broadcasting does not affect performance
significantly, due to the limited size of the broadcast dataset.

In the future, we plan to port our algorithm to Apache Sedona (formerly GeoSpark [4])
and compare its performance against its plain Spark version. Moreover, we plan to exam-
ine further optimizations, such as data prepartitioning [44] and using alternative space
partitioning methods (e.g., quadtrees, Voronoi diagrams), and their effect on performance.
Some of the methods we use, such as the cell filtering of local phase 1.5 and the pruning
heuristics, which are based on the triangle inequality, may need to be redesigned when the
distance metric changes from Euclidean to, for example, Manhattan or Minkowski. Further
studies are needed to explore these possibilities. There are also plans to study spatial aware
methods for extending the Spark’s hash partitioner and its effect on GKNNQ.

Author Contributions: All authors contributed to conceptualization, methodology and writing;
software, investigation and visualization, Panagiotis Moutafis; funding acquisition, Antonio Corral;
project administration, Michael Vassilakopoulos and George Mavrommatis. All authors have read
and agreed to the published version of the manuscript.

Funding: The work of M. Vassilakopoulos and A. Corral was funded by the MINECO research
project [TIN2017-83964-R].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

ISPRS Int. J. Geo-Inf. 2021, 10, 763 29 of 31

Data Availability Statement: Real world datasets used in experimentation (coordinates of parks,
buildings and road networks around the world from OpenStreetMap) are openly available in
http://spatialhadoop.cs.umn.edu/datasets.html (accessed on 16 August 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of the 6th Symposium on

Operating System Design and Implementation (OSDI 2004), San Francisco, CA, USA, 6–8 December 2004; pp. 137–150.
2. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working Sets. In Proceedings

of the 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, 22 June 2010.
3. Eldawy, A.; Mokbel, M.F. SpatialHadoop: A MapReduce framework for spatial data. In Proceedings of the 31st IEEE International

Conference on Data Engineering, ICDE 2015, Seoul, Korea, 13–17 April 2015; pp. 1352–1363. [CrossRef]
4. Yu, J.; Zhang, Z.; Sarwat, M. Spatial data management in apache spark: The GeoSpark perspective and beyond. GeoInformatica

2019, 23, 37–78. [CrossRef]
5. Papadias, D.; Shen, Q.; Tao, Y.; Mouratidis, K. Group Nearest Neighbor Queries. In Proceedings of the 20th International

Conference on Data Engineering, ICDE 2004, Boston, MA, USA, 30 March–2 April 2004; pp. 301–312. [CrossRef]
6. Papadopoulos, A.N.; Manolopoulos, Y. Nearest Neighbor Search: A Database Perspective; Series in Computer Science; Springer:

New York, NY, USA, 2005. [CrossRef]
7. Papadias, D.; Tao, Y.; Mouratidis, K.; Hui, C.K. Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database

Syst. 2005, 30, 529–576. [CrossRef]
8. Nghiem, T.P.; Green, D.; Taniar, D. Peer-to-Peer Group k-Nearest Neighbours in Mobile Ad-Hoc Networks. In Proceedings of

the 19th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2013, Seoul, Korea, 15–18 December 2013;
pp. 166–173. [CrossRef]

9. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323. [CrossRef]
10. Liu, X.; Chen, F.; Lu, C. Robust Prediction and Outlier Detection for Spatial Datasets. In Proceedings of the 12th IEEE International

Conference on Data Mining, ICDM 2012, Brussels, Belgium, 10–13 December 2012; pp. 469–478. [CrossRef]
11. Roumelis, G.; Vassilakopoulos, M.; Corral, A.; Manolopoulos, Y. Plane-Sweep Algorithms for the K Group Nearest-Neighbor

Query. In Proceedings of the GISTAM 2015—1st International Conference on Geographical Information Systems Theory,
Applications and Management, Barcelona, Spain, 28–30 April 2015; pp. 83–93. [CrossRef]

12. Roumelis, G.; Vassilakopoulos, M.; Corral, A.; Manolopoulos, Y. The K Group Nearest-Neighbor Query on Non-indexed
RAM-Resident Data. In Geographical Information Systems Theory, Applications and Management; Springer: Cham, Switzerland, 2016;
pp. 69–89. [CrossRef]

13. Moutafis, P.; García-García, F.; Mavrommatis, G.; Vassilakopoulos, M.; Corral, A.; Iribarne, L. MapReduce algorithms for the
K group nearest-neighbor query. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019,
Limassol, Cyprus, 8–12 April 2019; pp. 448–455. [CrossRef]

14. Moutafis, P.; García-García, F.; Mavrommatis, G.; Vassilakopoulos, M.; Corral, A.; Iribarne, L. Algorithms for processing the
group K nearest-neighbor query on distributed frameworks. Distrib. Parallel Databases 2020. [CrossRef]

15. Pandey, V.; Kipf, A.; Neumann, T.; Kemper, A. How Good Are Modern Spatial Analytics Systems? Proc. VLDB Endow. 2018,
11, 1661–1673. [CrossRef]

16. de Carvalho Castro, J.P.; Carniel, A.C.; de Aguiar Ciferri, C.D. Analyzing spatial analytics systems based on Hadoop and Spark:
A user perspective. Softw. Pract. Exp. 2020, 50, 2121–2144. [CrossRef]

17. Velentzas, P.; Corral, A.; Vassilakopoulos, M. Big Spatial and Spatio-Temporal Data Analytics Systems. Trans. Large-Scale Data-
Knowl.-Cent. Syst. 2021, 47, 155–180. [CrossRef]

18. Alam, M.M.; Torgo, L.; Bifet, A. A Survey on Spatio-temporal Data Analytics Systems. arXiv 2021, arXiv:2103.09883.
19. You, S.; Zhang, J.; Gruenwald, L. Large-scale spatial join query processing in Cloud. In Proceedings of the 31st IEEE International

Conference on Data Engineering Workshops, ICDE Workshops 2015, Seoul, Korea, 13–17 April 2015; pp. 34–41. [CrossRef]
20. Xie, D.; Li, F.; Yao, B.; Li, G.; Zhou, L.; Guo, M. Simba: Efficient In-Memory Spatial Analytics. In Proceedings of the 2016

International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–1 July 2016;
pp. 1071–1085. [CrossRef]

21. Tang, M.; Yu, Y.; Mahmood, A.R.; Malluhi, Q.M.; Ouzzani, M.; Aref, W.G. LocationSpark: In-memory Distributed Spatial Query
Processing and Optimization. Front. Big Data 2020, 3, 30. [CrossRef]

22. Hagedorn, S.; Götze, P.; Sattler, K. The STARK Framework for Spatio-Temporal Data Analytics on Spark. In Proceedings of the
Datenbanksysteme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs, Datenbanken und
Informationssysteme (DBIS), Stuttgart, Germany, 6–10 March 2017; pp. 123–142.

23. Baig, F.; Vo, H.; Kurç, T.M.; Saltz, J.H.; Wang, F. SparkGIS: Resource Aware Efficient In-Memory Spatial Query Processing. In
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2017,
Redondo Beach, CA, USA, 7–10 November 2017; pp. 28:1–28:10. [CrossRef]

http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html
http://doi.org/10.1109/ICDE.2015. 7113382
http://dx.doi.org/10.1007/s10707-018-0330-9
http://dx.doi.org/10.1109/ICDE.2004.1320006
http://dx.doi.org/10.1007/0-387-27544-4
http://dx.doi.org/10.1145/1071610.1071616
http://dx.doi.org/10.1109/ICPADS.2013.34
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1109/ICDM.2012.147
http://dx.doi.org/10.5220/0005375300830093
http://dx.doi.org/10.1007/978-3-319-29589-3_5
http://dx.doi.org/10.1145/3297280.3299733
http://dx.doi.org/10.1007/s10619-020-07317-8
http://dx.doi.org/10.14778/3236187.3236213
http://dx.doi.org/10.1002/spe.2882
http://dx.doi.org/10.1007/978-3-662-62919-2_7
http://dx.doi.org/10.1109/ICDEW.2015.7129541
http://dx.doi.org/10.1145/2882903.2915237
http://dx.doi.org/10.3389/fdata.2020.00030
http://dx.doi.org/10.1145/3139958.3140019

ISPRS Int. J. Geo-Inf. 2021, 10, 763 30 of 31

24. Engélinus, J.; Badard, T. Elcano: A Geospatial Big Data Processing System based on SparkSQL. In Proceedings of the 4th
International Conference on Geographical Information Systems Theory, Applications and Management, GISTAM 2018, Funchal,
Madeira, Portugal, 17–19 March 2018; pp. 119–128. [CrossRef]

25. Zhang, Y.; Eldawy, A. Evaluating computational geometry libraries for big spatial data exploration. In Proceedings of the Sixth
International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data, GeoRich@SIGMOD 2020, Portland,
OR, USA, 14 June 2020; pp. 3:1–3:6. [CrossRef]

26. Papadopoulos, A.N.; Sioutas, S.; Zaroliagis, C.D.; Zacharatos, N. Efficient Distributed Range Query Processing in Apache Spark.
In Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019, Larnaca,
Cyprus, 14–17 May 2019; pp. 569–575. [CrossRef]

27. Aljawarneh, I.M.; Bellavista, P.; Corradi, A.; Montanari, R.; Foschini, L.; Zanotti, A. Efficient spark-based framework for big
geospatial data query processing and analysis. In Proceedings of the 2017 IEEE Symposium on Computers and Communications,
ISCC 2017, Heraklion, Greece, 3–6 July 2017; pp. 851–856. [CrossRef]

28. Aghbari, Z.A.; Ismail, T.; Kamel, I. SparkNN: A Distributed In-Memory Data Partitioning for KNN Queries on Big Spatial Data.
Data Sci. J. 2020, 19, 35. [CrossRef]

29. Mamoulis, N. Spatial Data Management; Synthesis Lectures on Data Management; Morgan & Claypool Publishers: San Rafael, CA,
USA, 2011. [CrossRef]

30. Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD Rec. 1984, 14, 47–57. [CrossRef]
31. Manolopoulos, Y.; Nanopoulos, A.; Papadopoulos, A.N.; Theodoridis, Y. R-Trees: Theory and Applications; Advanced Information

and Knowledge Processing; Springer: London, UK, 2006. [CrossRef]
32. Samet, H. The Quadtree and Related Hierarchical Data Structures. ACM Comput. Surv. 1984, 16, 187–260. [CrossRef]
33. Zhang, F.; Zhou, J.; Liu, R.; Du, Z.; Ye, X. A New Design of High-Performance Large-Scale GIS Computing at a Finer Spatial

Granularity: A Case Study of Spatial Join with Spark for Sustainability. Sustainability 2016, 8, 926. [CrossRef]
34. Whitman, R.T.; Marsh, B.G.; Park, M.B.; Hoel, E.G. Distributed Spatial and Spatio-Temporal Join on Apache Spark. ACM Trans.

Spat. Algorithms Syst. 2019, 5, 6:1–6:28. [CrossRef]
35. Phan, A.; Phan, T.; Trieu, N. A Comparative Study of Join Algorithms in Spark. In Proceedings of the Future Data and Security

Engineering—7th International Conference, FDSE 2020, Quy Nhon, Vietnam, 25–27 November 2020; pp. 185–198. [CrossRef]
36. Qiao, B.; Hu, B.; Zhu, J.; Wu, G.; Giraud-Carrier, C.; Wang, G. A top-k spatial join querying processing algorithm based on spark.

Inf. Syst. 2020, 87. [CrossRef]
37. Ji, J.; Chung, Y. Research on K nearest neighbor join for big data. In Proceedings of the IEEE International Conference on

Information and Automation, ICIA 2017, Macau, China, 18–20 July 2017; pp. 1077–1081. [CrossRef]
38. Du, Z.; Zhao, X.; Ye, X.; Zhou, J.; Zhang, F.; Liu, R. An Effective High-Performance Multiway Spatial Join Algorithm with Spark.

ISPRS Int. J. Geo-Inf. 2017, 6, 96. [CrossRef]
39. Qiao, B.; Zhang, J.; Qiao, X.; Hu, B.; Zheng, Y.; Wu, G. An Efficient Spatio-Textual Skyline Query Processing Algorithm Based on

Spark. In Proceedings of the Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery—Proceedings of the
15th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019), Kunming,
China, 20–22 July 2019; Volume 2, pp. 659–667. [CrossRef]

40. Mavrommatis, G.; Moutafis, P.; Vassilakopoulos, M.; García-García, F.; Corral, A. SliceNBound: Solving Closest Pairs and
Distance Join Queries in Apache Spark. In Proceedings of the Advances in Databases and Information Systems—21st European
Conference, ADBIS 2017, Nicosia, Cyprus, 24–27 September 2017; pp. 199–213. [CrossRef]

41. Mavrommatis, G.; Moutafis, P.; Vassilakopoulos, M. Closest-Pairs Query Processing in Apache Spark. In Proceedings of the
CLOUD COMPUTING 2017, Eighth International Conference on Cloud Computing, GRIDs, and Virtualization, Athens, Greece,
19–23 February 2017; pp. 26–31.

42. Mavrommatis, G.; Moutafis, P.; Vassilakopoulos, M. Binary Space Partitioning for Parallel and Distributed Closest-Pairs Query
Processing. Int. J. Adv. Softw. 2017, 10, 275–285.

43. Roumelis, G.; Corral, A.; Vassilakopoulos, M.; Manolopoulos, Y. New plane-sweep algorithms for distance-based join queries in
spatial databases. GeoInformatica 2016, 20, 571–628. [CrossRef]

44. Moutafis, P.; Mavrommatis, G.; Velentzas, P. Prepartitioning in MapReduce Processing of Group Nearest-Neighbor Query.
In Proceedings of the PCI 2020: 24th Pan-Hellenic Conference on Informatics, Athens, Greece, 20–22 November 2020; pp. 380–385.
[CrossRef]

45. Damji, J.S.; Wenig, B.; Das, T.; Lee, D. Learning Spark: Lightning-Fast Data Analytics, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA,
USA, 2020.

46. Stoica, I. Apache Spark and Hadoop: Working Together. 2014. Available online: https://databricks.com/blog/2014/01/21
/spark-and-hadoop.htm (accessed on 13 October 2021).

47. Verma, A.; Mansuri, A.H.; Jain, N. Big data management processing with Hadoop MapReduce and spark technology: A
comparison. In Proceedings of the 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India, 18–19
March 2016; pp. 1–4. [CrossRef]

48. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache Spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

http://dx.doi.org/10.5220/0006794601190128
http://dx.doi.org/10.1145/3403896.3403969
http://dx.doi.org/10.1109/CCGRID.2019.00073
http://dx.doi.org/10.1109/ISCC.2017.8024633
http://dx.doi.org/10.5334/dsj-2020-035
http://dx.doi.org/10.2200/S00394ED1V01Y201111DTM021
http://dx.doi.org/10.1145/971697.602266
http://dx.doi.org/10.1007/978-1-84628-293-5
http://dx.doi.org/10.1145/356924.356930
http://dx.doi.org/10.3390/su8090926
http://dx.doi.org/10.1145/3325135
http://dx.doi.org/10.1007/978-3-030-63924-2_11
http://dx.doi.org/10.1016/j.is.2019.101419
http://dx.doi.org/10.1109/ICInfA.2017.8079062
http://dx.doi.org/10.3390/ijgi6040096
http://dx.doi.org/10.1007/978-3-030-32591-6_70
http://dx.doi.org/10.1007/978-3-319-66917-5_14
http://dx.doi.org/10.1007/s10707-016-0246-1
http://dx.doi.org/10.1145/3437120.3437345
https://databricks.com/blog/2014/01/21/spark-and-hadoop.htm
https://databricks.com/blog/2014/01/21/spark-and-hadoop.htm
http://dx.doi.org/10.1109/CDAN.2016.7570891
http://dx.doi.org/10.1145/2934664

ISPRS Int. J. Geo-Inf. 2021, 10, 763 31 of 31

49. Samadi, Y.; Zbakh, M.; Tadonki, C. Performance comparison between Hadoop and Spark frameworks using HiBench benchmarks.
Concurr. Comput. Pract. Exp. 2018, 30. [CrossRef]

50. Mostafaeipour, A.; Rafsanjani, A.J.; Ahmadi, M.; Dhanraj, J.A. Investigating the performance of Hadoop and Spark platforms on
machine learning algorithms. J. Supercomput. 2021, 77, 1273–1300. [CrossRef]

51. Döschl, A.; Keller, M.; Mandl, P. Performance evaluation of Apache Hadoop and Apache Spark for parallelization of compute-
intensive tasks. In Proceedings of the iiWAS ’20: The 22nd International Conference on Information Integration and Web-Based
Applications & Services, Virtual Event, Chiang Mai, Thailand, 30 November–2 December 2020; Indrawan-Santiago, M., Pardede,
E., Salvadori, I.L., Steinbauer, M., Khalil, I., Kotsis, G., Eds.; ACM: New York, NY, USA, 2020; pp. 313–321. [CrossRef]

http://dx.doi.org/10.1002/cpe.4367
http://dx.doi.org/10.1007/s11227-020-03328-5
http://dx.doi.org/10.1145/3428757.3429121

	Introduction
	Related Work
	Spatial Query Processing in Apache Spark
	GKNN Query in Distributed Environments

	Background
	Group (K) Nearest-Neighbor (GKNN) Query
	Apache Spark

	GKNNQ Algorithm Essentials
	MapReduce Algorithm Overview
	MBR and Centroid Circle Selection Methods
	Pruning Heuristics
	Grid Partitioning
	Brute-Force Computation Method
	Usage of Techniques per Phase

	A Spark-Based GKNN Query Processing Algorithm
	Preliminary Phase
	Starting Spark Session
	Computing the Number of Training Points per Cell (Phase 1)
	Searching for Overlapped Cells (Phase 1.5)
	Creating a First Approach of the Neighbors List (Phases 2 and 2.5)
	Searching for Neighbors in Distant Cells (Phase 3)
	Creating the Final List of K Neighbors (Phase 3.5)
	Review of the Similarities and Differences in Spark and MapReduce Implementation

	Improvements on the Spark-Based GKNN Query Processing Algorithm
	Experimental Results
	Datasets and Test System Configuration
	Hadoop vs. Spark Experiments
	Scaling Experiments
	Spark Algorithm, Improved vs. Base

	Discussion
	Conclusions
	References

