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Abstract: In the context of the carbon neutrality target, carbon reduction in the daily operation
of the transportation system is more important than that in productive activities. There are few
travel services that can quantify low-carbon travel, with a lack of effective low-carbon travel tools
to guide transportation behavior. On-demand access to taxi services can effectively reduce the
additional carbon emissions caused by cruising, which in turn increases efficiency in urban mobility
with a reduced taxi fleet scale. For individual taxis, they lack macroscopic horizon in their choice
of passenger pickup paths. The selected travel path based on personal operational experience or
real-time location is limited by local optimization when making path decisions. In this work, we
proposed a macro-path recommendation method to assist the taxi pickup path selection to accelerate
the transformation of the taxi system towards low-carbon sharing. First, an adaptive learning
spatiotemporal neural network was used to predict the coarse-grained distribution of potential
trips. Next, the trajectory sharing graph was constructed based on the potential trips distribution to
reallocate the taxi orders for the continuous pickup path optimization. As a result, the continuous
pickup path balanced the relation between travel demands and taxi supply, improving the economic
and environmental benefits of taxi operation and contributing to the goal of carbon neutrality. We
conducted experiments on the Chengdu city ride-hailing dataset. Compared with the current status
of taxi operations, the solution shows improvements in both the scale of taxi services and order gain.

Keywords: path recommendation; low-carbon travel; taxi demands prediction; order assignment;
sharing network

1. Introduction

Achieving the carbon reduction target of “carbon neutrality” by 2060 poses a critical
challenge to the development of various industries in China, with urban transportation
emissions showing the fastest growth rate and continuous increase. The supply of urban
mobility services is essential for achieving carbon neutrality in transportation, and it is
necessary to design a low-carbon mobility-on-demand (MoD) service to minimize traffic
carbon emissions and achieve sustainable development. Today, the on-demand access to
taxi services has evolved into many effective and more convenient forms being promoted,
such as Uber, Lyft, Ola, Didi, and many other ride-hailing MoD service providers, to
meet the challenges of travel demands in large cities [1]. The taxi service system provides
an efficient travel mode for urban transportation; however, the carbon emissions are
increasing, and the operating costs are rising with the large number of taxis in supply. In
terms of existing taxi operation, most taxis are cruising aimlessly on the streets looking
for passengers. The vacant taxis increase the resource consumption during cruising due
to the lack of information on time-varying travel demands, and the taxi dispatch system
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does not employ effective information to measure the economic and environmental costs
of total travels.

The development goal of carbon neutrality in transportation also imposes an urgent
requirement for a low carbon operation of the taxi system. For taxi drivers, cruising to find
passengers improves their own orders. As for the taxi system, reducing the fleet scale of
taxi operations and improving the circulation efficiency are the core aspects of low carbon
transportation. However, taxi services have been in a dilemma. On the one hand, it is
difficult for passengers to obtain taxi service during peak hours. On the other hand, the taxi
cruising time for passenger searching has increased, resulting in traffic congestion [2]. The
taxi drivers usually rely on their own operating or cruising experiences to find passengers
randomly [3]. Without macro-level guidance to instruct taxis on their cruising behavior,
the taxi system cannot be fully utilized [4]. The sharing mobility technologies create a new
way for taxis to travel in a low-carbon mode, and these solutions can make it possible to
match the taxi supply with user travel demands. While sharing mobility has huge potential
to improve the global efficiency of transportation, it is insufficient to fully adopt it to hold
all users. It should be integrated with other modes of transportation that have the explicit
goal of optimizing carbon emission reduction [5]. Many studies related to MoD and fleet
management have considered travelling without sharing rides [6].

Considering the unbalanced travel demands and the low utilization of taxi services,
how to dynamically obtain the continuous passenger-carrying path is a valuable research
problem. The current research on taxi routing focuses on the optimal path of a single
trip at the microscopic level [7], ignoring the differences in economic and carbon emis-
sion attributes for continuous taxi paths. Some studies have analyzed taxi behavior to
optimize individual operating strategies, but they rely on local optimization methods to
increase pickup rates, which may lead to an imbalance in taxi supply and demand [4]. The
macroscopic path strategy is also important for taxi operation. For example, by guiding
the taxi pickup path with the low-carbon strategy and treating taxi resources as an MoD
service, it will become an effective solution to reduce urban traffic emissions and meet
travel demands.

In addition, analyzing the spatial and temporal distribution of historical trips can
help taxis optimize their travel schedules. The travel flow on the road network changes
with the tidal effect, and the existing path recommendation model, based on static pickup
locations, cannot reflect its dynamic features. The continuous path recommendation can
perceive the time-varying pattern of travel demands and make decisions according to
the potential distribution, which helps the pre-scheduling of the taxi service. In terms of
the relation between taxi supply and demand, the existing path recommendation models
try to increase the individual order maximization, and there is competition among taxis.
The competition for picking up passengers often leads to inefficient and underutilized
operation for some taxis. Therefore, these models do not alleviate the unbalanced supply
and demand relationship between travel services and passenger demands.

To solve these problems mentioned above, this paper combines the taxi travel path
with the potential trip reallocation and builds a dynamic path recommendation model for
continuous passenger pickup. This taxi service in the low-carbon context can minimize the
total operating costs and emissions with trip sharing, which makes full use of the small
fleet scale in the network to meet all travel demands, as shown in Figure 1.

Considering the periodicity of taxi trips and the complex features of the travel network,
the recommendation model is constructed by the following steps. The real-time update and
analysis of travel status using deep learning can predict the future status and support the
decision making for seeking passengers. Based on the potential trip distribution obtained
from the prediction, we can find a continuous pickup path to provide on-demand service
through proper order reassignment. The diversity of passenger preferences is added as a
heuristic factor to recommend different continuous pickup paths. This model can increase
the number of taxi orders received for operating taxis and reduce the overall fleet of running
vehicles. It is also hybrid, with both taxi-ride competition and cooperation being used
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to build an order-sharing assignment model. Based on the scale of on-demand taxis, we
achieve the match between passenger travel demands and taxi service utilization.
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In summary, to fill the gap of previous taxi path planning methods lacking macroscopic
horizon, the study of continuous pickup path recommendation can not only meet the
existing travel demands but also contribute to the full utilization of taxi services. The
continuous pickup path optimizes the easiness of taking orders and the fleet scale of online
operation from the spatial and temporal dimensions, which has great significance to reduce
carbon emissions in the transportation field. The main contributions of this paper are
as follows:

(1) To overcome the sparsity of trip data, we construct a two-layer structure to reduce the
relational space with the coarse-grained graph, which can better extract the implicit
structure of the spatiotemporal association of trips.

(2) We design a self-learning semantic relation to capture the dynamic spatial features
between trips, combining that with a spatiotemporal neural network to mine the
temporal patterns of travel behaviors.

(3) Without changing the existing travel patterns, we propose a macrolevel path recom-
mendation method for continuous pick-up passengers that seeks the match between
passenger demands and taxi service utilization.

The beginning of this paper lists the current research status related to taxi demand
prediction and path recommendation. The second part will briefly describe the basics
of the taxi order sharing network. The third section details the continuous pickup path
recommendation method. In the fourth part, a series of experiments and result analyses on
the traffic dataset of Chengdu are given to verify the effectiveness of the proposed method.
In the last part of the paper, we conclude and look forward to later research.

2. Related Work

Informed driving is emerging as a key feature to improve taxi sustainability, combining
deep learning approaches to estimate future patterns from historical data [8]. For the
prediction of taxi pickup or drop-off locations, a common approach is to divide the road
network into grids and count the traffic in them, which turns the prediction problem
into a multi-class classification. To alleviate origin-destination (OD) data sparsity, the
grid partitioning of the road network is used as a general method [9] to explore the
correlation of ODs. It combines adjacent geographic and semantic neighborhoods, with
the geographic neighborhoods measuring the intrinsic closeness of grids and the semantic
neighborhoods modeling the intensity of traffic between grids. Most taxi OD prediction
methods have only considered the demand at the origin but have ignored the supply of
taxis at the arrival destination. The prediction of interactive demands usually requires
the fusion of more semantic information to improve the prediction ability, such as the
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Contextualized Spatial-Temporal Network (CSTN) [10] and the Spatiotemporal Residual
Neural Network (ST-ResNet) [11]. The CSTN is used to predict the future demand for travel
interactions between regional pairs. Three independent components were constructed to
extract correlations, which well integrates the local spatial context, temporal evolution
context, and global correlation context into a unified framework. The ST-ResNet predicts
user inflows and outflows for each city region based on temporal closeness, period, and
trend features. By aggregating the outputs of multiple feature networks and assigning
varying weights to different branches, the ability to predict interactive demands is further
improved. For the irregularly arranged regions, community discovery is used to construct
spatiotemporal networks to explore the semantic relationship between regions and to
predict travel demands at the multi-regional level [12]. However, the multiclassification
prediction models based on road network partition cannot learn some new locations. A
feasible approach is to use geographic information from location-based social networks
(LBSNs) to model taxi travel behavior and encode the semantics of the visited locations [13].
The coordinates of the destination are predicted by the functions that directly approximate
the latitude and longitude to improve the precise location of the next drop-off point. To
reduce the amount of feature engineering and of external data required to build deep
learning models, some studies adopt multiple networks or reinforcement learning to
enhance the predictive performance. For example, the CNN can be used to extract spatial
features and the LSTM to extract temporal features, which are described by the embedding
layer [14]. This architecture can be easily extended to other traffic prediction problems
such as road traffic and flow prediction. The Multi-Intelligent Reinforcement Learning
(MARL) based taxi dispatching model can balance the supply and demand of taxis in
different regions [4]. Unlike the taxi scheduling method based on real-time location, it first
predicts the demands in different areas for the next time period and then dispatches taxis
in advance.

Due to the time-varying travel demands, the taxi service may generate a large number
of vacant vehicles when operating in different regions. The vacant taxis operating on
the road network not only waste travel resources but also burden the city with emission
and traffic. To improve the utilization of vacant vehicles, the location of taxi parking
can be accurately detected from the trajectories. These parking locations signify where
the taxis stand waiting for passengers, and the probabilistic model can be constructed
based on trajectories to describe the taxi dynamic behaviors, thus providing some real-time
locations to pick up passengers quickly [15]. The other method is to predict crowd flows
by discovering patterns of passenger pick-up quantity (PUQ) in urban hotspots, and the
Auto-Regressive Integrated Moving Average (ARIMA) method can be used to predict the
spatial and temporal variation of passengers in hotspots to help drivers find their next
passenger [16]. As travel demands change dynamically over time, static solutions cannot
adapt to the evolving scenario. The dynamic future demand-aware vehicle scheduling
system [1] can dynamically search for vacant vehicle resources by considering both travel
demand and traffic status. In addition, the MoD system’s historical travel data can be
used to optimize vehicle distribution and fleet size. The MoD works by guiding the trips
of the vehicles to meet all travel demands, allowing the one vehicle to serve multiple
passengers [17]. It provides guidance on how many vehicle resources should be allocated
to meet the demands of a given region. In the automated MoD system [18], passengers
can share a group of self-driving vehicles. It also regularly adjusts the match between the
supply of vehicles and travel demands, considering the sharing of travel resources from a
system perspective.

In terms of path recommendation for vacant taxi cruising, there are no valid criteria for
optimal routing evaluation. Some dynamic path planning methods that use historical data
are used to improve the performance of the self-driving taxi network. The path planning
assigns orders to taxis in a pre-assigned manner, minimizing the expected cost of current
and future travel demands. It consists of three main steps, which are pruning travel trips,
assigning vehicle order, and rebalancing vacant vehicles, so that the probability distribution
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of future demand is decoupled into the vehicle routing and order assignment [19]. In [20],
a more general high-capacity ride-sharing model can dynamically generate optimal routes
based on online demand and vehicle locations. It can effectively return a trip request
that solves both the problem of assigning vehicles to passengers and rebalancing the fleet
to meet travel demands. In the study of using taxi trajectories to reduce the cruising
distance, an adaptive shortest expected cruising route (ASER) was proposed. The ASER
builds a probabilistic network using Kalman filtering to predict the pickup probability and
capacity of each location and then recommends the travel path to the taxi driver [21]. It
also considers the load balance between passengers and taxis. Further, the multi-criteria
path recommendation models that integrate real-time spatiotemporal prediction and traffic
network status focus on optimizing the next passenger-carrying path. The travel demand
prediction can estimate the probability of passenger pickup and drop-off, capturing the
flows of potential passengers. The heuristic function J* algorithm [22] was proposed based
on the distribution of the prediction module, combining the pickup probability, drop-off
distribution, road network, distance, and time factors. To reduce the aimless cruising of
taxis, some studies have fully analyzed the relation between supply and demand, such
as the attraction between taxis and passengers and the competition between taxis. In [3],
the traffic force for cruising taxis is calculated by collecting the density information of
passengers and taxis from the trajectories. According to the corresponding traffic force, the
taxis are assigned to the optimal road segments to pick up desired passengers. Dynamic
taxi path recommendation aims to recommend cruising routes to vacant vehicles. Most of
them focus on building probabilistic models, such as the Mixed Path Size Logit (MPSL)
model [23], which analyzes taxi behaviors through spatiotemporal features with passenger
generation rate, path travel time, cumulative intersection delay, path distance, and path
size. With the development of deep learning recommendation models, dynamic taxi
path recommendation is studied as a sequential decision-making problem. By extracting
multiple spatiotemporal features related to the easiness degree of vacant taxis picking
up passengers, an adaptive deep learning method was designed to achieve effective path
recommendation [24].

As mentioned above, the travel status prediction in conjunction with the path rec-
ommendation system based on the trip sharing pool has the opportunity to solve the
existing inefficiencies in taxi mobility, thus reducing the resource waste and carbon emis-
sion of transportation.

3. Preliminaries
3.1. Taxi Trajectory Sharing Network

The taxi trajectory sharing network connects OD trajectories in a certain time period,
thus enabling the same vehicle to pick up as many passengers as possible for the OD travel
trips. The travel trajectories are modeled in a static way in time period T by introducing
the maximum number of splices k that can be shared and the maximum waiting delay
δ for connecting trips. Let Tra(T) = (om, dm, to

m, td
m) denote the total number of trips in T,

and m denotes the trip number. om and dm are the corresponding origin and destination
of it, and to

m, td
m ∈ T are the starting and ending time, respectively. In Tra(T), it is assumed

that there exist fewer paths that can connect all OD’s trajectories and satisfy the following
spatiotemporal constraints. The OD trajectories are spliced in temporal sequence, and the
trip time cannot overlap but can be linked by δ time delay. The om is located before the
corresponding dm, and the maximum number of connections is k. Thus, the Tra(T) can be
shareable for any vehicle.

The interval δ connecting two trips has a direct impact on the generated topology
graph of sharing network [25]. It is assumed that two consecutive Tra(i) and Tra(j) are
served by the same vehicle, i,j ∈ [1,m] and i 6= j, and the time required to connect them
is δij = to

j − td
i . If δij is very short, most of the trips cannot be linked. On the contrary, if

the time is long, it leads to an inefficient taxi service operation, with a lot of emissions and
idling time being spent waiting for trip links. For k = 2, the two trips can be shared at a



ISPRS Int. J. Geo-Inf. 2021, 10, 821 6 of 20

given δ by placing a link between Tra(i) and Tra(j). For k > 2, the sharing network becomes
a hypergraph in which most k trajectories can be linked simultaneously. The maximum
match for the trajectory sharing network is defined as follows:

Definition 1. (Trajectory Sharing Network). The historical travel trajectories of all taxis
carrying passengers are mapped into the road network to form a directed acyclic graph G = (V, E),
where V represents the pickup or drop-off locations of the trips and E represents the connections.
The sharing network assumes that there is no competition between taxis and each individual taxi
can serve as many orders as possible, and we consider G as a trajectory sharing network for
passenger pickup.

Definition 2. (Maximum Match for Sharing Network) [26]. Given a trajectory sharing net-
work G, the largest matching M in G is a pair of disjoint edges. The maximum matching contains
as many edges as possible to minimize the number of M that satisfies all orders to be served with no
conflicting time.

In the trajectory sharing network, the maximum match optimizes the fleet scale of
valid taxi operations. According to the taxi order schedule, if it satisfies the temporal
constraint between the drop-off point in the current trip and the pickup point in the next
trip, the two trip trajectories can be spliced, as shown in Figure 2. By iteratively calculating
until all trips are spliced, this allows the orders to be served with fewer vehicle assignments.
In addition, the connecting time between trips must not exceed the upper limit δ. The
maximum match generates a path set that covers the entire G, ensuring that all orders are
served while minimizing the fleet scale of vehicles in this solution. This is also the optimal
solution to the minimum fleet problem with parameter δ. In this paper, we use the matched
M paths as the recommended paths for taxis to carry passengers continuously.
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Figure 2. The construction of the trajectory sharing network. The network is spliced using the
parameter δ and satisfies the temporal constraint. According to the trip origin and destination (a),
if td

m+1 − to
m ≤ δ between the drop-off point of the first trip and the pickup point of the next trip,

splicing is performed. The maximum matching algorithm generates a set of paths covering the entire
graph (b), ensuring that all trips are served while minimizing the number of paths (c).

3.2. Problem Definition for Continuous Taxi Pickup Path Recommendation

It is necessary to distinguish that continuous passenger pickup paths are not focused
on the path planning problem of one-way trip. During the course of the current taxi trip,
the recommendation model advises the passenger location for the next order according
to the arrival time and destination. The continuous taxi pickup path recommendation
problem is mainly to help the taxi driver make the next passenger carrying decisions, and
it can effectively improve the validity of the trip and benefit the global operation efficiency.
Considering the inconsistent start and end time of each trip, we coarsen the trip data into an
equal time series according to δ and mine the time pattern of trips. Let U = {u1, u2, . . . , uP}
denote the unique identifier of the taxi, and P is the fleet scale of actual taxis. The E = {e1,
e2, . . . , eL} denotes the unique identifier of the order trajectories, e is the trajectory between
the one-way OD, and L is the total number of orders. The C = {c1, c2, . . . , cM} denotes the
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splicing trajectories in the sharing network, and M is the maximum number of matching
paths, M ≤ P ≤ L. Each e is associated with the pickup point o and the drop-off point d of
the trip and belongs to part of the spliced trajectory c.

Definition 3. (Taxi Pickup Trajectory). In the temporal snapshot T of the sharing network, the
pickup trajectory of taxi i is defined as a four-tuple (ui, ei, ci, to

i , td
i ), where ui ∈ U denotes the

taxi identification, ei ∈ E denotes the current trip, ci ∈ C denotes the continuous pickup path to
which it belongs, and to

i , td
i ∈ T denotes the start and end time of the trip. The tuple represents the

continuous pickup trajectory obtained by splicing the current trip.

The continuous pickup path recommendation is based on the maximum matching ob-
tained from the trajectory sharing network under the current trip e and temporal constraint
(to, td) to obtain the Top-n paths. We turned the continuous taxi pickup path recommenda-
tion problem into the generation of the trajectory sharing network and found the maximum
match path of it. Specifically, it was divided into two stages.

Based on the OD trips of historical orders, it is possible to estimate the potential orders
for the future. We built a spatiotemporal neural network to predict the temporal pattern
of orders. The topology of the trajectory sharing network G is represented by the pickup
and drop-off points V, the set of trip trajectories E, and the adjacency matrix A. We used
discrete time points t ∈ T to record the orders, and XT denotes the travel volume. The xt ∈
XT denotes the status of an OD pair in the sharing network at time t. The prediction of taxi
orders can be viewed as learning the mapping function f based on the vector XT in G, as
shown in Equation (1): (

xt, · · · , xt+s)⇐ f
{

G; (xt−τ , · · · , xt−1)
}

(1)

where τ denotes the historical time window, and s denotes the prediction step.
The next stage was to construct a trajectory sharing network based on potential trips

that satisfied the constraint δ and k to obtain the maximum match as the recommendation
path. A taxi’s continuous pickup path c(ui) is defined as a trajectory of orders connected
in time sequence, with time intervals between them less than threshold δ, denoted as
c(ui)=<(ui, e1, ci, to

1, td
1), . . . ,(ui, ek, ci, to

k, td
k )>, and k is the count of hops of this continuous

pickup path. To enhance the continuous passenger carrying capability of taxis, this paper
was devoted to learning a path recommendation function Recommend{.} that maps the
predicted travel trips to the sharing network for path computation. Given the order
information xt~xt+s of ui and the arrival time td

i of current trip ei, the continuous pickup
path recommendation returns a set of n paths, as shown in Equation (2).

< c1(ui), · · · , cn(ui) > = Recommend
{

ui, ei, td
i

∣∣∣(xt, · · · , xt+s)
}

. (2)

From this, the c1(ui) is the optimal continuous pickup path for taxi ui in the next
order, c2(ui) is the suboptimal solution, and so on. In fact, the potential trajectory sharing
network is able to completely define the time-varying features of the taxi trips. Therefore,
the continuous pickup path recommendation model extracts the historical features of the
trips and calculates the travel paths based on them.

4. Continuous Taxi Pickup (CTPU) Path Recommendation Architecture

The CTPURec is a discrete dynamic path recommendation model that builds a contin-
uous path based on the prediction of future travel demands. As the path recommendation
is constructed based on a sharing network of potential orders, it first requires an accurate
prediction of travel trips. We use the offline phase to train the historical taxi trip data, then
the online phase to predict potential trips in real-time and generate recommended paths.
The CTPURec defines and trains taxi demands and sharing network modules separately,
and it interacts to capture the complex relationships between taxi trajectories and passenger
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pickup paths. The architecture of CTPURec can be subdivided into the spatiotemporal
neural network for travel trip predictions and the trajectory sharing network for collabo-
rative path recommendations, as shown in Figure 3. The spatiotemporal neural network
generates a snapshot graph of the potential travel orders, which further extracts the ideal
passenger pickup paths in the trajectory sharing network. This hybrid structure builds two
levels of decision support, with system-level decisions guided by the minimum fleet size
to satisfy the travel demands and user-level decisions to guide the next taxi trip selection.
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4.1. Travel Trip Predictions Based on Self-Learning Semantic Relation

Travel demands are the main drivers for taxi operation, and accurate prediction of
trips helps to capture taxi movement patterns. The road network-based OD matrix is a
large dimensional sparse matrix that records the links between all nodes (intersections).
Due to the sparsity and fine-grained scale of the data, node-level OD prediction is often
difficult to extract effective features, and the learned features are often unreliable. The
order-level ODs describe the travel demands of passengers in a coarse-grained manner. By
extracting these order pickup and drop-off points, the taxi’s trajectory graph can be well
characterized. The coarse-grained sharing network makes the ODs as nodes to construct
a directed graph, reducing the node space for graph search. The aggregated network
formed by removing the middle nodes of the trips is a coarse-grained representation of the
road network.

The graph convolutional network is widely used for spatial feature extraction of
temporal snapshots of traffic network [27]. The Laplace matrix L = D-A can be used to
represent the structure of the graph, with the L normalized form L = D−

1
2 LD−

1
2 , where

A, D denote the adjacency matrix and degree matrix. However, there are some limitations
in using fixed adjacency relations to characterize dynamic graph features [28]. To better
capture the semantic relation between orders, we extend the adjacency matrix A of the
static topology to a dynamic OD semantic correlation matrix Ã. The Ã is composed of
the OD semantic relations of nodes within a snapshot of time T. Combining the semantic
relations of self-learning [29], we employ an adaptive correlation matrix and capture the
interaction between node status and link relations by end-to-end supervised training. The
adaptive correlation matrix can capture the hidden spatial dependencies in the data as
shown in Equation (3).

Ã = So f tmax(Relu(Eo
T ·Ed)) (3)

The Ã is obtained by two learnable parameters Eo and Ed, where Eo is the origin
embedding and Ed is the destination embedding. Then, the Relu activation function is used
to eliminate weak connections, and finally we obtain the Ã by using the Softmax. During
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the building process of Ã, the OD trajectory is considered as a node, and the interaction
between them is symmetric and can be directly used for graph analysis. The state transition
in the sharing network can be regarded as an aggregation function of the semantic node
status, that is, the semantic features are the projections of the multidimensional features
to first order, which is achieved by Ã. The first-order Chebyshev approximation to graph
convolution [30] further simplifies the graph convolution operation. We added the se-
mantic correlation matrix Ã and its dependency degree matrix D̃ to define the GCN layer
as follows:

H = Γ(GCN)(D̃−
1
2 ÃD̃−

1
2 ·X·Θ). (4)

where D̃−
1
2 ÃD̃−

1
2 is the convolution filter for computing the semantic correlation, X de-

notes the node status, Θ is the training parameter matrix, and Γ(GCN) is the ReLU activation
function for first-order spectral convolution. Finally, the node status XT is transformed
into an implicit graph encoding HT through the encoding H of the sharing network. The
CTPURec extracts the semantic features of the graph snapshot, then the output is fed into
the temporal module to capture the time-dependent features.

In the potential travel trip prediction, the change of node status is the result of a
combination of spatial propagation and temporal tidal effects. The baseline LSTM can
predict future multi-step outputs based on historical sequences [31]. The prediction target
is to fit the graph encoding ht+1 based on historical encoding {Hq | q = t−τ, . . . , t}, where
τ is the time interval. It takes Hq as the input, and the output layer, after processing
performed by the internal memory unit, will generate a value ht+1 as the input of the next
cell. Combined with the gate control units of LSTM, we propose a coarse-grained graph
prediction method. The memory unit processes the vector Hq through the forget gate, input
gate, and output gate, respectively. As a result, the xt is converted to Ft, It, Ot of hidden
layers via the following gate update function as shown in Equation (5):

Ft, It, Ot = Γ(gate)(W(x)[xt, ht−1] + b(x)). (5)

where W(x) denotes the weight matrix of the input layer to the gate, and b(x) denotes the
corresponding bias. The Γ(gate) is the Sigmod activation function. The latent encoding of
gate control units is computed using the input and the historical hidden state within time
t−1. The input gate and forget gate are used to update the cell state Ct, and the output ht is
controlled by the output gate and the cell activation state, as in Equation (6):

Ct = Ft � Ct−1 + It � tanh(Wc[xt, ht−1] + bc),
ht = Ot � tanh(Ct).

(6)

where � is the Hadamard product and Ct is the cell state with the corresponding weight
Wc and bias bc. In summary, based on the sharing network statuses at time t, the CTPURec
spatiotemporal memory unit utilizes Ãt−1, Ct−1, and ht−1 as the a priori knowledge for
prediction. The final prediction yt is obtained by the output ht of the spatiotemporal
memory unit. This prediction result effectively integrates the semantic knowledge of
historical status and dynamics, and it better fits the travel patterns of the real road network.

4.2. Continuous Passenger Pick-Up Path Recommendation

Traditional taxi path recommendation models focus on the path problem of a one-way
trip and the lack of guidance on the macroscopic travel path. The trajectory sharing network
covers the temporal trajectories of taxi orders, so a pre-assignment approach can be adapted
to constrain the behavior of taxis for the purpose of global optimization. With the purpose
of a balanced orders assignment, we propose a macrolevel path recommendation method
based on the sharing network. By predicting the potential orders, we create an order-
sharing graph snapshot based on the future taxi orders for the next three hours. The sharing
network evolves different topology graphs with the snapshots, which obtain a series of
dynamic trip distributions. The generation of the potential trip distributions will determine
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the macro planning of the taxi’s pickup path and the system-level order allocation strategy,
and further, it can even be used to build a global travel equilibrium system.

The solution to the maximum path coverage of a directed graph is an NP-hard problem,
but the optimal solution can be found in polynomial time if there are no closed-loop paths
in it. There is no closed loop directed path in the trajectory sharing network, see Proof 1.
Therefore, we transform the path extension problem for a sharing network into a maximum
matching solution for a bipartite graph. First, the nodes set V of the sharing graph G is
divided into two parts, Vo and Vd, Vo ∪ Vd = V, and the edges in E are connected for it.
The bipartite graph is formulated as G′ = (Vo∪Vd, E). For the matching of G′, the set of
trajectories M is used to connect the path from Vo to Vd, and the path is covered by, at
most, one trajectory. The maximum matching problem of the order-sharing graph is thus
transformed into the minimum number |M| of augmenting paths covering all nodes,
which is also the maximum matching of G′.

Definition 4. (Trajectory Splicing). Let M be a matching of the bipartite graph G′, and E is the
next-hop trip that satisfies the time constraint. If M′ = M⊕E is still a match, and |M′| = |M| + 1,
then E is a valid extension. The ⊕ is the symmetric difference operation.

For a given taxi order, we augment this order by path splicing until all trips are
traversed. Finally, we obtain the fully covered connected branch of G′ by the trajectory-
splicing process. The recommended path of continuous pickup is the next-hop trajectory
in the augmentation path. In practice, the taxi drivers have different tolerances for order
delays, and it is difficult to increase their individual costs to meet the global optimum. The
CTPURec defines a delay relaxation parameter δ′ to generate different augmented paths,
which are ranked according to the travel cost to obtain the Top-n recommendation. When an
OD request is made, the personalized δ′ is added for path splicing, so that different output
paths are possible for the same request of different taxi drivers, as shown in Figure 4.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 21 
 

 

unit. This prediction result effectively integrates the semantic knowledge of historical sta-
tus and dynamics, and it better fits the travel patterns of the real road network. 

4.2. Continuous Passenger Pick-Up Path Recommendation 
Traditional taxi path recommendation models focus on the path problem of a one-

way trip and the lack of guidance on the macroscopic travel path. The trajectory sharing 
network covers the temporal trajectories of taxi orders, so a pre-assignment approach can 
be adapted to constrain the behavior of taxis for the purpose of global optimization. With 
the purpose of a balanced orders assignment, we propose a macrolevel path recommen-
dation method based on the sharing network. By predicting the potential orders, we create 
an order-sharing graph snapshot based on the future taxi orders for the next three hours. 
The sharing network evolves different topology graphs with the snapshots, which obtain 
a series of dynamic trip distributions. The generation of the potential trip distributions 
will determine the macro planning of the taxi’s pickup path and the system-level order 
allocation strategy, and further, it can even be used to build a global travel equilibrium 
system. 

The solution to the maximum path coverage of a directed graph is an NP-hard prob-
lem, but the optimal solution can be found in polynomial time if there are no closed-loop 
paths in it. There is no closed loop directed path in the trajectory sharing network, see 
Proof 1. Therefore, we transform the path extension problem for a sharing network into a 
maximum matching solution for a bipartite graph. First, the nodes set V of the sharing 
graph G is divided into two parts, Vo and Vd, Vo ∪ Vd = V, and the edges in E are connected 
for it. The bipartite graph is formulated as G′ = (Vo∪Vd, E). For the matching of G′, the set 
of trajectories M is used to connect the path from Vo to Vd, and the path is covered by, at 
most, one trajectory. The maximum matching problem of the order-sharing graph is thus 
transformed into the minimum number |M| of augmenting paths covering all nodes, 
which is also the maximum matching of G.’ 

Definition 4. (Trajectory Splicing). Let M be a matching of the bipartite graph G′, and E is the 
next-hop trip that satisfies the time constraint. If M′ = M⊕E is still a match, and |M′| = |M|+1, 
then E is a valid extension. The ⊕ is the symmetric difference operation.  

For a given taxi order, we augment this order by path splicing until all trips are trav-
ersed. Finally, we obtain the fully covered connected branch of G′ by the trajectory-splic-
ing process. The recommended path of continuous pickup is the next-hop trajectory in the 
augmentation path. In practice, the taxi drivers have different tolerances for order delays, 
and it is difficult to increase their individual costs to meet the global optimum. The 
CTPURec defines a delay relaxation parameter δ′ to generate different augmented paths, 
which are ranked according to the travel cost to obtain the Top-n recommendation. When 
an OD request is made, the personalized δ′ is added for path splicing, so that different 
output paths are possible for the same request of different taxi drivers, as shown in Figure 
4. 

 
Figure 4. Different constraints generate different pickup paths. 

Current Order

o0

δ'=2

δ'=4

δ'=2n

d0

d0

d0

d0

Augmenting PathNext HopSplicing

o1 d1

d2o2

Order 1

Order 2

Order n dnon

… ……

Top-n Recommended Paths 
Ranking{ 

Order 1, 

Order 2,

… ,

Order n
}

Figure 4. Different constraints generate different pickup paths.

At the same time, the prediction module transmits the potential orders to the online
recommendation module in almost real-time. In this way, the online recommendation
module is able to make continuous pickup path decisions that satisfy the taxi travel
demands based on the trip distribution. The target of CTPURec is to obtain a potential order
assignment scheme for the taxi service system, which converts taxi ridership competition
into an on-demand assignment.

Proof 1. It is assumed that the maximum matching M = {c1, c2, . . . , cM} of G′ con-
tains the directed closed-loop path, and the trip sequence corresponding to the path
of this loop is denoted as <e1,e2, . . . ,e1>. For each trip e, its trajectory can be denoted
as Tra(T) = (om, dm, to

m, td
m). Therefore, the loop path is transformed into a sequence of

trajectories < (o1, d1, to
1, td

1), (o2, d2, to
2, td

2), · · · , (o1, d1, t′o1, t′d1) >. In the trajectory sharing
network, the sequence of trips in the splicing path c satisfies the temporal constraints,
to
1 < td

1 ≤ (td
1 + t1→2) ≤ to

2, to
2 < td

2 ≤ (td
2 + t′2→1) ≤ t′o1. As for trip e1, the to

1 < td
1

contradicts the temporal constraint td
1 < t′o1 in the loop, so the trajectory sharing network is

a directed acyclic graph. �
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4.3. CTPURec Optimization

The recommendation of the continuous pickup path relies on the generation of the
order-sharing graph, and we obtain it by training the historical data through a neural
network layer. The recommended path is based on the trajectory splicing on the potential
trips. Thus, the taxi service system operation can be transformed into an order-balanced
assignment for on-demand acquisition by training a sharing graph for path recommenda-
tion. We propose a data-driven deep learning solution for obtaining order-sharing graph
sequences, as shown in Figure 5.
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Figure 5. Data-driven path recommendation process.

In the offline training phase, the historical taxi travel trip data provides input samples
for network training. The spatiotemporal feature extraction first aggregates the data of
the trips to obtain a coarse-grained sharing graph, and then it learns the sequence features
of the graph based on temporal snapshots. The demand and supply of taxi services
are complex and changing, so the links in the sharing network should also be dynamic.
In particular, there are limitations in using fixed adjacent relationships to model spatial
dependencies between trips. Therefore, we employ an adaptive correlation matrix to
capture the hidden spatial dependencies between trip and topology. After offline training,
the prediction module can perform real-time prediction for potential travel trips and
periodically update the parameter configuration. With the obtained potential trips, they
are spliced by constructing a trajectory sharing network to map the trips to the optimal
(or near-optimal) branch of the maximum match. To train the learning parameters of the
model, we use the average error between the real and predicted flows in the sharing graph
as the objective function for the training process, as shown in Equation (7):

Obj(x, y) = ‖ 1
L ∑

e∈E
(yt

e − xt
e)‖+ γ·`2. (7)

where x denotes the trip volume distribution in the real sharing graph, and y denotes
the distribution of predicted trips. The second term `2 is a ridge regularization, and
γ is a hyperparameter. After the pre-training procedure of the sharing network, the
distribution of trips and the graph connectivity are obtained for future steps. Based on
these predictions, the results are fed into the online recommendation module for real-time
pickup path recommendations.

Online Path Recommendation: As the volume of passenger trips changes dynamically
over time, the CTPURec needs to constantly update the trip distribution in the sharing
graph to adapt to its evolution. The output y of the online prediction module indicates
the potential trips of the passenger travel in the sharing network, interpreted as a coarse-
grained travel trajectory. The CTPURec generates maximum matching paths based on
the topological configuration of the trips, guiding taxis to adopt the matching paths for
passenger pickup travel. The path recommendation is to perform path search on the
sharing graph after maximum matching and return the pickup path that meets the travel
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demands and is consistent with the global optimization. Therefore, the taxi pickup path
recommendation model, with consideration of order equilibrium, can effectively guide the
taxi driver’s decision-making for the next hop.

5. Experimental Results and Analysis

In this work, we focused on a more meaningful and logical task of making continuous
pickup paths to taxis in the next three hours. In the large-scale road network, if node-level
data granularity is used for analysis, the sparsity of order data leads to poor performance.
We performed data fusion on taxi trips data based on a sharing graph. The trip data was
segmented and fused under the spatiotemporal slice, and then the sharing graph was
obtained as the input to our model.

Data aggregation for sharing graph: Since the nodes covered in the trips were very
sparse compared to the road network, it was difficult for node-level trip prediction to
accurately capture the travel demand pattern. We built a sharing graph based on the node
graph of road network to cope with the sparsity of the trip data. To calculate the link cost
between orders in the sharing graph, it was necessary to bridge the sharing graph with
the road network. The two-layer structure preserved order information and connection
relationships, thus reducing the search space. The prediction was performed on the upper
layer to overcome data sparsity. As shown in Figure 6, the data density at the order level
was higher than that at the road network level. The structural complexity and link sparsity
of the road network was significantly reduced after coarse-grained aggregation.
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The road network for the experiments in this paper was derived from the map of
Chengdu city provided by OpenStreetMap (www.openstreetmap.org by 7 April 2021), by
further extracting 113,825 road sections and 81,371 nodes. The taxi trip data was obtained from
the KDD CUP 2020 car-hailing datasets provided by Didi Chuxing (gaia.didichuxing.com by
7 April 2021). It contains taxi trajectories and car-hailing orders for Chengdu, where the travel
data ranged from 1 November to 30 November 2016. The total number of order data after
missing value processing was 7,062,959 trip records, and each trip record contained the start
and end timestamps and the geographic coordinates of the origin and destination locations.
The number of coarse-grained nodes after the aggregation of location points for taxi trips
was 36,353. Finally, the taxi OD matrix in a fixed time interval was obtained by counting the
number of interactions between nodes in the sharing graph. In the following, we will evaluate
the effectiveness of the model from four aspects.

The experimental environment was (CPU: Intel(R) Xeon Silver 4210CPU@2.20GHz,
GPU: NVIDIA GeForce RTX 2080 Ti, Provided by OMNISKY of Beijing, China), 64GB
RAM, Windows 10 64-bit operating system. The experiments used the Python to map
and match the road network dataset, and then build the TensorFlow deep learning model
optimized by the Adam optimizer to perform order prediction and trajectory analysis. The
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latent feature dimension of temporal gating and spatial convolution was set to 64 and the
learning rate was 10−3.

5.1. Potential Trips Sharing Network Distribution Prediction

The CTPURec divided the taxis acquired on-demand in the road network into two
parts, the active set and the idle set, based on the potential sharing network prediction.
The training process was to add the status sequence of orders to the road network, and
the time-divisional sharing network was used as a time snapshot. We set a historical time
window of 12 h and aimed to predict potential orders for the next 3 h. We used the first 80%
of the travel dataset as the training data and the remaining 20% as the validation data. We
chose three prediction errors as evaluation metrics, MAE, RMSE, and accuracy. The smaller
the value of MAE and RMSE, the better the performance of the model. The value of accuracy
ranged from 0 to 1, and the closer it was to 1, the better fitting ability of the model. The
experiments compared the performance of our proposed CTPURec with other baselines, such
as recurrent neural networks with LSTM [31], GRU [32], and graph neural networks with
GCN [33], T-GCN [34], and GC-LSTM [35]. We trained the models separately for 500 epochs,
and the prediction errors on the validation data are shown in Table 1.

Table 1. Prediction errors at different time lengths. The best performing method in each row is boldfaced, and the
second-best method in each row is underlined.

Time Length 1 h 2 h 3 h
Metric MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE Accuracy

GCN 43.73 85.61 0.492 45.35 87.30 0.481 46.51 88.51 0.473
T-GCN 29.76 48.69 0.711 29.77 50.49 0.700 32.31 53.07 0.684
GRU 14.78 27.81 0.835 19.10 32.99 0.804 27.08 50.22 0.701
LSTM 14.74 26.35 0.844 20.67 32.02 0.810 22.58 45.72 0.728

GC-LSTM 14.46 27.27 0.835 18.70 33.73 0.800 22.83 40.96 0.756
CTPURec 12.68 25.02 0.851 13.97 27.81 0.835 15.28 30.49 0.819

%Improve 12.31% 5.05% 0.83% 25.29% 13.15% 3.09% 32.33% 25.56% 8.33%

As can be seen from the prediction errors at the three-time steps, the GCN had the
worst prediction reliability because it only relied on the aggregated neighborhood features.
The T-GCN combined the advantages of GCN and GRU, and there was no significant
improvement on the results due to the graph feature extraction with fixed topological
correlation. The GRU and LSTM had better prediction performance in timing-dependent
trip sharing networks by introducing the gating mechanism. Meanwhile, both LSTM-based
CTPURec and GC-LSTM used dynamic semantic vectors for spatial feature extraction to
obtain lower errors and higher accuracy. Although the prediction performance decreased
with an increasing time length, the CTPURec improved 32.33%, 25.56%, and 8.33% relative
to the suboptimal solution at the 3 h prediction. This was due to the spatiotemporal coding
capturing more information about potential trends, which made it more suitable for long
time prediction.

The purpose of this set of experiments was to examine the feature fitting ability of the
CTPURec and the baselines during the iterative process. Since the CTPURec was based
on spatiotemporal feature fusion, we focused on its feature extraction ability during the
training process. The Figure 7a,b shows the variation of MAE and RMSE of the models
at the 3-h prediction steps. It is worth noting that the training errors of GCN, GC-LSTM,
and SANN were relatively small and reached stability quickly in the initial stage of model
training, indicating that the learning rate of graph features was better than that of the
time-series recurrent networks. As can be seen from the change of accuracy curve in
Figure 7c, the CTPURec achieved better accuracy in the initial stage, which means that the
adaptive semantic relations could fit the spatial relations of trips well.
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Figure 7. The metrics variations in the first 100 epochs based on validation data. The (a,b) show the variation of MAE and
RMSE, and (c) is the the change of Accuracy.

To clearly show the ability of different models to predict potential orders, we inter-
cepted the change in overall order volume for the next 16 h prediction. As shown in
Figure 8, we compared the TGCN, GC-LSTM, LSTM, GRU, and CTPURec, with different
colors indicating different order magnitudes. In Figure 8b, the CTPURec uses adaptive
spatial relations for prediction, and the fluctuation pattern of its order volume best matched
the Real plot. The GC-LSTM also used dynamic neighborhood modeling, however, its
nonlinear fitting ability was not as sufficient as that of the adaptive CTPURec. In outlier
processing, LSTM and TGCN were more sensitive to sharply rising order quantity in the
figure, while CTPURec generalized these orders. In Figure 8e, the fitted curve of TGCN
fluctuates a lot. This is because the superposition of redundant spatial features increased
the magnitude of the predicted values, resulting in an unstable curve. The GRU and LSTM
are recurrent neural networks that performed predictions based on time series features.
It can be seen that their performance was relatively stable, with no dramatic fluctuations
in the prediction curves, but the fitting ability was not as good as that of the dynamic
neighborhood model. As the GC-LSTM required constant dynamic adjustment of neighbor
relationships, the spatial feature fitting ability was better than TGCN, but not as good as
the CTPURec.
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5.2. The Splicing Efficiency of Taxi Pickup Path with Different Parameters

To clearly demonstrate the impact of sharing trips for taxis, we conducted experiments
using path extensions of trips sharing a network within 15 s. First, we verified the trips
distribution variation for different maximum waiting delays δ, as shown in Figure 9a. The
orders of Real within the time period 8:0:0–8:0:15 show that the destination and the origin
of some orders were relatively close to each other. If the travel time cost between orders
satisfied the δ constraint, the two orders could be spliced. The experiments were based
on δ = 2 min and δ = 4 min, respectively, for the path splicing, and the connection start
and end points of the spliced trips became intermediate points. Thus, the splicing path
was used as a complete trajectory, and the fleet scale of taxis of the shared network was
effectively reduced. It can be seen that more orders were spliced at δ = 4 min, and the taxi
order volume was reduced to a smaller-scale continuous path at 15 s.
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In addition to the limit on the maximum waiting delay, we further added a limit on the
number of trips based on δ = 2 min, as shown in Figure 9b. The orders of Real within the
time period 11:0:0–11:0:15 were mainly focused on suburban to downtown trips. The path
splicing was performed on the basis of Real, and it can be seen that only a small reduction
was performed for k = 2. For k = 4, a large number of orders were merged, resulting in
a smaller fleet scale of taxis required for passenger travel, but increasing the additional
cost of order splicing, such as the waiting time for splicing trips. Compared to the taxi
order trajectories in Real, the trip distribution of the sharing network not only increased the
order volume of the valid taxi, but also could have broken the distribution of the original
orders and reallocated them in a uniform manner. The experiments illustrated that the
order assignment strategy of the sharing network can reduce the taxi occupancy while
satisfying the equal travel demands, which is achieved by recommending taxi orders on
the spliced path for a given taxi.
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5.3. Optimization for Taxi System with Continuous Pickup Paths

To evaluate the influence of pickup path recommendation for the taxi service system,
the experiments evaluated the average taxi running time, taxi no-load time, average pickup
waiting time, effective fleet size, and the average increased orders under different parameter
configurations. The running time is the time span from the to of the first passenger order
to the td of the last order on a natural day. The no-load time is the accumulation of the
non-passenger carrying period during the operating hours. We counted the daily average
running time and no-load time from 21–30 November 2016, as shown in Figure 10. The
experiments adopted the maximum connection limit k = 2, 4, and the waiting delay δ was
set to 2 min. From Figure 10a, the path splicing reduced the daily average running time,
which was attributed to order sharing improving vehicle operating efficiency with fixed
travel demand. With k = 4, the total number of vehicles was 18.54% less than that with
k = 2, thus requiring more orders to be filled per vehicle. As a result, the average running
time for k = 4 increased compared to k = 2. In Figure 10b, the taxi no-load time decreased
as k increased, indicating that continuous pickup path recommendations reduced the
no-load time of individual vehicles in general. The experiments showed that order-sharing
networks reduced inefficient time consumption in taxi systems, allowing travel orders to
be reallocated on-demand and increasing the efficiency of vehicle operation.
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Figure 10. Comparison of average running time and no-load time under different travel paths. (a) shows the average
running time and (b) shows the no-load time.

In the following, we compare the influences of different recommendation steps on
the average pickup waiting time, the effective fleet size, and the average increased orders.
Table 2 shows the variation of the daily average pickup waiting time for all vehicle orders
over a 10-day period. The metric was averaged based on the total number of effective taxis
running each day. According to the difference between the k = 2, 4, 8, 16 and the Real, it can
be concluded that the splicing path reduced the average pickup time of taxis. Since the fleet
size of taxis decreased at k = 4 and the travel path linked more orders, the average pickup
waiting time decreased. At k = 8,16, although the fleet size was further reduced, the waiting
time was increased to connect more orders. Therefore, the range of k was not as large as
possible and could bring inefficiency when exceeding the threshold. The order trajectory
at k = 2 preferred to add additional orders to the existing order distribution, which was
different from the reassignment. At k = 4, the subsequent orders were augmented around
the first order, and the orders that originally belonged to it were reassigned. As can be
seen in Table 3, the effective fleet size decreased as k increased, but the decreasing trend
gradually decayed. The average effective fleet size from Real to k = 2 decreased by 9606,
while from k = 8 to k = 16 it decreased by just 5068.
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Table 2. The average pickup waiting time (/s) in CTPURec with different k.

Date 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

Real 14,592 14,399 14,691 14,581 14,617 14,685 14,555 14,345 14,480 14,883
k = 2 6297 6257 6631 6383 6236 6014 5944 6159 6387 6710
k = 4 2143 2049 2328 2175 2030 2010 2038 1993 2171 2353
k = 8 2173 2222 2102 2200 2058 1859 1523 2489 2619 2208
k = 16 7122 7168 7301 7179 7257 6360 5594 7993 8197 7871

Table 3. The effective fleet size in CTPURec with different k.

Date 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

Real 38,500 39,279 38,785 40,885 42,889 43,257 41,317 40,096 40,771 40,297
k = 2 29,258 29,883 29,632 30,842 32,819 32,897 31,487 30,735 31,267 31,193
k = 4 23,715 24,281 24,230 25,015 26,830 26,651 25,697 25,042 25,568 25,504
k = 8 17,928 18,349 18,470 18,866 20,178 20,168 19,378 18,752 19,326 19,315
k = 16 13,231 13,575 13,602 13,842 14,773 14,730 14,114 13,739 14,274 14,168

Table 4 shows the average increased orders after adopting the continuous recom-
mended pickup paths. By the same token, the statistics here are only for valid taxis, some
vacant vehicles will not be assigned orders that day. For valid vehicles, the order increased
significantly with the number of links k. However, the increase in k did not consistently
improve the efficiency of the taxi service system. More time cost was added to splicing k
orders, and a large number of taxis were unused. Therefore, a suitable value of k is required.
For this experiment, the order-sharing network constructed by k = 4 was more suitable for
the taxi path optimization.

Table 4. The average increased orders in CTPURec with different k.

Date 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

Real 4.98 4.96 5.10 4.85 4.98 4.91 4.90 4.99 5.10 5.17
k = 2 6.55 6.52 6.68 6.44 6.51 6.46 6.43 6.52 6.65 6.68
k = 4 8.08 8.02 8.17 7.94 7.96 7.97 7.89 8.00 8.13 8.17
k = 8 10.69 10.62 10.72 10.53 10.59 10.54 10.46 10.68 10.76 10.79
k = 16 14.49 14.36 14.56 14.35 14.46 14.43 14.36 14.58 14.57 14.72

5.4. The Implementation Phase

Considering that, in the actual scenario, there are multiple taxi operators, and it is
difficult to unify drivers’ recognition for sharing orders under the carbon neutral target,
we tend to develop an order-sharing mode on existing taxi-hailing platforms. The driver
has the flexibility to choose whether to turn on the mode or not, and the mode can be
dynamically adjusted according to the period. First of all, the order-sharing mode has no
impact on passengers’ travel demands and existing travel options. The CTPURec is only
trained on the historical trajectories of taxis in sharing mode and generates continuous
pickup paths for drivers under this customized service. In contrast, the free mode means
that the drivers do not participate in the sharing program and use the original method to
obtain orders.

Next, we analyzed the taxi system performance of CTPURec in partial sharing mode.
The drivers were first divided into five groups with different proportions based on free
mode and sharing mode, as shown in the abscissa axis of Figure 11. We built the order-
sharing network based on scenarios 1©– 7©, respectively, so as to guide the taxi path in the
partial sharing mode. The experiments adopted the trip data of 25 November 2016, with
the maximum waiting delay δ set to 4 min and the maximum number of splices k = 2, 4.
The variation trends of different scenarios of the system performance index are shown
in Figure 11. It can be seen that for the taxi average running time and average pickup
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waiting time, there was a decreasing trend as the proportion of drivers participating in
the sharing program grew. For Figure 11a, the running time of taxis in k = 2 was lower
for the same travel demands. This is due to the fact that the fleet size of k = 2 was higher
than k = 4 after splicing the paths according to the configuration, as shown in Figure 11c.
For Figure 11b, the k = 4 used more continuous pickup paths, reducing the waiting time
to search for the next order. Therefore, the average cost of acquiring the next order for
scenarios 2©– 7© was better than the fully free mode. For effective fleet size, it continued
shrinking as the proportion of the sharing mode increased. The fleet size was minimized
for k = 4 in fully sharing mode. At this point, the taxi fleet improved its own order-taking
efficiency while reducing the cost of no-loading in free mode, as the total amount of travel
demand was fixed. Finally, we compared the order gains at different proportions, as shown
in Figure 11d. This order gain was complementary to the reduction in effective fleet size.
As the sharing proportion increased, the order gain gradually improved until the fully
sharing mode was reached.
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Figure 11. Impact of the different driver’s percentage participating in sharing mode. (a) is the average
running time, and (b) is the average pick-up waiting time. (c,d) are the effective fleet size and average
increased orders based on different percentage of taxi driver’s following sharing mode.

Therefore, the partial order-sharing mode can also contribute to the operational
efficiency of the taxi system when full sharing cannot be achieved. This implementation
process also promotes a transformation for the driver’s low-carbon perception from the
free mode to sharing mode. At the same time, the impact of the sharing mode on taxi
drivers’ habits is minimal, without requiring them to understand the implementation of
the sharing mode but simply referring them to the recommended path.

6. Conclusions and Future Work

In this paper, we proposed a macro taxi path recommendation model to guide the
taxis’ travel behaviors by adopting the concept of low-carbon operation, which is an
important contribution for transportation system emission reduction under the goal of
“carbon neutrality.” The coarse-grained extraction of order data was used to mine the flow
pattern of taxis in the transportation network for the perception of future travel demands.
A shared trajectory network was constructed based on potential travel trips, guiding taxis
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to pick up passengers with a shared collaborative path decision. The combination of path
recommendation and a sharing network not only selects the appropriate continuous path
for taxis, but also promotes the balanced utilization of travel services.

In the experiment, we compared the predictive validity of the model, the path rec-
ommendation effects, and the impact on the taxi operation system. Combined with the
carbon effect in the operation of the transportation system, we applied some system-level
metrics that are positively correlated with carbon emissions to measure the usability of the
recommended model. The results showed that continuous pickup paths can increase taxi
orders while reducing the scale of vehicle operation, and this optimization has important
guidance for upgrading low-carbon management in the transportation field.

Considering the application of our low-carbon sharing mode to existing ride-hailing
technologies, we developed a preliminary implementation plan and conducted a quantita-
tive sensitivity analysis. However, the evaluation metrics we used for taxi system operation
are not equivalent to the carbon effect evaluation. In future work, we will use the specific
carbon metrics to construct the path recommendation model to suggest the cruising path
for taxis and the path choices for users. By further establishing a carbon effect incentive
mechanism, the order-sharing network is deeply integrated with existing travel services to
promote the transformation of taxi behaviors from free mode to sharing mode.
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