
 International Journal of

Geo-Information

Article

A Hierarchical Spatial Network Index for Arbitrarily
Distributed Spatial Objects

Xiangqiang Min 1,2,3, Dieter Pfoser 2, Andreas Züfle 2 and Yehua Sheng 1,3,*

����������
�������

Citation: Min, X.; Pfoser, D.; Züfle,

A.; Sheng, Y. A Hierarchical Spatial

Network Index for Arbitrarily

Distributed Spatial Objects. ISPRS Int.

J. Geo-Inf. 2021, 10, 814. https://

doi.org/10.3390/ijgi10120814

Academic Editor: Wolfgang Kainz

Received: 4 October 2021

Accepted: 28 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of the Virtual Geographic Environment, Ministry of Education of PRC, Nanjing Normal
University, Nanjing 210023, China; 171301027@njnu.edu.cn

2 Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA 22030, USA;
dpfoser@gmu.edu (D.P.); azufle@gmu.edu (A.Z.)

3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing Normal University, Nanjing 210023, China

* Correspondence: 09165@njnu.edu.cn

Abstract: The range query is one of the most important query types in spatial data processing.
Geographic information systems use it to find spatial objects within a user-specified range, and it
supports data mining tasks, such as density-based clustering. In many applications, ranges are not
computed in unrestricted Euclidean space, but on a network. While the majority of access methods
cannot trivially be extended to network space, existing network index structures partition the network
space without considering the data distribution. This potentially results in inefficiency due to a very
skewed node distribution. To improve range query processing on networks, this paper proposes
a balanced Hierarchical Network index (HN-tree) to query spatial objects on networks. The main
idea is to recursively partition the data on the network such that each partition has a similar number
of spatial objects. Leveraging the HN-tree, we present an efficient range query algorithm, which is
empirically evaluated using three different road networks and several baselines and state-of-the-art
network indices. The experimental evaluation shows that the HN-tree substantially outperforms
existing methods.

Keywords: range query; hierarchical network partitioning; road network; access method;
spatial database

1. Introduction

Spatial databases have grown dramatically in size due to newly emerging data sources
attributed to the low-cost sensor and smartphone applications [1,2] and respective crowd-
sourcing efforts [3,4]. Spatial data also play a significant role in improving our understand-
ing of complex urban systems [5]. Efficiently managing such structured big geospatial data
requires equally efficient access methods in support of query processing, data analytics,
and emerging location-based service applications. Scientists and users are interested in
aspects of the data, for example, bike sharing services may need to analyze the number of
bikes available within 3 km of a subway station or a detective may analyze user trajectories
to identify potential witnesses within a 100 m range of a crime scene. For this purpose,
the range query is a canonical spatial query type since it answers the questions as to which
Spatial Objects (SO) lie within a certain distance from a query point. The range query is
also used by data mining applications such as density-based clustering [6]. We note that,
in our work, we assume that spatial objects are points, such as the locations of points of
interests or individual observed locations of users. We do not consider the case where
spatial objects are lines or polylines the represent entire trajectories.

Since Guttman proposed the R-tree [7] in 1984, a plethora of indexing methods have
been proposed in support of range queries as they are also related to different fields and
disciplines [8,9] including for example spatiotemporal data [10]. However, the underlying

ISPRS Int. J. Geo-Inf. 2021, 10, 814. https://doi.org/10.3390/ijgi10120814 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi10120814
https://doi.org/10.3390/ijgi10120814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10120814
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10120814?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2021, 10, 814 2 of 20

assumption for most indices is that space is unconstrained and the distance between two
objects can be calculated as the Euclidean distance [11–14]. In many applications, space
is constrained and SOs are not uniformly distributed. This scenario makes traditional
indexing methods inefficient and provides room for improvement since (i) bounding
box approximations may arbitrarily partition networks and the metric space they create;
(ii) bounding boxes may also index mostly empty space when it comes to networks;
and (iii) the Euclidean distance may differ greatly from network distance, e.g., two objects
separated by a river.

Considering the network nature of the data—indexing and query processing can lead
to improved data management solutions [15–22]. These methods decompose the road
network into a series of sub-networks based on the specific heuristic, and then index the
spatial objects on each sub-network with the specific index. With the exception of [16], one
of the main shortcomings of these methods is the way the network space is partitioned,
they do not consider the data distribution and just involve network topology, which may
lead to inefficient query processing. The approach of [16] is tailored to a specific type of
path query and it is not trivial to generalize these solutions to other queries. Therefore,
in this paper, we focus on a range query on the road network, the main challenges are
twofold: (1) how to partition the road network considering both network topology and
the data distribution without data loss; and (2) how to construct the index based on the
hierarchical partitioning results to efficiently support range queries.

To this end, this paper proposes a novel spatial index for SOs on road networks called
the Hierarchical Network tree (HN-tree). This index employs a hierarchical partitioning
of the road network based on both network topology and the data distribution. Using
the HN-tree, we devise algorithms to support range queries on networks. Note that our
work focuses only on efficiency, as we require to return exact (correct) range query answers
(without any approximation). Since state-of-the-art methods, as well as ours, return the
correct results (not approximation), there is no notion of effectiveness in our paper. We
conduct experiments using three different datasets to verify the efficiency and performance
compared to other indices and range query algorithms. More specifically, our contributions
can be summarized as follows:

• We propose a hierarchical graph partitioning algorithm that preserves the edges
between partitions. The main idea of this algorithm is to (1) transform the network into
a line graph (switching nodes and edges); (2) utilize a traditional graph partitioning
algorithm on the line graph; and (3) map the resulting partitions back to their spatial
network representation.

• Leveraging this graph partitioning, we propose a novel hierarchical network index,
the HN-tree, which recursively partitions the network based on the distribution of SOs.

• We devise a range query processing algorithm using our proposed HN-tree.
• Experimental results for three different datasets show that this HN-tree based method

greatly outperforms state-of-the-art range query and indexing methods in terms
of efficiency.

The rest of the paper is organized as follows. Section 2 summarizes the related work.
Section 3 presents the network model and network partitioning algorithm. The HN-tree
structure is described in Sections 4 and 5 presents the query processing algorithm. Section 6
details experimental results and discusses performance. Finally, Section 7 concludes and
provides directions for future work.

2. Related Work

According to [23], SOs can be divided into three categories based on their distribution
in two-dimensional space: distributed freely (e.g., birds in the sky), distributed in con-
strained regions (e.g., tigers in mountainous areas), and distributed on a spatial network,
such as a transportation networks (e.g., bikes on road networks). While unconstrained and
constrained SOs largely rely on the same type of query processing and utilize the same
access methods, movement on networks differs significantly. A plethora of exiting works

ISPRS Int. J. Geo-Inf. 2021, 10, 814 3 of 20

have addressed these issues and what follows is a discussion of representative methods in
relation to these challenges.

A category of existing work is based on free space using traditional spatial access meth-
ods such as the R-tree [7] and the k-d tree [24]. The R-tree [7], which arguably is the most
prominent spatial access method, and its variants, e.g., the R*-tree [25] and others [26,27]
performance best for range queries in free space. However, when indexing objects on net-
works, the resulting dead space of their minimum-bounding rectangle (MBR) degrades the
performance of such clustering-based methods [18]. Here, Incremental Euclidean Restric-
tion (IER) [18] uses an R-tree to process objects on networks and the experimental results
demonstrate that the performance is worse than incremental network expansion (INE) [18]
and Voronoi-based range search algorithm (VRS) [17] . To address the dead space problem,
a number of works address spatial queries on road networks, i.e., range queries [18,28], con-
tinuous range queries [29], k-nearest neighbor [19,28], continuous k-nearest neighbor [30],
and shortest path queries [31,32]. These works improve the performance for specific
queries, but these methods do not consider the data distribution. Specifically, works such
as [29,30] view each edge as a unit, and a road network is partitioned into an equal number
of edges. An example here is the G-tree [19] and G*-tree [28], which is a hierarchical tree
structure. Our HN-tree shares similarities when it comes to index construction, but differs
with respect partitioning (relying on data distribution and network topology) and its range
query algorithm. The HN-tree utilizes a line graph, a transformation of the original spatial
graph that represents edges as nodes and vice versa, to partition the network. The G-tree
and G*-tree use the road network directly. The resulting HN-tree partitions are overlapping
and some nodes are shared between partitions. This guarantees that all edges belong to
one partition, which is not the case for the G-tree. Figure 1 presents an example detailing
partitioning and HN-tree constructions. Given that our dataset consists of spatial objects
on network links, this distinction is important. As such, the query processing algorithms
of one method cannot directly be applied to the other as the G-tree focuses on kNN and
shortest path distances rather than on range queries.

In [18], the incremental euclidean restriction (IER) and the incremental network expan-
sion (INE) take advantage of location and connectivity to prune the search space. Utilizing
the R-tree, the IER initially performs a range query and returns the subset within the
diameter range r, which serves as the upper bound of the search area. In the refinement
step, the actual objects are retrieved based on the shortest path distance. The INE algorithm
first computes the set of qualifying network segments (using paths branching out from the
query location) and then retrieves the data points falling on these segments. Although more
efficient than the Euclidean range search, compared to our method, they produce a high
number of false positives and are susceptible to skewed spatial object distributions. To
address this limitation, the authors of [17] proposed the Voronoi-based range search algo-
rithm (VRS), which partitions road networks based on Voronoi tessellations. In the process
of indexing construction, the adjacent components and bridge points of each partition need
to be defined. To process a query, it first uses the R-tree to locate the query point and then
recursively expands the current search partition until no further partitions are found in
the expected search range. The partitioning of the road network is based on the network
itself and not data, i.e., spatial objects. With skewed data distributions, the performance of
this method can degrade. Wang et al. [33] propose C-MNDR, a method to process network
range queries using a cell-based network expansion approach. It combines the R*-tree and
a grid to construct an index. This method is not suitable for big datasets since it stores road
network data and spatial objects separately.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 4 of 20

Figure 1. The main process of graph partition.

ROAD [20,34] extends the Dijkstra shortest path algorithm to a hierarchical road
network. ROAD recursively partitions a road network into a series of sub-networks
considering network connectivity and the distance weight of each edge. Moreover, ROAD
maintains two core components, namely, the Route Overlay and Association Directory to
search the road network for spatial objects. ROAD has better performance when objects
are densely distributed in several sub-regions, but requires to explore large parts of the
network (akin to Dijkstra) should many partitions contain objects.

The existing methods do not fully consider the characteristics of the road network
connectivity in combination with the distribution of the data. Both aspects are important to
index construction when considering query performance. The analogy here is that spatial
access methods group objects (e.g., R-tree) or decompose space based on the data (e.g.,
Quad-tree) rather than using regular subdivisions of space. An example of the latter case
could be a static grid or geohash. As such this work is a consequent application of spatial
indexing principles to spatial networks.

3. Hierarchical Graph Partitioning

This section provides a formal definition of a road network and the corresponding
line graph and shows how these concepts can be leveraged to propose a novel hierarchical
road network partitioning approach.

3.1. Road Networks

We employ a spatial network model, which represents a road network as a directed
graph [16,35].

Definition 1 (Road Network). A road network is a graph G = 〈V, E〉, where V = {v1, v2, . . . , v|V|}
is a set of nodes and E = {e1, e2, . . . , en} ⊆ V×V is a set of directed road network links.

Each network node v ∈ V has a (two-dimensional) spatial location Sv.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 5 of 20

We further define spatial objects (SO), such as vehicles, people, or points-of-interests
that are located on links of a spatial network.

Definition 2 (Spatial Object (SO)). Let G = 〈V, E〉 be a road network. A spatial object so =<
id, e, α > is a triple where id is a unique identifier, e ∈ E is the link identifier the object is located
on, and α is the SO’s relative location on link e = (vi, vj). The (absolute) spatial location of Sso can
be obtained as follows:

Sso = Svi + α · (Svj − Svi), α ∈ [0, 1].

Figure 2a depicts an example of a road network having SOs located on its links,
and the blue solid squares represent SOs.

Definition 3 (Spatial Network Range Query). Let G = 〈V, E〉 be a road network and let SO be
a set of spatial objects. Given a location q on the network and a distance range dr, a spatial network
range query returns all spatial objects having a network distance not greater than dr to q, formally:

RQ(q, dr) = {so ∈ SO|dist(q, so) ≤ dr}

Naively, we can answer a spatial network range query by simply computing the
network distance between q and each spatial objects. Less naively, we can initiate a breadth
first search from q, for example using Dijkstra’s algorithm [36], to explore all vertices
with range of q and their adjacent edges. However, such an approach may require to
explore thousands of network nodes and thus, incur substantial run-time. To avoid such
computational overhead, spatial index methods allow to prune regions of the network that
are guaranteed to be outside the query range, and also identify regions that are guaranteed
to be within the query range to avoid network exploration in these regions. The goal of
this work is to provide such an index structure, the HN-tree, to support spatial network
range queries efficiently.

Hierarchical graph partitioning is essential to the construction of our index. Numerous
graph partitioning algorithms, such as METIS [37], FaDSPa [38], TEAGS [39], and Soul-
Mate [40] exist. Those algorithms partition vertices of the graph, thus loosing (“cutting”)
edges connecting vertices in different partitions. To achieve lossless graph partitioning,
we leverage the concept of a line graph [29], which represents edges of the original graph
as vertices that are connected by edges if they (the edges in the original graph) share a
common vertex. In the line graph, we can then use traditional graph partitioning algo-
rithms [37,38] for lossless partitioning. In addition to the road network (c.f. Definition 1),
which captures the geometric view, the line graph captures its topological view.

Definition 4 (Line Graph). Given a road network G = 〈V, E〉, the corresponding line graph
G = 〈V, E〉 is constructed by defining each link vi ∈ V as a graph vertex vi ∈ V, and defining an
undirected edge e = (vi, vj) ∈ E between any pair of vertexes vi and vj whose corresponding edges
ei and ej in G are connected, i.e., share a common vertex. Thus, edges in G capture the adjacency
relations among links in G. Each vertex vi has a weight wi that corresponds to the number of SOs
on the corresponding link ei on the road network. Notice that in the network model, the roads
are bi-directional.

We note that transforming the network into a line graph is a lossless transformation
and thus, does not involve any data loss. The line graph is quite the opposite of a lossy
transformation, it is a redundant representation of the graph, which multi-represents each
vertex once for each adjacent edge. This redundancy is what allows us to perform a
traditional graph partitioning without “cutting” any edges.

Figure 2b shows the corresponding line graph of the road network in Figure 2a,
the number in square brackets represents the wights that are equal to the number of SOs on
corresponding network links (it has the same meaning in Figures 1 and 3). The next section

ISPRS Int. J. Geo-Inf. 2021, 10, 814 6 of 20

proposes a road network partitioning approach that utilizes a line graph as the basis for
the proposed hierarchical index structure.

(a) (b)

Figure 2. Example of the two representations of a network. (a) geometric representation; (b) line graph.

3.2. Graph Partitioning

To hierarchically index spatial objects, we need to partition a given road network into a
series of disjoint partitions that preserve the interrelated topological relationship. The parti-
tions should preserve intra-partition object proximity and inter-partition heterogeneity [38].
Therefore, the partitioning of the network should be based on the object distribution and
the network topology. Moreover, the partitioning of the line graph will consider the the
structure and vertex attributes of the graph [41]. The network is partitioned into a series of
sub-network regions that are balanced with respect to the number of SOs in each region
(cf. [16]). Intuitively, network portions with fewer SOs (e.g., widely scattered areas) are
captured by larger partitions. We define a graph partition as follows.

Definition 5 (Graph Partition). Let G = 〈V, E〉 be the line graph of a road network G = 〈V, E〉.
A partitioning P(G) is a set of subgraphs Gi = 〈Vi, Ei〉, 1 ≤ i ≤ N, such that:

• Vi ⊆ V and Ei ⊆ E;
•

⋃
1≤i≤N VN = V;

• ∀i ≤ j : Vi ∩V j = ∅.

We note that our definition of graph partitioning requires each vertex of V to appear
in exactly one partition, whereas edges may be “cut” be the partitioning process. Figure 1
gives a graph partitioning example, which shows the original network (top left) and the
corresponding line graph (top right). The dashed line (bottom right) represents the dividing
line in G and dashed lines of different colors in G (bottom-left) represent different partitions.
While each vertex of the line graph appears in exactly one partition, the corresponding
network nodes of the original network may appear in multiple partitions. For example,
nodes v1 and v5 in Figure 1 appear in both partitions. We call such nodes bridge points.
Figure 4 provides an additional example of a geometric representation that is split into
two partitions. In this example, v2 and v9 are bridge points, i.e., connections between the
network partitions.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 7 of 20

(a) (b)

(c) (d)

Figure 3. Example of the four phases of hierarchical graph partitioning. (a) The first level of graph partitioning; (b) the
second level of graph partitioning; (c) the third level of graph partitioning; (d) the fourth level of graph partitioning.

Figure 4. The example of road network partition.

3.3. Hierarchical Graph Partitioning

Using the graph partitioning of Section 3.2, we can obtain a hierarchical graph parti-
tioning that balances the number of SOs in each partition.

METIS [37] is a multilevel k-way algorithm that has been applied to a great number
of problems in different disciplines and our hierarchical graph partitioning algorithm is
based on METIS.

The partitioning is similar to the kd-tree construction process [24]. Hierarchical METIS
splits a line graph into a series of subgraphs with equal weight. Each partition will be
decomposed recursively until it contains no more than a given number of SOs.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 8 of 20

Figure 3 illustrates the main process of hierarchical graph partitioning using a binary
partitioning approach. The termination criterion is that the partition has no more than ten
objects. The dashed lines of different colors in each figure represent different partitions.

The details of this recursive partitioning approach are as follows. Given a network
G, a set of SOs, and an integer β as a termination criterion, we construct the line graph
G based on G and SOs. G is decomposed into several subgraphs with equal weight and
each subgraph is added to a list HP (hierarchical partitioning results set). This process
is applied recursively to all subgraphs in HP that contain more than β objects. Figure 5
shows a hierarchical partitioning example of the road network of Oldenburg, Germany.
Figure 5a shows the entire road network. Figure 5b shows the first level partitions with
eight regions and Figure 5c shows the 64 s level partitions. Different partitions are shown
in different colors.

(a) (b) (c)

Figure 5. Hierarchical graph partition results. (a) level 0; (b) level 1; (c) level 2.

4. HN-Tree

This section primarily introduces the HN-tree, an index structure in support of range
queries on road networks. The HN-tree construction process is shown in Figure 6. The idea
of the HN-tree is to leverage density-based spatial access methods for network space, thus
creating tree nodes based on object density and road network topology, i.e., using data-
based partitioning of the underlying network space. Density-based spatial access methods
such as the R-tree are height-balanced index structures that efficiently support spatial query
processing in Euclidean space. Readily applying them to SOs that exist in network space
makes them inefficient. Existing approaches rely solely on the network structure and do
not take the distribution of the SOs to be queried into account. The HN-tree considers the
data distribution and network structure when constructing its hierarchical density-based
index structure. The network is partitioned into a set of sub-regions based on a trade-off
between the number of SOs in each and its connectivity.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 9 of 20

Figure 6. HN-tree construction and query processing flowchart.

4.1. HN-Tree Index Definition

A key part of building the HN-tree is hierarchically partitioning the road network as
described in Section 3. To support range queries, the HN-tree uses pre-computed distance
matrices that are computed once the entire tree of partitions has been constructed.

Definition 6 (Distance matrix). Each leaf node maintains a distance matrix D that records the
shortest path distance between bridge points and its network nodes. The distance matrix records
the shortest path distances between all bridge points of its child nodes (union bridge points) in each
non-leaf node. The distance matrices can be stored in the main memory or disk depending on the
size of the network.

Note that unless otherwise stated in the paper, the distance is the network shortest
path distance (SPDis) [19].

The HN-tree is a balanced index tree that has the following properties:

(1) Each tree node captures a sub-network partition, the root node corresponds to the
entire road network. The sub-network of the parent node is a super-network of its
child nodes.

(2) Each non-leaf node has at least m(≥2) and at most M child nodes.
(3) Each leaf node contains at most β SOs. All leaf nodes appear at the same level.
(4) Each tree node maintains bridge points and a distance matrix.

Figure 7 shows the HN-tree structure. Different types of tree nodes exist and respective
information is captured for each. All non-leaf nodes including the root node can be de-
scribed as < B, U, D, child-pointer >, where B is the set of its bridge points, U is the union
set of all bridge points in child nodes, child-pointer is a pointer to its child nodes, and D rep-
resents its distance matrix. The leaf node can be represented as < B, D, tuple-identi f ier >,
the tuple-identifier is the set of SOs that a leaf node maintains, B is the set of corresponding
bridge points, and D indicates its distance matrix. The HN-tree is a balanced indexing tree
as all leaf nodes are on the same level.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 10 of 20

Figure 7. HN-tree structure.

4.2. Index Construction

Based on the results of the hierarchical graph partitioning, the HN-tree with a root
node, non-leaf nodes, and leaf nodes can be constructed. Initially, the root that is corre-
sponding to a whole network G is a single leaf node. It does not contain any other tree
nodes initially. Then, the sub-networks of G become the root’s child nodes. The root
becomes a non-leaf node. Moreover, each subgraph corresponds to an HN-tree node and
the relationships between tree nodes are equal to that of the sub-network. A sub-network
without sub-networks is a leaf node. For each sub-network, bridge points are identified
and added to the corresponding tree node. Moreover, the distance matrices should be
computed, which is from leaf nodes to the root. The computing method of distance matrices
is similar to [19]. Algorithm 1 presents the detail of the HN-tree construction process.

Algorithm 1 HN-tree construction

Require: HP: the results of the hierarchical graph partition; G: road network;
Ensure: HN-tree;

1: foreach subGi ∈ HP do
2: convert subGi back to subGi

3: G is the root node of HN-tree;
4: the subGi of G are corresponding to root node’s child nodes;
5: identify the bridge points of subGi;
6: while (subGi is not the bottom partition) do
7: add the next level’s subGi+1 of subGi as its child nodes;
8: identify the bridge points of subGi+1;
9: foreach tree node tn ∈ HN-tree do

10: compute the distance matrix of tn
11: return HN-tree;

5. Range Query Processing

Following the introduction of some key definitions, we introduce the range query
algorithm and present distance computation functions.

To compute distances between network nodes in different partitions (and possibly on
different levels of the HN-tree), the distance matrix D of a partition also includes distances

ISPRS Int. J. Geo-Inf. 2021, 10, 814 11 of 20

between bridge points of the partition to bridge points of other adjacent partitions. We call
such bridge points hierarchically adjacent points, defined as follows.

Definition 7 (Hierarchical adjacent points). Given a bridge point v ∈ B(subGi) in partition
subGi, other bridge points ∈ B(subGi) are called hierarchically adjacent points. Since a bridge
point(v) can be in several partitions at the same level, the union set of bridge points of these partitions
is denoted as the set of hierarchically adjacent points HAP(v) of v.

Hierarchical adjacent points of a bridge point at different levels can be extracted from
the HN-tree when required by a query.

5.1. Concepts and Terminology

Some key definitions for our range query algorithm are as follows.

Definition 8 (Valid network node). Given a network G, a query point q, and range distance dr,
a network node v ∈ G is valid if SPDis(q, v) ≤ dr.

Definition 9 (Valid link/partially valid link/invalid link). Given a link ei, a query point q,
and range query distance dr. If both nodes of link ei are valid, ei is called a valid link; if both nodes
are invalid, ei is defined as a invalid link. Otherwise, ei is defined as a partially valid link.

Definition 10 (Valid partition/partially valid partition/invalid partition). Given a graph
subGi, a query point q, and range query distance dr, if the distances between B(subGi) and q are
less than dr (SPDis(bi, q) ≤ dr), subGi is a valid partition. If the distances between B(subGi) and
q are greater than dr, subGi is an invalid partition. Besides, if q is in subGi, subGi is a partially
valid partition.

5.2. Range Query Algorithm

Given a query point q (on the road network) and a range distance dr, we retrieve
all valid nodes whose shortest path distance to q ≤ dr. The algorithm consists of a filter
and a refinement step. The filter step identifies qualifying leaf nodes. The refinement
step then retrieves the actual valid SOs. Algorithm 2 shows the skeleton of our range
query algorithm. The result sets Res and refinement nodes set Pre f are initially set to empty.
The detailed process of the range query algorithm is as follows:

Filter step: (line 1–30): the algorithm first loads the whole tree. Beginning at the
root node, the leaf node that contains q is located. Then, to compute the distances be-
tween leaf(q)’s bridge points and q, the validness of the leaf(q) is identified. If leaf(q) is
invalid, the algorithm will insert leaf(q) in EN, and the refinement step starts. When
leaf(q) is partially valid, the NNV function is used, which is a network partition expansion
method that retrieves the tree nodes that potentially contain SOs within the query range.
Algorithm 3 details the NNV function. Otherwise, the algorithm needs to compute the
distances between the bridge points of its father node and q until the ancestor node is
partially valid. Next, NNV is used. With Pre f not empty, each leaf node in Pre f is identified
and inserted into EN. The algorithm will execute the refinement step. For all non-leaf
nodes, the algorithm adds all child nodes to EN. When EN is not empty, each tree node
tn ∈ EN is checked. A refinement step is executed for all tn that are leaf nodes and the
next element is identified. If tn is a non-leaf node, the algorithm computes the distances
between bridge points of its child nodes and q, and then identifies the validness of child
nodes. If a child node is at least partially valid, the algorithm will insert it into EN. This
process is repeated until the qualified leaf nodes are confirmed.

Refinement step: (line 31–41): the refinement step identifies all SOs in the database
fulfilling the query criterion based on the approximate filter step results. Since SOs maintain
the links’ ids and to improve the efficiency, each link is validated. Therefore, the algorithm
will compute the distances between network nodes of each tree node in EN and q. When
the link’s id is valid, it will be added to Res. If it is partially valid, then, the algorithm will

ISPRS Int. J. Geo-Inf. 2021, 10, 814 12 of 20

further compute the distance between the SOs and q and if less than dr, SOs will be inserted
into Res. Especially for a leaf node that contains the query point. If it is partially valid,
INE [18] is used to compute the distances. If the SO does not meet the above demands, it
is discarded.

Algorithm 2 Range query

Require: q: query point; dr: a range distance; a HN-tree
Ensure: Result set(Res);

Local: refinement tree node set (Pre f), Effective tree nodes set(EN);
//Part 1: filter part

1: Initialize Pre f = ∅, Res = ∅, EN = ∅;
2: load HN-tree;
3: locate the leaf node that contains q;
4: foreach bridge point b ∈ B(lea f (q)) do
5: compute distance between b and q;
6: if lea f (q) is partially invalid then
7: Pre f = NNV(lea f (q));
8: else if lea f (q) is invalid then
9: EN.insert(lea f (q));

10: goto Part 2;
11: else if lea f (q) is valid then
12: find the lea f (q)’s lowest ancestor node is partially valid(TopTn(q));
13: Pre f = NNV(TopTn(q));

14: foreach tree node tn ∈ Pre f do;
15: if tn is non-leaf node then
16: foreach child node ctn of tn do
17: compute the distance between B(ctn) and q;
18: if ctn is partially valid or valid then
19: EN.insert(ctn);
20: foreach tree node tn ∈ EN do
21: if tn is leaf node then
22: continue;
23: else
24: foreach child node ctn of tn do
25: compute the distance between B(ctn) and q;
26: if ctn is partially valid or valid then
27: EN.insert(ctn);
28: EN.erase(tn);
29: else
30: EN.insert(tn);

//Part 2: refinement part
31: foreach leaf node tn ∈ EN do
32: foreach network node vi in tn do
33: compute the distance between vi and q;
34: foreach link ei ∈ tn do
35: if ei is valid then
36: Res.insert(ei.SOs);
37: else if ei is partially valid then
38: foreach SO is on ei do
39: if SPDis(SO, q)≤ dr then
40: Res.insert(SO);
41: return Res;

Algorithm 3 presents the pseudo-code for the NNV function. The algorithm first
inserts the bridge points of TopTn into PQb, since the distances between B(TopTn) and q

ISPRS Int. J. Geo-Inf. 2021, 10, 814 13 of 20

are known. Moreover, the algorithm inserts TopTn into Pre f . Next, while PQb is not empty,
the first element of PQb that is marked as visited should be checked if its distance is less
than dr. The algorithm needs to compute the distances between nodes in HAP(b) and q
when the network node is not visited, and then the distances of HAP(b) are updated to
be inserted into PQb if it satisfies the condition. The algorithm inserts the tree node that
is at the same level as TopTn containing the network node into Pre f when it is not in Pre f .
Since a bridge point can belong to two or more tree nodes, if the shortest path distance of a
network node HAP(b) with q has been identified, it does not need to be computed multiple
times. The algorithm repeats this process until the first element’s distance is greater than
dr. Finally, the algorithm can find the qualified tree nodes at the level of TopTn.

Algorithm 3 Function NNV

Require: q: query point; dr: a range distance; TopTn;
Ensure: Refinement nodes set Pre f ;

1: Initialize priority queue PQb = ∅, Pre f = ∅;
2: Pre f .enqueue(TopTn)
3: foreach bridge point b ∈ B(TopTn) do
4: PQb.enqueue(b, SPDis(b, q));
5: mark b visited;
6: while PQb is not empty do
7: b← PQb.dequeue();
8: mark b visited;
9: if SPDis(b, q) < dr then

10: find tree node tn containing b; //tn and TopTn are at the same level
11: if tn is not in Pre f then
12: Pre f .enqueue(tn)

13: foreach v ∈ HAP(b) do
14: if v is visited then
15: continue;
16: else
17: update SPDis(v, q);
18: PQb.enqueue(v, SPDis(v, q));
19: else
20: break;
21: return Pre f

5.3. SPDis Function

One issue that remains with range queries is how to compute the shortest path
distance(SPDis) between u and v. This is an essential function for the HN-tree, since it will
directly affect the range query performance.

SPDis(u,v) in the same leaf: given two network nodes v and u we compute the
shortest path distance SPDis(v,u) using the Dijkstra algorithm. The Dijkstra algorithm in
this case is efficient since the size of a leaf node is small.

SPDis(u,v) in different leaf nodes: given two network nodes v and u in two different
leaf nodes, we use a dynamic programming algorithm to calculate SPDis(u,v). The main
idea is as follows: let LCA(u,v) represent the lowest common ancestor of nodes lea f (v) and
lea f (u), i.e., the respective leaf nodes containing v and u.

Given the tree nodes on a path for LCA (u,v), then all bridge points are combined to
get the shortest path distance. For the more details, see [19].

6. Experimental Evaluation

In this section, we compare the HN-tree index and related query performance to a
range of competitor approaches using different road networks, spatial object datasets,
and query sizes.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 14 of 20

6.1. Datasets

Available datasets are not sufficiently representative in terms of the distribution of SOs
and data size. Therefore, we use the data generator for SOs proposed in [42] to generate
synthetic datasets. This so-called Brinkhoff generator is available with several networks
and we use three of them: the road networks for the cities of (i) Oldenburg (Germany),
(ii) San Joaquin (US), and (iii) San Francisco Bay Area (U.S.). The network is represented
in a link-oriented model, i.e., each link represents a road and has a unique identifier.
Oldenburg has 6105 network nodes and 7034 links, San Joaquin has 18,496 network nodes
and 24,123 links, and the San Francisco Bay Area has 175,343 network nodes and 223,606
links. Concerning the number of SOs for different networks, Oldenburg has 1,248,212 SOs,
San Joaquin has 3,305,742 SOs, and the Francisco Bay Area has 37,808,266 SOs. Moreover,
these SO datasets follow a non-uniform distribution in the network. Table 1 summarizes
the characteristics of the three datasets.

Table 1. Dataset characteristics.

Name # of Network Nodes # of Links # of SOs

Oldenburg 6105 7034 1,248,212
San Joaquin 18,496 24,123 3,305,742

San Francisco Bay Area 175,343 223,606 37,808,266

6.2. Experimental Setup

To analyze the performance of the HN-tree, we implement and compare several spatial
indexing schemes using the same basic experimental framework.

Experimental environment: all experiments are implemented in C++ and run on an
Intel i7, 2.6 GHz CPU, 16 GB RAM, and Windows 64-bit operating system.

Approaches compared: to better evaluate the performance of the HN-tree, we design
two baseline indexing methods, Flat A and Flat B. Those methods use the same number
of partitions.

Flat A: partitions the road network into equally sized partitions with an equal number
of links based on METIS. Its indexing structure is the same as VRS [17], and we only discard
the adjacent components portion.

Flat B: partitions the SOs into equal sized partitions. The same indexing structure and
query process algorithm as for Flat A.

Voronoi-based range search (VRS) [17] and G*-tree [28]: state-of-the-art algorithm.
We note that we cannot compare directly the G-tree [19] since it only considers the case

of having nodes as possible spatial objects locations. It cannot be used directly for our case
where spatial objects may be located on edges, as edges are lost in the partitioning. While it
is possible to transform a network having spatial objects on edges into a network having all
spatial objects on nodes by adding pseudo nodes (potentially one pseudo-node per spatial
objects), this is not feasible due to our large number of spatial objects in our datasets (see
Table 1). In addition, the G-tree only supports KNN queries. Using its KNN algorithm to
implement a range query algorithm will result in poor performance. If the object density
(the number of objects relative to the number of vertexes) is >1, the performance is much
worse than INE [18] as shown in the G-tree experimentation [19]. However, VRS [17]
always outperforms INE for range queries, and thus we choose VRS as a competitor.

Instead, we compare to the G*-tree [28], which supports range queries, but also
assumes that spatial objects are located on the nodes of the road network. For comparison,
we map each spatial object to the nearest network node for G*-tree experiments.

Performance metrics: we use four performance metrics: (i) construction time; (ii) query
time; (iii) the number of computed network nodes (number of shortest paths computations
that are needed to process a query); and (iv) the number of refined spatial objects.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 15 of 20

6.3. Dataset: Non-Uniform Distribution

Query sizes are 0.1%, 0.5%, 1%, 2.5%, 5%, and 10% of the total length of links in the
network. The query points are randomly selected based on SOs, and then we perform
20 queries for different query sizes. We calculate average values for each query. For HN-
tree, considering the query performance, construction time, and space overhead, after a lot
of testing, the default fan-out is 8.

Index construction time: the first experiment evaluates the index construction time
for all approaches and different datasets. Note that the construction times of HN-tree,
G*-tree Flat A, and Flat B includes graph partitioning, tree construction, and computing
the distance matrices. However, since VRS uses SANET to generate the Voronoi units and
identify the border points, its construction time only covers computing distance matrices.
Figure 8 shows the index construction times. We can observe that all methods take more
time to construct indexes for larger road networks. Moreover, VRS always outperforms the
other approaches. HN-tree, G*-tree, Flat A, and Flat B utilize METIS to partition the road
network. However, only HN-tree, Flat A, and Flat B use a line graph to identify the bridge
points of each tree node. These steps take extra time. G*-tree directly partitions the road
network graph. These four indexes have similar construction times.

Figure 8. Index construction time.

Query Time: the results are shown in Figure 9. The vertical axis represents running
time (in ms), while the horizontal axis shows the query size. We can observe that the
HN-tree always outperforms the other three methods for different datasets and query sizes.
Query times increase with network size. VRS outperforms G*-tree, Flat A, and Flat B. Flat
B slightly outperforms Flat A.

(a) (b) (c)

Figure 9. Query time (ms). (a) Oldenburg; (b) San Joaquin; (c) San Francisco.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 16 of 20

Number of computed network nodes: it is an important metric since it affects query
time. The HN-tree consistently outperforms all other methods as shown in Figure 10.
Since Flat A and Flat B compute bridge points for all partitions, they are far more than for
VRS and the HN-tree. The HN-tree needs fewer computed network nodes than VRS and
G*-tree, especially for small range queries. In addition, we can also find that query time is
proportional to the number of computed network nodes.

(a) (b) (c)

Figure 10. Number of computed network nodes. (a) Oldenburg; (b) San Joaquin; (c) San Francisco.

The number of refinements: the results of this often overlooked metric are shown in
Figure 11. The HN-tree outperforms all other methods. When a query point is in a high
density area, the HN-tree needs to retrieve fewer actual SOs in the refinement step given
its smaller search area. Flat A, VRS, and G*-tree show similar results, since they all only
rely on the topology to partition the road network (and not the data).

(a) (b) (c)

Figure 11. Number of refinements. (a) Oldenburg; (b) San Joaquin; (c) San Francisco.

6.4. Datasets: Different Distributions

To further assess the performance of the HN-tree for different data distributions, we
perform experiments on a dataset with a uniform distribution and a mixed distribution.
Therefore, we use the “Brinkhoff” generator to create a dataset with 2,941,805 SOs that
places SOs uniformly on the San Joaquin network. Following a uniform distribution,
the number of objects is proportional to the length of a link. A mixture dataset is obtained
by taking the various percentages of non-uniform (previous experiment) vs. uniform data.
The percentages of the uniform data in the six datasets are 0%, 10%, 25%, 50%, 75%, 90%,
and 100%, respectively.

Figure 12 shows the results for the mixed dataset with a 1% query size. We choose the
query points based on SOs. The query times are increasing with an increasing portion of
uniform data for the case of the HN-tree.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 17 of 20

Compared to VRS, the query times and computed nodes advantage of the HN-tree is
reduced with an increasing percentage of uniform data. Moreover, when the percentage
reaches 75% and 100%, the query time of HN-tree still slightly outperforms VRS. HN-tree
always outperforms the G*-tree for the query times and computed nodes. For the number
of refined spatial objects, the advantage of the HN-tree gradually diminishes when with an
increasing uniform data percentage.

(a) (b) (c)

Figure 12. Mixed distribution of datasets query performance. (a) Query time (ms); (b) Number of computed network
nodes; (c) Number of refinements.

6.5. Query Time for Different Numbers of Spatial Objects

To understand how range queries, supported by our HN-tree, scale as the number of
spatial objects increases, we next perform experiments where we scale up the number of
spatial objects while keeping the size of the underlying spatial network and the query range
constant. Using the spatial network of San Joaquin (which normally has 3,305,742 spatial
objects), we generate 10 M(million), 100 M, and 1 B(billion) spatial objects on this network
having locations distributed uniformly across the spatial network.

Figure 13 presents the results of this experiment using query sizes of 2.5%, 1%,
and 0.5%. We observe that the query time increase sublinear in the number of spatial
objects. For example, using a 1% range query the query time increases from 3 ms to 5 ms
as we scale the number of spatial objects from 10 M to 1 B. The reason for this sublinear
scaling is that, while the number of spatial objects to be returned increases linear in the
number of spatial objects (since the query range and underlying network are held con-
stant), the network that needs to be explored by Algorithm 2 decreases, since more spatial
objects implies more leaf partitions which cover less space outsize of the query range. This
exploration of the spatial network is the main computational bottleneck; thus, we observe
a sublinear increase in run-time.

6.6. Experimentation Summary

Our evaluation mainly focuses on testing the performance of the HN-tree relative to
the baseline methods, such as Flat A, Flat B, and VRS and G*-tree. The results show that
the HN-tree is the most efficient method to support range queries. The HN-tree ensures
that each partition has a similar number of SOs since it uses a data and space driven
hierarchical partitioning method. This performance advantage persists for different query
sizes and datasets. Hence, the experimental results show the considerable robustness and
practicality of the HN-tree. Regarding memory consumption, the main memory bottleneck
of the HN-tree is storing the distance matrices. We note that in all our experiments the
memory consumption of these matrices is less than the space overhead of road network
and spatial objects.

ISPRS Int. J. Geo-Inf. 2021, 10, 814 18 of 20

Figure 13. Query time for different numbers of SOs.

7. Conclusions and Future Work

This work proposes a novel access method named HN-tree in support of efficient
range query processing of spatial objects on road networks. We use METIS, a heuristics-
based multilevel k-way graph partitioning algorithm to partition the road network, and
then to construct a hierarchical network indexing tree. As part of the partitioning process,
we generate a so-called line graph, which is a transformation of the road network graph
that models edges and numbers of spatial objects as vertices and corresponding weights.
The line graph is decomposed recursively until each partition contains a max number
of spatial objects (represented as node weights in the line graph). The resulting set of
hierarchical partitions is used to construct the HN-tree. The HN-tree performance is
assessed by comparing its performance to (i) two baseline and two state-of-the-art indexing
methods; (ii) using three different road networks; and (iii) varying query sizes. The results
suggest that the HN-tree performance is superior to its competitor methods in terms of
query time, the number of computing network nodes, and the number of refinements.
The good performance of the HN-tree for uniform and mixed distributions of data further
illustrates the advantage of this novel method. Therefore, HN-tree has an important
advantage over the existing methods, since HN-tree can be adaptive to different distribution
types of SOs on the road network to get better performance.

Directions for future work include (i) improving the quality of the hierarchical graph
partitioning and reducing the construction time; (ii) a dynamic indexing schema for updat-
ing and deleting data from our index; (iii) an access method that supports online indexing
and can handle streaming data; and (iv) solutions for approximate range query processing.

Author Contributions: Xiangqiang Min, Dieter Pfoser, Andreas Züfle, and Yehua Sheng provided
the core idea for this study. Xiangqiang Min implemented the HN-tree query algorithm and carried
out the experimental evaluation. Xiangqiang Min, Dieter Pfoser, and Andreas Züfle wrote the main
manuscript. Yehua Sheng, Dieter Pfoser, and Andreas Züfle provided comments and suggestions for
this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Key Fund of the National Natural Science Founda-
tion of China (grant number 41631175), The National Key Research and Development Program of
China (grant number 2017YFB0503500), and the National Science Foundation grant no. 1637541.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://iapg.jade-hs.de/personen/brinkhoff/generator/, accessed on 27 Novem-
ber 2021.

Conflicts of Interest: The authors declare no conflict of interest.

https://iapg.jade-hs.de/personen/brinkhoff/generator/

ISPRS Int. J. Geo-Inf. 2021, 10, 814 19 of 20

References
1. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial

big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133.
[CrossRef]

2. Shekhar, S.; Chawla, S.; Ravada, S.; Fetterer, A.; Liu, X.; Lu, C.T. Spatial databases-accomplishments and research needs. IEEE
Trans. Knowl. Data Eng. 1999, 11, 45–55. [CrossRef]

3. Tong, Y.; Zhou, Z.; Zeng, Y.; Chen, L.; Shahabi, C. Spatial crowdsourcing: A survey. VLDB J. 2020, 29, 217–250. [CrossRef]
4. Yan, Y.; Feng, C.C.; Huang, W.; Fan, H.; Wang, Y.C.; Zipf, A. Volunteered geographic information research in the first decade: A

narrative review of selected journal articles in GIScience. Int. J. Geogr. Inf. Sci. 2020, 34, 1765–1791. [CrossRef]
5. Lin, J.; Wu, Z.; Li, X. Measuring inter-city connectivity in an urban agglomeration based on multi-source data. Int. J. Geogr. Inf.

Sci. 2019, 33, 1062–1081. [CrossRef]
6. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

KDD-96 Proc. 1996, 96, 226–231.
7. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data, Boston, MA, USA, 18–21 June 1984; pp. 47–57.
8. Sun, W.; Chen, C.; Zheng, B.; Chen, C.; Liu, P. An air index for spatial query processing in road networks. IEEE Trans. Knowl.

Data Eng. 2014, 27, 382–395. [CrossRef]
9. Hoffman, J. Q&A: The data visualizer. Nature 2012, 486, 33.
10. Pfoser, D.; Jensen, C.S.; Theodoridis, Y. Novel approaches to the indexing of moving object trajectories. In Proceedings of the

26th VLDB Conference, Cairo, Egypt, 10–14 September 2000.
11. Cudre-Mauroux, P.; Wu, E.; Madden, S. Trajstore: An adaptive storage system for very large trajectory data sets. In Proceedings

of the 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA, USA, 1–6 March 2010;
pp. 109–120.

12. Al Aghbari, Z. cTraj: Efficient indexing and searching of sequences containing multiple moving objects. J. Intell. Inf. Syst. 2012,
39, 1–28. [CrossRef]

13. Song, M.; Choo, H.; Kim, W. Spatial indexing for massively update intensive applications. Inf. Sci. 2012, 203, 1–23. [CrossRef]
14. Gani, A.; Siddiqa, A.; Shamshirband, S.; Hanum, F. A survey on indexing techniques for big data: Taxonomy and performance

evaluation. Knowl. Inf. Syst. 2016, 46, 241–284. [CrossRef]
15. Pfoser, D.; Jensen, C.S. Trajectory indexing using movement constraints. GeoInformatica 2005, 9, 93–115. [CrossRef]
16. Popa, I.S.; Zeitouni, K.; Oria, V.; Barth, D.; Vial, S. Indexing in-network trajectory flows. VLDB J. 2011, 20, 643. [CrossRef]
17. Xuan, K.; Zhao, G.; Taniar, D.; Rahayu, W.; Safar, M.; Srinivasan, B. Voronoi-based range and continuous range query processing

in mobile databases. J. Comput. Syst. Sci. 2011, 77, 637–651. [CrossRef]
18. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query processing in spatial network databases. In Proceedings 2003 VLDB Conference;

Elsevier: Amsterdam, The Netherlands, 2003; pp. 802–813.
19. Zhong, R.; Li, G.; Tan, K.L.; Zhou, L.; Gong, Z. G-tree: An efficient and scalable index for spatial search on road networks. IEEE

Trans. Knowl. Data Eng. 2015, 27, 2175–2189. [CrossRef]
20. Lee, K.C.; Lee, W.C.; Zheng, B.; Tian, Y. ROAD: A new spatial object search framework for road networks. IEEE Trans. Knowl.

Data Eng. 2010, 24, 547–560. [CrossRef]
21. Chen, L.; Tang, Y.; Lv, M.; Chen, G. Partition-based range query for uncertain trajectories in road networks. GeoInformatica 2015,

19, 61–84. [CrossRef]
22. Teng, X.; Yang, J.; Kim, J.S.; Trajcevski, G.; Züfle, A.; Nascimento, M.A. Fine-grained diversification of proximity constrained

queries on road networks. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases, Vienna,
Austria, 19–21 August 2019; pp. 51–60.

23. Pfoser, D. Indexing the trajectories of moving objects. IEEE Data Eng. Bull. 2002, 25, 3–9.
24. Bentley, J.L. Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 1979, 4, 333–340. [CrossRef]
25. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and rectangles.

In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, USA, 23–25 May
1990; pp. 322–331.

26. Šumák, M.; Gurskỳ, P. R++-tree: An efficient spatial access method for highly redundant point data. In New Trends in Databases
and Information Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–44.

27. Xu, J.; Güting, R.H.; Zheng, Y. The TM-RTree: An index on generic moving objects for range queries. GeoInformatica 2015,
19, 487–524. [CrossRef]

28. Li, Z.; Chen, L.; Wang, Y. G*-Tree: An Efficient Spatial Index on Road Networks. In Proceedings of the 2019 IEEE 35th
International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019.

29. Zhang, H.; Lu, F.; Chen, J. A line graph-based continuous range query method for moving objects in networks. ISPRS Int. J.
Geo-Inf. 2016, 5, 246. [CrossRef]

30. Yin, X.; Ding, Z.; Li, J. Moving continuous k nearest neighbor queries in spatial network databases. In Proceedings of the
2009 WRI World Congress on Computer Science and Information Engineering, Washington, DC, USA, 31 March–2 April 2009;
Volume 4, pp. 535–541.

http://doi.org/10.1016/j.isprsjprs.2015.10.012
http://dx.doi.org/10.1109/69.755614
http://dx.doi.org/10.1007/s00778-019-00568-7
http://dx.doi.org/10.1080/13658816.2020.1730848
http://dx.doi.org/10.1080/13658816.2018.1563302
http://dx.doi.org/10.1109/TKDE.2014.2330836
http://dx.doi.org/10.1007/s10844-011-0180-5
http://dx.doi.org/10.1016/j.ins.2012.03.001
http://dx.doi.org/10.1007/s10115-015-0830-y
http://dx.doi.org/10.1007/s10707-005-6429-9
http://dx.doi.org/10.1007/s00778-011-0236-8
http://dx.doi.org/10.1016/j.jcss.2010.02.005
http://dx.doi.org/10.1109/TKDE.2015.2399306
http://dx.doi.org/10.1109/TKDE.2010.243
http://dx.doi.org/10.1007/s10707-014-0206-6
http://dx.doi.org/10.1109/TSE.1979.234200
http://dx.doi.org/10.1007/s10707-014-0218-2
http://dx.doi.org/10.3390/ijgi5120246

ISPRS Int. J. Geo-Inf. 2021, 10, 814 20 of 20

31. Jossé, G.; Schmid, K.A.; Züfle, A.; Skoumas, G.; Schubert, M.; Renz, M.; Pfoser, D.; Nascimento, M.A. Knowledge extraction from
crowdsourced data for the enrichment of road networks. Geoinformatica 2017, 21, 763–795. [CrossRef]

32. Skoumas, G.; Schmid, K.A.; Jossé, G.; Schubert, M.; Nascimento, M.A.; Züfle, A.; Renz, M.; Pfoser, D. Knowledge-enriched
route computation. In International Symposium on Spatial and Temporal Databases; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 157–176.

33. Wang, H.; Zimmermann, R. Processing of continuous location-based range queries on moving objects in road networks. IEEE
Trans. Knowl. Data Eng. 2010, 23, 1065–1078. [CrossRef]

34. Lee, K.C.; Lee, W.C.; Zheng, B. Fast object search on road networks. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, Saint Petersburg, Russia, 24–26 March 2009; pp. 1018–1029.

35. Frentzos, E. Indexing objects moving on fixed networks. In International Symposium on Spatial and Temporal Databases; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 289–305.

36. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
37. Karypis, G.; Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 1998,

20, 359–392. [CrossRef]
38. Anwar, T.; Liu, C.; Vu, H.L.; Leckie, C. Partitioning road networks using density peak graphs: Efficiency vs. accuracy. Inf. Syst.

2017, 64, 22–40. [CrossRef]
39. Hosseini, S.; Najafipour, S.; Cheung, N.M.; Yin, H.; Kangavari, M.R.; Zhou, X. TEAGS: Time-aware text embedding approach to

generate subgraphs. Data Min. Knowl. Discov. 2020, 34, 1136–1174. [CrossRef]
40. Najafipour, S.; Hosseini, S.; Hua, W.; Kangavari, M.R.; Zhou, X. SoulMate: Short-text author linking through Multi-aspect

temporal-textual embedding. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
41. Ashrafi-Payaman, N.; Kangavari, M.R.; Hosseini, S.; Fander, A.M. GS4: Graph stream summarization based on both the structure

and semantics. J. Supercomput. 2021, 77, 2713–2733. [CrossRef]
42. Brinkhoff, T. A Framework for Generating Network-Based Moving Objects. Geoinformatica 2002, 6, 153–180. [CrossRef]

http://dx.doi.org/10.1007/s10707-017-0306-1
http://dx.doi.org/10.1109/TKDE.2010.171
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1016/j.is.2016.09.006
http://dx.doi.org/10.1007/s10618-020-00688-7
http://dx.doi.org/10.1109/TKDE.2020.2982148
http://dx.doi.org/10.1007/s11227-020-03290-2
http://dx.doi.org/10.1023/A:1015231126594

	Introduction
	Related Work
	Hierarchical Graph Partitioning
	Road Networks
	Graph Partitioning
	Hierarchical Graph Partitioning

	HN-Tree
	HN-Tree Index Definition
	Index Construction

	Range Query Processing
	Concepts and Terminology
	Range Query Algorithm
	SPDis Function

	Experimental Evaluation
	Datasets
	Experimental Setup
	Dataset: Non-Uniform Distribution
	Datasets: Different Distributions
	Query Time for Different Numbers of Spatial Objects
	Experimentation Summary

	Conclusions and Future Work
	References

