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Abstract: The selection of road networks is very important for cartographic generalization. Tra-
ditional artificial intelligence methods have improved selection efficiency but cannot fully extract
the spatial features of road networks. However, current selection methods, which are based on the
theory of graphs or strokes, have low automaticity and are highly subjective. Graph convolutional
networks (GCNs) combine graph theory with neural networks; thus, they can not only extract spatial
information but also realize automatic selection. Therefore, in this study, we adopted GCNs for
automatic road network selection and transformed the process into one of node classification. In
addition, to solve the problem of gradient vanishing in GCNs, we compared and analyzed the results
of various GCNs (GraphSAGE and graph attention networks [GAT]) by selecting small-scale road
networks under different deep architectures (JK-Nets, ResNet, and DenseNet). Our results indicate
that GAT provides better selection of road networks than other models. Additionally, the three
abovementioned deep architectures can effectively improve the selection effect of models; JK-Nets
demonstrated more improvement with higher accuracy (88.12%) than other methods. Thus, our study
shows that GCN is an appropriate tool for road network selection; its application in cartography
must be further explored.

Keywords: road network selection; graph convolutional networks (GCNs); deep architectures;
cartographic generalization

1. Introduction

For thousands of years, cartography has been an indispensable science for human
society, creating maps large enough to reflect the shape and size of the earth and small
enough to guide residents’ daily travel. With the rapid development of mobile devices and
the Internet, electronic maps have become increasingly popular and useful. Roads are the
main element of electronic maps, and their effective selection has always been a challenge
in cartography.

Roads comprise skeletal frameworks and transportation arteries that structure urban
environments, and displaying them on maps directly affects the visual impression of the
whole map; thus, accurate selection of road networks is imperative. Many methods and
strategies have been proposed to improve the efficiency of road network selection, which
can be generally categorized as intelligent or non-intelligent.

Non-intelligent selection methods are mainly based on the theory of graphs or strokes—
or on a combination of both. Although the application of automated generalization proce-
dures is based principally on an analysis of space and attributes, maps are also designed
to communicate spatial concepts [1]. Graph theory can express topological relationships
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between objects and has been applied in many previous studies. Mackness [1] explored the
application of topological information, emphasizing how this information could be used
and preserved during cartography generalization. Wang et al. [2] conducted a preliminary
discussion on the automatic selection of road networks by applying graph theory. An
adjacency matrix was used to represent the graph, and the intensity values of nodes and
edges were calculated according to the road grade, mesh area, and density of the road
network. The road was then automatically selected according to the calculated intensity
values. Notably, even though traditional graph-based methods use spatial information,
they have a high computational cost and low efficiency.

If the graph-based methods take the spatial features of roads into full consideration,
the selection method based on strokes can consider the connectivity of the road network.
Thomson et al. [3] proposed the concept of “strokes,” using roads with good continuity
in terms of a set of continuous strokes as the selection unit based on the perceptual
organization principle. This principle describes the phenomena whereby the human
visual system spontaneously organizes elements of the visual field, and it can serve as
the basis for partitioning a road network into a set of linear elements, referred to as
strokes [3]. Subsequently, selection experiments considering road and river networks were
conducted using graph theory [4]. Many studies have combined different methods based
on Thomson’s work, such as mesh density [5], Voronoi diagrams [6], and other geometric,
topological, and semantic information to perfect stroke theory [7]. However, these selection
methods still require manual construction of the strokes and calculation of the parameters,
and these requirements do not ameliorate the problems of subjectivity and automation.

Most intelligent selection methods adopt machine learning methods, such as kernel
methods, backpropagation (BP) [8,9], radial basis function (RBF) [10], self-organizing maps
(SOMs), and artificial neural networks (ANNs) [11]. Experts establish road selection rules
according to their knowledge and then select the road network [12,13]. However, tradi-
tional machine learning methods cannot directly extract the spatial information of roads for
the task of road network selection. Rather, this information must be constructed manually,
which greatly increases the complexity and subjectivity of the selection process. Further-
more, the accuracy of the selection results is greatly reduced because spatial information is
not fully utilized in this method. Compared to traditional machine learning, deep learning
methods based on deep neural networks (DNNs) avoid the complications associated with
artificial feature extraction. Deep learning can automatically extract features from different
data through different architectures of neurons or layers, each typically designed for a spe-
cific task. For example, in convolutional neural networks (CNNs) [14], a two-dimensional
convolution layer is designed to extract the spatial information of images, while recurrent
neural networks (RNNs) [15] are able to effectively extract the sequence information of text
data using specially designed long short-term memory (LSTM) architectures [16] or gated
recurrent units (GRU) and changing the connection mode between the network.

When the deep learning model is applied to a cartographical problem, it can be
regarded as a combination of two spatial problems: the abstract neural network space
and the actual map space. To apply this combination, the particularity of problems in
application field needs to be considered, including data structure and organization, sample
preparation, and variant targets [17]. Fortunately, the graph data structure of road networks
largely cater to the advantages of graph convolutional networks (GCNs) [18], which
combine graph theory and neural networks to automatically extract the spatial features of
road networks.

Most traditional machine learning methods often need to manually extract the spatial
features of road networks; that is, by calculating the road centrality, density, and other
indicators to transform the road graph data structure into a tabular structure. Like CNNs,
GCNs have the characteristics of end-to-end learning [19], which is a learning method that
directly uses original data as input. In addition, GCNs can learn the spatial and attribute
information of a road network simultaneously. Notably, there is a correlation between
the spatial structure of the road network and the road attributes. In traditional machine
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learning methods, when constructing spatial characteristics, other information such as road
grade and type are often ignored. By inputting the spatial structure and attribute features
of the road network into the same graph-convolution layer used to perform learning, GCNs
can make good use of their relevant information, thus obtaining better classification results.

However, existing GCN models still exhibit some remaining problems. Several studies
and experiments [20–22] have shown that, in general, GCNs perform optimally when the
graph convolution uses three layers; as the number of layers increases, the network’s ability
to extract spatial information decreases, leading to inaccurate classification. The problem
of vanishing gradients is a common phenomenon that also exists in CNNs. Scholars have
proposed several strategies to optimize CNN models, such as DenseNet (dense connec-
tions) [21], and dilated convolutions [22], JK-Nets (jumping knowledge networks) [23]
and ResNet (residual connections) [24], Researchers have also explored whether GCN
models require a deep architecture. Li et al. [25] adapted connection methods that were
successful in training deep CNNs and presented an extensive analysis of their effects to
evaluate the accuracy and stability of deep GCNs. However, they only proved the posi-
tive effects of these methods on the task of large-scale point-cloud segmentation, which
refers to assigning specific semantic labels to each point in a point cloud to complete the
classification of objects. Thus, whether these methods can be applied to the task of road
network selection remains uncertain. In addition, Li et al. used only one kind of GCN
model, without considering the weak generalization of traditional GCNs. This problem
was addressed by Hamilton [26] and Veličković [27], who proposed new models for the
purpose (GraphSAGE and graph attention networks [GAT], respectively).

Specifically, graph-convolution calculation of a conventional GCN depends on the
Laplace matrix of the graph. If the graph changes, it needs to be retrained. This type of
learning, referred to as transductive learning [28], is less adaptive than inductive learning;
thus, the road network must remain the same during the training and prediction phases.
To solve this problem, we applied the GraphSAGE framework as proposed by Hamilton,
which can conduct inductive learning in GCNs. This framework includes mean, LSTM, and
max-pooling aggregators, which are explained in detail in Section 3.2. Furthermore, the
weight of a neighbor node in a traditional GCN was calculated according to the node degree;
the node was dependent on the entire graph structure and thus had a weak generalization
ability. Although the framework of GraphSAGE does not rely on the entire graph structure,
it can cause excessive aggregation of neighbor nodes to a large degree. To enable a neural
network to fit any function automatically, Veličković et al. [27] proposed a GAT designed
to self-learn the weight of neighbor nodes. Therefore, to obtain the best selection results,
new frameworks must be considered in our experiment.

In this study, our objective was to verify the ability of GCNs to extract spatial informa-
tion and select road networks. If the selection effect is satisfactory when we use the same
features as other machine learning methods with less computation, then the models we
proposed will be proved to be feasible for road selection. In the long run, we aim to achieve
the task of intelligent cartographic generalization, especially automatic extraction of spatial
information, and decrease the subjectivity of road network selection. Besides, data on
the northeast United States of America were used to perform simulation experiments to
analyze the effectiveness and applicability of deep GCNs in road network selection. The
contributions of this study are summarized as follows.

1. To the best of our knowledge, this study is the first to adopt GCNs for road network
selection. We used different types of graph-convolution models, specifically the
standard GCN, GraphSAGE, and GAT, which are characterized by high computational
efficiency and spatial locality.

2. We introduce different deep strategies for GCNs and combine them with graph-
convolution models to determine the most effective combination of selection models
for road network selection tasks.

3. In addition to the construction of the selection model, we focused on the importance
of a rigorous evaluation system. In this work, the evaluation of road network selection
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results included two aspects. We evaluated the generalization of the selection model
using the area under the receiver operating characteristic (ROC) curve (AUC) and also
judged whether the spatial distribution of the roads was reasonable by considering
expert selection results as a standard and performing a comparative analysis by
calculating the selection accuracy and density, along with other indicators.

The remainder of this article is organized as follows. Section 2 reviews related studies
on the intelligent selection of road networks and the development and application of
graph-convolution networks (GCN). In Section 3, we introduce different models and deep
architectures for GCNs and describe the process used to construct models for road network
selection. In Section 4, we provide the details of the experimental setup and results of
simulations conducted on a small-scale road map and evaluate the generalization of the
models, along with the selection results. Section 5 summarizes the work and suggests some
possibilities for further research in this area.

2. Related Work
2.1. Intelligent Road Network Selection Method

As an important element of maps, road networks play a vital role in the national
economy and in national security. Over the years, experts and scholars have researched
various methods for the effective selection of road networks and achieved considerable
positive results. However, research on cartographic generalization continues, along with
the development of better generalization methods. Existing approaches can be broadly
classified into intelligent and non-intelligent methods. In recent years, intelligent methods
have increasingly been applied to extract road networks to improve the efficiency of the
selection process and decrease the objectivity of the selection results.

Notably, intelligent selection methods are mainly based on decision trees, kernel ma-
chine learning, and neural networks. For example, Guo [29] introduced the ID3 decision
tree model [30] for road network selection; the author considered that the process of road
network selection can be translated to a classification problem, and the classification rules
can be extracted from the ID3 decision tree. This study contributed to the construction of a
knowledge model for road generalization, but it mainly used semantic information without
considering the topological structure of the road network. In addition, the attributes were
determined by human labor instead of being obtained by the algorithm automatically,
which was known to have low automaticity and high subjectivity. Because kernel machine
learning has the characteristics of nonlinear dimensionality reduction and nonlinear map-
ping, Liu [31] combined its advantages with the support vector machine (SVM) algorithm
and a knowledge system to perform road network selection. As a result, the relationship
between selection parameters and the importance of roads could be determined through
sample learning, which means that the selection rules can be automatically obtained. How-
ever, automatic selection has not yet been achieved because the construction of strokes and
the calculation of parameters still require considerable time and effort.

To make the selection more intelligent, Jiang et al. [11] adopted a SOM neural network
and conducted a clustering analysis for roads. In their study, semantic, geometric, and
topological information of road networks were considered as the selection bias. The SOM
was used to select the road network, with SOM units representing different types of roads
and chroma values representing the importance of roads. Cai [8] chose the semantic infor-
mation of streets (such as street grade and street area) as selection parameters and carried
out progressive selection combined with a BP neural network. Subsequently, Liu [10]
performed a study on small-scale road networks, in which the stroke was considered as the
selection unit and the selection rules were formulated by constructing a parameter system.

Although all of these methods have improved, to some degree, the automaticity of the
models for road network selection, they cannot directly utilize the spatial information of
roads. Therefore, the spatial parameters need to be constructed manually, which greatly
increases the complexity and subjectivity of the selection process. If the stroke is used
as the selection unit, the selection process becomes more complicated because stroke
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construction also requires artificial participation. In addition, the accuracy of the selection
results decreases owing to the insufficient utilization of spatial information. Therefore, we
applied GCNs to road network selection, which eliminates the construction of stroke units,
improves selection efficiency, and reduces the subjectivity of expert selection. Notably,
GCNs combine graph theory with neural networks to extract the spatial features through
graph convolution and make greater use of the spatial features of the road network.

2.2. Development of Graph-Convolution Network (GCN)

With the development of machine learning and deep learning, many types of regular
data, such as language, text, and images, can be processed effectively. However, not all
items in the real world can be expressed with regular spatial structures, such as webpage
links, citation relations, and social networks. Gori et al. [32] were the first to address
this problem by adopting the concept of CNNs. Furthermore, Scarselli et al. [33] and
Micheli et al. [34] elaborated the theory of CNNs and used a supervised learning method
to train one such network. The early CNNs propagated neighbor information through
RNNs and were designed to reach a stable state through multiple iterations, which resulted
in low computational efficiency. Inspired by graph-convolution filtering, a new theory
based on a graph-convolution operation—namely, GCNs—has been developed in recent
years. In 2013, Bruna et al. [35] were the first to propose a graph-convolution method based
on the frequency domain [36]. However, because all the eigenvectors of the Laplace matrix
need to be calculated, this graph-convolution method was not suitable for large-scale
graphs. To solve this problem, Defferrard et al. [37] redefined the convolution operation
and proposed the ChebNet model, in which time complexity is linearly related to the size of
the graph and has spatial locality [38]. Subsequently, Kipf et al. [18] proposed a space-based
graph-convolution method by restricting ChebNet’s graph-convolution operation to the
first-order neighborhood, which greatly improved the computational efficiency and helped
achieve remarkable results in multiple graph-based tasks.

However, because the standard GCN (i.e., the GCN mentioned above) uses transduc-
tion learning to determine the weight of the neighborhood node, it has poor adaptability
and needs to relearn any time the source graph is changed. Hamilton et al. [26] redesigned
the aggregation mode of the GCN and decomposed graph convolution into two parts:
information aggregation of the neighborhood node and updates for nodes. Therefore, the
GraphSAGE framework was proposed to aggregate neighborhood information and was
able to conduct inductive learning. Furthermore, inspired by the attention mechanism [39],
Veličković et al. [27] proposed a GAT that could self-learn the influence weights among the
nodes, thus enabling the model to generalize well. In addition, to overlay deeper layers
and extract more information, scholars have proposed different deep strategies using CNN
models, such as JK-Nets, ResNet, and DenseNet. Li et al. [25] conducted an experiment on
deep GCNs, which used deep architectures from CNNs, and demonstrated their applica-
bility in GCNs. Their results indicated that, after solving the vanishing gradient problem
that plagues deep GCNs, they could either make GCNs deeper or wider to achieve better
performance.

At present, GCNs have been adopted in many fields, such as natural language pro-
cessing [40], recommendation systems [41], and biochemistry [42]. However, few works
have reported GCNs for road network applications. Wang et al. [43] used a GCN to identify
the orthogonal grid pattern of a road network and constructed a graph structure with
road intersections as nodes and road connections as edges. Jepsen et al. [44] introduced
the relational fusion network (RFN), a type of GCN whose graph convolutional operator
aggregated over-representations of relations instead of over-representations of neighbors.
They evaluated the proposed RFN architecture on two road segment prediction tasks
(driving speed estimation and speed limit classification) and found that the RFNs out-
performed state-of-the-art GCNs significantly. However, this study only focused on the
task of dynamic traffic prediction, such as driving speed, instead of the road network
itself. Similarly, Yu et al. [45] proposed a novel deep learning framework, spatiotemporal
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graph convolutional networks (STGCNs), to tackle the time-series prediction problem
in the traffic domain. In this study, we focused on the most original but insignificant
information on roads, such as their types, grades, coordinates, and topological features.
Notably, convolution in GCNs has two important characteristics: high computational
efficiency and spatial locality. High computational efficiency ensures the feasibility of
GCNs in road network selection, and spatial locality ensures that GCNs can make full
use of the spatial information of road networks to improve the accuracy of selection and
maintain the characteristics of road distribution.

In conclusion, the task of selecting a road network using GCN is feasible, and previ-
ous results are promising. We used three different graph-convolution models, including
GraphSAGE, GAT, and standard GCN, and connected deep layers in different ways to
objectively compare the ability of various GCN models to extract road networks.

3. Materials and Methods
3.1. Graph Convolutional Network (GCN) Models and Their Deep Architectures
3.1.1. Graph Convolutional Network (GCN)

In 2017, Kipf and Welling [21] proposed a classical GCN model. For a specific node
v ∈ V, the output feature at layer l, hl

v was calculated using Equation (1).

hl
v= σ

Wl ∑
u∈Ñ(v)

(
d̃eg(v)d̃eg(u)

)−1/2
hl−1

u

 (1)

where σ is a nonlinear activation function; Wl is a learnable weight matrix, which is used to
improve the fitting ability of the network; d̃eg(v) denotes the degree of node v in graph G̃;
d̃eg(u) denotes the degree of node u (u is adjacent to v); Ñ(v) represents the set of adjacent
nodes of v; and hl−1

u represents the output feature of node u at upper layer l− 1. More
details can be seen in Kipf’s work [18].

The above equation indicates that the graph convolution of GCN is actually an aggre-
gation operation of the feature vectors of the first-order neighborhood nodes. We can realize
the aggregation of higher-order neighborhood information by superimposing multiple
graph-convolution layers.

3.1.2. GraphSAGE

The classical GCN aggregates the information of its neighboring nodes by weighted
average calculation, but this process involves some drawbacks. The weight calculation
of the neighboring node u on the node v depends on its degree, which means it depends
on the structure of the whole graph; therefore, the calculation results cannot be effectively
applied to other graphs.

For this reason, Hamilton et al. [26] proposed GraphSAGE and suggested three
methods—namely, SAGE-Mean, SAGE-LSTM, and SAGE-Max (Max-pooling)—to aggre-
gate the neighboring information. Among them, SAGE-Mean can be regarded as a special
case of traditional GCNs, which simply assumes that the weights of all neighbor nodes
are the same; notably, this method does not depend on the structure of the graph, but it
reduces the selection accuracy. SAGE-LSTM inputs features of neighboring nodes into an
LSTM RNN; the high complexity of LSTM causes overfitting and low efficiency.

SAGE-Max divides the neighborhood aggregation process into two steps: first, each
node ν (v ∈ V) aggregates the representations of the nodes in its immediate neighborhood
u (u ∈ N(v) into a single vector (hl

N(v)), as shown in Equation (2). Then, it is merged

with the output of the upper level as a feature representation hl
v of the current layer

(Equation (3)). More details can be found in [30].
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hl
N(v)= max

({
σ1

(
Wl

poolh
l−1
u +bl

)}
, u ∈ N(v)

)
(2)

hl
v= σ2

(
Wl
(

hl−1
v ||h

l
N(v)

))
(3)

where max denotes the element-wise max operator; σ1 and σ2 are nonlinear activation
functions; Wl

pool, Wl, and bl represent a set of weight matrices; hl−1
u represents the output

feature of node u at upper layer l− 1; and ‖ represents the merging operation.

3.1.3. Graph Attention Network (GAT)

GraphSAGE does not depend on the graph structure and simply assumes that all
nodes have the same influence weight, which results in the excessive aggregation of
information of neighboring nodes. Therefore, Veličković et al. [27] proposed a GAT. This
model was able to learn influence weights among nodes independently (similar to CNNs),
thus exhibiting a stronger generalization.

To transform the node features of the upper level to the input of the next level, the
GAT performed a linear transformation on all node features. The learnable parameter
matrix Wl ∈ Rfl−1×fl

(f0 = f) was shared on all nodes at layer l, and then the features of
node v were combined with those of its neighboring node u. Finally, a shared self-attention
mechanism was introduced, that is, the merged features were input into a single-layer
feedforward neural network (with trainable parameter al, which is shared on all nodes in
layer l). Finally, the LeakyReLU function was used, and the attention coefficient el

uv was
obtained. In layer l, the self-attention coefficient el

uv of a node pair (u, v) in graph G̃ was
calculated as follows; further details can be found in Veličković’s paper. [27]

el
uv= LeakyReLU

(
alT
(

Wlhl−1
v ||W

lhl−1
u

))
(4)

where ‖ represents the merging operation; alT represents the transform matrix of al; Wl is a
learnable weight; hl−1

u and hl−1
v represent the output feature at the upper layer; and u is

adjacent to v.
To extract information in different localities and wider ranges, it is often necessary to

overlay deeper layers. However, because of the problem of gradient vanishing, excessive
numbers of layers will lead to the over-smoothing of node information, eventually leading
to degradation in performance. Inspired by the jump connection in CNNs, Xu et al. [23]
developed a JK-Nets architecture and applied it to different graph-convolution models.
Because the output of the shallow layer was more inclined to represent the local information
of different neighborhoods, whereas the deep network was more inclined to represent
global information, it was more reasonable to aggregate local and global information
together for prediction. JK-Nets aggregate the output of different hidden layers as the
input of the final layer (prediction layer). There are three ways to aggregate the output
features h1

v, . . . , hk
v of k hidden layers of a node v in JK-Nets architectures, as given below.

• Concat: This method performs a simple merge operation on all output features of
hidden layers and obtains input of the prediction layer using a linear transformation.
This method is suitable for small graphs or graphs having regular structures and low
adaptability.

• Max-pooling: This method selects elements of the layer having the maximum in-
formation sequentially. Max-pooling is node-adaptive, and no additional learning
parameters are introduced.
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• LSTM-Attention: The key to LSTM-attention is the attention coefficient s(l)v . For the

first input h(1)
v , . . . , h(k)

v to a bidirectional LSTM, each layer l generates forward hidden
features f(l)v and backward hidden features b(l)

v . Next, these two features are merged to
attain an attention score aT using linear mapping, which will be input into the SoftMax
function and obtain the normalized attention coefficient s(l)v . x(final)

v is the weighted
average of the features of the hidden layers. The formula is as follows.

s(l)v = Softmax
(

aT ·
(

f(l)v ||b(l)
v

))
(5)

x(final)
v =

k

∑
l=1

s(l)v · h(l)
v (6)

Owing to the high complexity of the LSTM-attention method, the computation process
causes the overflow of graphics processing unit (GPU) memory when the model stacks
over nine layers; therefore, LSTM-attention was excluded in our study. As shown in
Figure 1, the model still maintains a high accuracy rate when the two aggregation methods
(Concat and Max-pooling) are superimposed with 15 layers, and the model performance
does not degrade significantly. In this study, Concat, with a slightly higher accuracy than
Max-pooling, was used to connect the layers.

Figure 1. Comparison of the JK-Net architecture of (a) Concat and (b) Max-pooling, representing the
accuracy of different layers.

In addition, Li [25] borrowed some concepts from CNNs—specifically, residual/dense
connections and dilated convolutions—and adapted them to the GCN. Extensive exper-
iments were conducted, and the results showed the positive effects of these deep GCN
frameworks. Figure 2 compares the three methods of JK-Net, ResNet, and DenseNet. The
difference between DenseNet and ResNet is in the methods used for aggregating feature
representations. ResNet simply adds all the feature representations, whereas DenseNet
conducts a concatenation operation to connect the feature representations, similar to Concat
in JK-Nets. In contrast, DenseNet connects and aggregates all hidden layers, but JK-Nets
only connects the last layer.
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Figure 2. Different ways to connect deep layers: (a) JK-Net, (b) ResNet, and (c) DenseNet.

3.2. Dual Graph of Road Network and Its Selection Feature

To apply GCNs for road network selection, we abstracted the road network into a
graph structure after processing abnormal roads. Currently, two existing methods have
been reported in the literature to abstract a road network into a graph.

1. Direct representation: Because the road network is naturally a graph structure, it can
directly take the road as the edge of the graph and the road intersection as the node.

2. Dual representation: The road is abstracted as the node, with the intersection regarded
as an edge [46].

In graph theory, nodes are often used to represent target objects, and edges represent
the relationships between the objects. The target object of road network selection is a
road; therefore, a dual representation that regards roads as nodes may be expected to
perform better. In addition, GCNs tend to aggregate the characteristics of nodes rather
than edges. In summary, in this study, the road network was abstracted as an undirected
unweighted dual graph, as shown in Figure 3, and the problem of road network selection
was transformed into a problem of node classification in the GCNs.

Figure 3. Road network (a) abstracted as an undirected unweighted dual graph (b).

The characteristics of roads are the key basis for road network selection, which can
quantitatively reflect the significance of roads and guide model training. Yuan et al. [47]
evaluated the importance of features through Gini impurity and found that the degree,
type, and length parameters of the roads had the greatest influence on the selection results.
Notably, Gini impurity refers to the probability of incorrectly classifying a randomly chosen
element in the dataset, the smaller the value of which, the better the classification effect
becomes. Because the dual graph of a road network can directly express the topological
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features of a road network, we ignored the degree of roads. Notably, length is an important
geometric feature of roads, while the type of road reflects their realistic function, which is
regarded as a semantic feature. In summary, we used the road type, length, and coordinates
as selection parameters as the node feature representation of the dual graph.

3.3. Design of the Selection Model Structure

The model was divided into three parts: a graph-convolution block, a fusion block,
and a prediction block, as shown in Figure 4. The graph-convolution block was used to
extract the local spatial features of the road network, the fusion block was used to fuse
global features and different local features, and the prediction block was used to predict
the selected results.

Figure 4. Components of our selection model.

Three different deep architectures, JK-Nets, ResNet, and DenseNet, were designed for
the graph-convolution block, as shown in Figure 2. These architectures aggregated all the
outputs of the graph-convolution layer and served as inputs to the next layer. Notably, the
graph-convolution layer extracted the features of the local information, and the deeper the
graph-convolution layer, the wider the range that was utilized. Therefore, the outputs of
the different graph-convolution layers represented the features of different ranges.

Because the fusion block was connected to the graph-convolution block, the input of
the fusion block was the output of the graph-convolution block. The output of the graph-
convolution block were the features of different neighborhoods aggregated (by Concat),
which were transformed into global features of the graph in the fusion block and then
aggregated as the input of the prediction block. Road network selection is a dichotomous
problem and, therefore, the output layer of the prediction block has only two neurons,
which represent the probability of selection and non-selection.

Because of the complexity of neural networks, implementing neural network models
from scratch is time-consuming and laborious. Fortunately, deep learning frameworks carry
out the modular encapsulation of various layers or blocks, and these encapsulation blocks
can be used to build models quickly and easily. PyTorch Geometric (PyG) is an extended
library developed by PyTorch for deep learning on graphs; it supports transferring data into
graphs and inputting them to models directly. Therefore, our experiment used PyG to build
the GCN models. The blocks mentioned in Figure 4 were programmed successively and
contained three types of connections between the layers (JK-Nets, ResNet, and DenseNet)
and the four types of neural network architectures (GCN, SAGE-Mean, SAGE-Max, and
GAT). The fusion block used a multilayer perceptron (MLP) of a single hidden layer to
combine global and local features. The prediction block used the full connection layer and
the SoftMax activation function to probabilize the prediction results.
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3.4. Accuracy Evaluation Indexes

To evaluate the quality of prediction results, we established two evaluation indices.
First, considering the imbalance of positive and negative samples, we adopted the area
under the ROC curve (AUC) [48] as the indicator to evaluate the generalization ability of
the selection models. Because it is not affected by the distribution of the sample, AUC
is a measure commonly used in sample imbalance problems. The value of AUC is the
probability that the predicted score of the positive sample is greater than that of the negative
sample when selecting a positive sample and a negative sample from the sample pairs.
If N samples are sorted from small to large according to the predicted score, the AUC is
calculated as follows.

AUC =
∑i∈D+ ranki +

m(m+1)
2

mn
. (7)

where ranki represents the ordinal number of sample i after sorting, with a minimum value
of 1 and a maximum value of N; D+ is the positive example set; and m and n represent the
number of positive and negative samples, respectively.

The second method evaluates the rationality of the selection results. Taking the
selection results of experts as the standard, we calculated the selection accuracy, line
density, prediction time, and other indicators for comparative analysis. The specific results
of the analysis are presented in Section 4.2. Notably, if the positive sample is the selected
road and the negative one is the unselected road, the results of model prediction and expert
selection can be integrated into four groups: correct selection (true positive, TP), wrong
selection (false positive, FP), correct deletion (true negative, TN), and wrong deletion (false
negative, FN). A confusion matrix representation is presented in Table 1.

Table 1. Confusion matrix representation of the classification model.

Expert

Model
Unselect (0) Select (1)

Unselect (0) Correct deletion (TN) Wrong selection (FP)
Select (1) Wrong deletion (FN) Correct selection (TP)

The accuracy of the model refers to the ratio of the number correctly predicted by the
selected model to the total number and can be represented as follows.

Acc =
TP + TN

TP + FP + TN + FN
. (8)

3.5. Implementation Process
3.5.1. Study Area

We selected the northeastern region of the United States of America as our study
area because the distribution of the road network is comparatively more complex, with
different densities and various road structures, while road networks in other regions are
too dense and mostly grid structure. Therefore, the road network in the Northeast is more
representative, which can show the compatibility of our model. Notably, in this study,
we adopted a small-scale road network with less semantic information and more spatial
information because our main research purpose was to explore the ability of GCNs to learn
the spatial characteristics of road networks. In summary, we downloaded small-scale maps
(1:1,000,000 and 1:2,000,000) of a road network in the northeast of the USA, with a total
of 5172 roads, including 11 states. The 11 states were (from north to south) Maine, New
Hampshire, Vermont, New York, Massachusetts, Rhode Island, Connecticut, Pennsylvania,
New Jersey, Delaware, and Maryland (Figure 5).
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Figure 5. Map of the 11 states in the United States of America considered in our study.

3.5.2. Data Processing

First, we downloaded the small-scale maps at scales of 1:1,000,000 and 1:2,000,000
from the United States Geological Survey (USGS) official website and then used ArcGIS to
split the road network in the experimental area, as shown in Figure 6. Figure 6a represents
the road network at a scale of 1:1,000,000, and Figure 6b shows a scale of 1:2,000,000.

Figure 6. Cont.
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Figure 6. Small-scale map for northeastern United States of America road network: (a) 1:1,000,000
and (b) 1:2,000,000.

Notably, the datasets downloaded from the USGS were preprocessed before being
input into the model. This procedure mainly included processing abnormal roads, labeling
roads, and constructing road features and a dual graph. Specifically, we removed isolated
roads by topology inspection and manually labeled all of the roads on the basis of a
standard road network. The detailed label work is as follows. A “selection” field of integral
type was added to the attribute sheet of 1:100,000 map as the label field, and the value of
the “selection” field was assigned as follows. If the path overlapped in the two layers, it
was valued as 1; otherwise, it had a value of 0. Finally, a Python program was written to
automatically build a bipartite graph. The main tasks of this program were to consider
the spatial coordinates, road type, and road length of the road as the selection basis,
measure the characteristics of the road, numeralize and normalize the features, generate
the edge index by judging the intersection, and generate a bipartite graph based on the
node characteristics and edge index.

3.5.3. Model Construction and Training

The graph-convolution blocks were combined into 12 groups on the basis of three
deep architectures and four models, and some hyperparameters were used to train these
groups for a fair comparison. Hyperparameters refer to the parameters in models that
cannot be learned; these parameters can determine the optimal parameters that the model
finally learns. They mainly include the activation function, number of hidden layers,
number of neurons in hidden layers, and dropout rate. In our study, to reduce the time
spent searching, only the hyperparameters of the selection model, other than the activation
function, were searched. We adopted the rectified linear unit (ReLU) function in the hidden
layer, which is the most commonly used activation function in deep learning models. Using
random search for the model parameters, we set 14 layers for the graph-convolution block,
a total of 256 neurons in all the hidden layers, and a dropout rate of 0.1. In particular, the
number of attention heads was set to four in the GAT architecture.

The purpose of model training is to find the optimal parameters for the selection model,
and the backpropagation (BP) algorithm is the main algorithm for training neural network
models in deep learning. It quickly calculates the gradient of parameters through the
chain rule of derivatives and uses the gradient descent algorithm to update the parameters.
Therefore, the BP algorithm was used to train the selection model in this study, and the
training process was divided into three steps: forward propagation, back propagation, and
parameter update.
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4. Results and Discussions
4.1. Predicted Results of Models

Table 2 displays the optimal AUC scores of the 12 models with respect to the validation
data. GraphSAGE had the lowest score and the worst performance. The scores of GCN and
GAT were as high as 90%, with the GAT model’s scores being slightly higher. Otherwise,
the scores of the three deep architectures showed little difference. DenseNet achieved a
higher score than the others, among which GAT had the highest score, reaching 91.99%.

Table 2. Optimal area under the ROC curve (AUC) scores of the 12 models.

Connection
Convolution

GCN SAGE-Mean SAGE-Max GAT

JK 88.38 87.76 87.04 91.68
Res 89.41 88.89 86.67 91.25

Dense 89.70 89.49 84.92 91.99

The findings of the above analysis revealed that the GAT model has the best perfor-
mance; therefore, we used the trained GAT model to predict road network selection in
Maine. We also used MLP and compared its selection effects with four other types of GCN
models to prove the effectiveness of deepening GCNs; the results are shown in Figure 7.

Figure 7. Maps with road network obtained using different models: (a) multilayer perceptron MLP;
(b) JK-GAT; (c) Res-GAT; and (d) Dense-GAT.

In order to intuitively analyze the selection results, we compared the road network
selected by our models with a road network map with a scale of 1:2,000,000 selected by
experts (as shown in Figure 8) and thereby obtained Figure 9.
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Figure 8. Standard road network map at 1:2,000,000 scale in the Maine area.

Figure 9. Combinations of the road network obtained using different models and the road network
selected by experts: (a) expert and multilayer perceptron (EXP-MLP); (b) expert and JK-GAT (EXP-JK);
(c) expert and Res-GAT (EXP-Res); and (d) expert and Dense-GAT (EXP-Dense). Co-Dele represents
correctly deleted roads, Wr-Dele represents incorrectly deleted roads, Wr-Sele represents incorrectly
selected roads, and Co-Sele represents correctly selected roads.

The gray lines in the figure represent the correctly predicted road network; the light
gray lines represent the unselected network, and the dark gray lines represent the selected
network. The colored lines represent the inaccurately predicted roads; the orange lines
represent the inaccurately selected roads, and the blue lines represent the incorrectly
deleted roads.
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4.2. Analysis and Discussion

To further analyze the quality of the selected results, we used the measures of accuracy
rate, line density, and prediction time. Each index was calculated using a Python program
(see Table 3).

Table 3. Accuracy rate, line density, and prediction time of different models calculated using the
Python programming language.

Incorrect
Deletion

Incorrect
Selection

Accuracy
Rate (%)

Density
(km/km2)

Prediction
Time (s)

Expert - - - 0.0431 -
MLP 109 71 85.83 0.0405 0.125

JK-GAT 82 69 88.12 0.0453 3.59
Res-GAT 65 89 87.88 0.0471 2.57

Dense-GAT 40 120 87.41 0.0509 5.84

MLP is a classical neural network model, which includes three parts: an input layer,
a hidden layer, and an output layer, like GCNs. The difference between the two models
is that MLP cannot directly extract the topological features of road networks, such as
degree centrality and closeness centrality. However, end-to-end learning for graph data
structure is an advantage of the GCN model, which can directly take the dual graph of the
road network as input data and use a graph-convolution operation to extract topological
features. As a result, GCNs are less computationally intensive than MLP in the process of
data processing.

As for the selection results, the MLP model obtained the lowest accuracy rate (with
a rate of 85.83%) and the smallest line density, with incorrect deletion occurring more
than incorrect selection. However, in terms of prediction time, MLP was much less time-
consuming than GCN. This is because the MLP model structure is relatively simple. The
input layer is responsible for processing input data. The hidden layer is usually comprised
of multiple layers and is responsible for extracting abstract features from data. The output
layer is responsible for calculating the feature representation of the hidden layer and
outputting the prediction results. The GCN model is divided into a graph-convolution
module, a fusion module, and a prediction module. The graph-convolution module extracts
neighbor information and uses different connection strategies to aggregate information in
deeper ranger. Therefore, the computational complexity is increased, resulting in a longer
prediction time, but the results can also be more accurate.

Among three types of GCN models, it may be observed that the road connectivity of
JK-GAT (the combination of JK-Nets and GAT) and Res-GAT (the combination of ResNet
and GAT) indicated good results, with relatively balanced rates of selection and deletion.
Figure 10 shows a distribution histogram of the predicted results of the GCN models. The
predicted results of the first two models were roughly the same, and the distributions
of correct selections and wrong selections were relatively uniform, which can maintain
the distribution and density of the road network. However, there was a large difference
between the numbers of incorrectly selected and deleted roads in Dense-GAT, which
may destroy the distribution characteristics of the road network and greatly reduce the
selection performance.
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Figure 10. Distribution histogram of the predicted results of the GCN models.

Notably, JK-GAT obtained the best performance in terms of accuracy rate (with a rate
of 88.12%), whose line density was closest to the results selected by the experts. Moreover,
as for the prediction time, Res-GAT obtained the lowest time (2.7 s), while the prediction
time of Dense-GAT was as high as 5.84 s because of the complexity of its structure. As
mentioned above, every hidden layer is linked to the others in the DenseNet architecture
(as shown in Figure 2), while JK-Nets only connects them to the last layer and ResNet
simply adds them without Concat, so DenseNet took the longest time.

Through the above analysis, we can draw a conclusion that our models have excellent
performance according to the high accuracy rate. Furthermore, the linear density and result
figure (Figure 7), which are statistically and visually similar to the results of the experts’
selections, demonstrate that our selection model can extract spatial features. However,
more details can still be discussed—for example, whether the selection models we proposed
are able to consider geometrical and semantic information.

The Figure 11 below shows the distribution of road types in our experimental area. It
may be clearly observed that the more important the road type, the higher the probability
of selection. Almost all interstate roads and US Routes were selected, and most of the
unselected roads were State Routes.

Because the length of road is relatively complex, we divided the entire length into four
categories through Natural Breaks, with a distribution diagram shown below (Figure 12).
Then, we calculated the rates of selected roads in each group (the selection rate is calculated
as Equation (9)). Finally, the selection results of each model are compared with those of
the experts. The comparative results are shown below in Table 4 and Figure 13. As may
be noted from the figure, the selection results of the four models were very similar to
those of experts, without much difference. However, when the road length was considered
separately, MLP was closer to expert selection. This also indirectly indicates that topological
information had little influence on MLP. In other words, topological information was not a
significant feature for deep learning in the MLP model, and our models are more suitable
to exploit the topological feature.

SR (Selection Rate) = selected roads/roads in each length group (9)
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Figure 11. Distribution of road types in Maine.

Figure 12. Distribution of road length in Maine.

Table 4. Selection rate of each length group for different models.

SR Very Short Short Medium Long

Expert 54.85% 46.31% 40.96% 70%
MLP 53.16% 40.46% 37.77% 75%

JK-GAT 50.85% 45.55% 47.87% 77.5%
Res-GAT 54.08% 48.6% 54.79% 75%

Dense-GAT 57.32% 55.22% 54.79% 77.45%
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Figure 13. Histogram of selection rate of each length group for different models.

5. Conclusions and Future Work

This study adopted GCN as a novel deep learning method for automatic road network
selection. Road network selection can be regarded as a supervised classification task in
intelligent methods, which can be divided into traditional machine learning and deep
learning. Traditional machine learning models for classification mainly include SVM,
decision tree, and random forest. Deep learning models, mainly including MLP, CNNs,
and GCNs, are superior to traditional machine learning models because they reduce the
process of manual feature construction (mainly the geometrical and semantic information,
except for topological information). Traditional machine learning methods rely heavily
on feature engineering. Those features are the basis of model training, and bad feature
engineering results in considerable subjectivity of the entire training process. Furthermore,
GCNs differ from other deep learning models in that they are able to automatically extract
spatial features (especially topological features) through a graph-convolution operation.
Other neural network models still have the limitations of traditional machine learning
because they transform the graph structure of road networks into a tabular structure by
calculating road centrality, density, and other topological indicators and then input them
into the model for prediction. We adopted GCNs to select roads because they can directly
take the original road data as input and use a graph-convolution operation to construct the
spatial features of the road network.

In addition to the theoretical discussion, we have also conducted empirical research.
The northeastern region of the United States of America was our experimental area, and
1:100,000- and 1:200,000-scale road networks from the USGS were used as the experimental
data to predict and evaluate the proposed deep GCN models. The results showed that the
selection accuracy of deep GCN models was as high as 88%, with the connectivity between
roads maintained effectively. The density of the road network selected by our models was
not much different from that selected by experts, which indicates that our models maintain
the distribution characteristics of the road network. In addition, deep architectures such as
JK-Nets, ResNet, and DenseNet broke through the three-layer limitation of deep learning
models, reaching 14 layers in our experiment. All of the above results indicate that GCNs
have the ability to extract the spatial characteristics of road networks, and the deepening
methods can effectively solve the problem of gradient vanishing.

However, this study still involves some limitations. First of all, maps with different
scales should be explored. We only used a small-scale map, and the selection effect of GCN
models in medium and large-scale maps needs to be further explored. Different scales mean
different selection and the importance of road features. For example, in small-scale maps,
information on shops and traffic flow along the street is not considered. Moreover, the
topological characteristics are more complex in large-scale maps. In the future, comparative
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experiments on different scales should be conducted to explore the applicability of deep
GCN models.

Secondly, the use of other deep strategies to connect layers should be investigated.
Although the deep strategies discussed in the present work can make GCNs overlay at a
deeper level, the improvement of selection accuracy is not obvious. Different methods can
be explored in the future, such as a combination with dilated convolutions.

Next, the extensibility of our method has not been discussed. A comparative study on
road networks in different regions can be conducted to verify whether GCNs have different
performance in different regions or road networks with different characteristics—and, if so,
what influences these variances?

Finally, more types of GCN models can be used. In this paper, only four models based
on graph convolution were used for comparative experiments. Although GAT achieved
the best performance, it requires considerable memory and time, and the selection result is
still far from practical application. There are many variations of graph convolution, and
further study is required to determine which model is most suitable for road network
selection. Indeed, specialized graph-convolution models may be developed for road
network selection in future research.
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