
����������
�������

Citation: Pakdil, M.E.; Çelik, R.N.

Serverless Geospatial Data

Processing Workflow System Design.

ISPRS Int. J. Geo-Inf. 2022, 11, 20.

https://doi.org/10.3390/ijgi11010020

Academic Editor: Wolfgang Kainz

Received: 25 October 2021

Accepted: 26 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Serverless Geospatial Data Processing Workflow System Design
Mete Ercan Pakdil 1,* and Rahmi Nurhan Çelik 2

1 Geographical Information Technologies Program, Institute of Informatics, Istanbul Technical University,
Istanbul 34469, Turkey

2 Geomatics Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey; celikn@itu.edu.tr
* Correspondence: pakdilme@itu.edu.tr; Tel.: +90-212-285-3414

Abstract: Geospatial data and related technologies have become an increasingly important aspect of
data analysis processes, with their prominent role in most of them. Serverless paradigm have become
the most popular and frequently used technology within cloud computing. This paper reviews the
serverless paradigm and examines how it could be leveraged for geospatial data processes by using
open standards in the geospatial community. We propose a system design and architecture to handle
complex geospatial data processing jobs with minimum human intervention and resource consump-
tion using serverless technologies. In order to define and execute workflows in the system, we also
propose new models for both workflow and task definitions models. Moreover, the proposed system
has new Open Geospatial Consortium (OGC) Application Programming Interface (API) Processes
specification-based web services to provide interoperability with other geospatial applications with
the anticipation that it will be more commonly used in the future. We implemented the proposed
system on one of the public cloud providers as a proof of concept and evaluated it with sample
geospatial workflows and cloud architecture best practices.

Keywords: serverless computing; geospatial workflows; workflow management system

1. Introduction

Over the last decade, big geospatial data has become a vital trend in the industry
as data collection techniques become easier and more accessible, and storage options
have increased significantly at the same time. The new ways of geospatial data collection
technologies such as drones, robots, and satellites have brought new data storage and
processing requirements that are predicted to become more complex and demanding.
These new requirements could be met with cloud computing technologies. However, these
new technologies could also have a learning curve for geospatial data scientists and analysts.
Reducing the complexity of cloud computing is essential for the geospatial community
to use efficiently for geospatial analyses. Classical geospatial data computation systems
mostly run on on-premise platforms with limited computational capacity or storage. It is
also challenging to maintain these infrastructures to provide sustainable service. On the
other hand, having such a dedicated infrastructure is also an expensive investment for
single usage or a limited number of processes. Cloud computing platforms are presented
as a solution for these problems; however, leveraging cloud computing technologies needs
expertise in this area at a certain level [1].

The cloud providers offer various models that provide different levels of abstraction
and control on resources [2]. The infrastructure-as-a-Service (IaaS) model, where resource
elasticity is realized at the virtual machine stage, offers large amounts of cloud resources to
users, frequently with increased hosting costs over-provisioning or poor performance due
to under-provisioning of resources [3]. Another model worth mentioning is Platform-as-a-
Service (PaaS) which provides another abstraction level on top of the IaaS model. It removes
managing the operating system. In both models, scalability and orchestration of application

ISPRS Int. J. Geo-Inf. 2022, 11, 20. https://doi.org/10.3390/ijgi11010020 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-5998-9779
https://doi.org/10.3390/ijgi11010020
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11010020?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2022, 11, 20 2 of 24

deployments are still the user’s responsibility (Figure 1). In Software-as-a-Service (SaaS)
model, management responsibility on all layers is abstracted from the user.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 2 of 25

as-a-Service (PaaS) which provides another abstraction level on top of the IaaS model. It
removes managing the operating system. In both models, scalability and orchestration of
application deployments are still the user’s responsibility (Figure 1). In Software-as-a-Ser-
vice (SaaS) model, management responsibility on all layers is abstracted from the user.

Figure 1. Abstracted layers for each service model.

The serverless paradigm is introduced to provide automated orchestration of deploy-
ment and scalable platform that runs based on demand [4]. It is similar to the SaaS model
in layer abstraction, but it allows the developer to run any code on the serverless service.
Even though it attracts developers because of its ease-of-use capabilities and cost effi-
ciency, it is still a complex solution for most geospatial data processing scenarios to per-
form a workflow consisting of multiple steps. Each step in a geospatial data process work-
flow might require different computing power and amount of data [5]. A significant ad-
vantage of the serverless application does not use any resources when idle.

The serverless model could be described with a few disparate concepts. A commonly
used concept called Function-as-a-Service (FaaS) provides a platform to run a custom code
developed by a developer on a cloud platform without dealing with infrastructure man-
agement. FaaS applications are also run event-driven. They can execute the code in re-
sponse to any events, such as smart sensor data or an event from another cloud service.

Another relatively new serverless concept is called Container-as-a-Service (CaaS)
runs containers in a virtualization platform. A container consists of an application and
operating system with installed dependencies to ensure running a bundled application on
every platform as where it is initially developed. A CaaS service allows running contain-
ers without requiring virtualization platform management [6]. This service model offers
more computational power and longer runtime than the FaaS model.

This paper proposes a data processing system design created explicitly for geospatial
workflows to execute real-world scenarios on serverless platforms by leveraging both
CaaS and FaaS models. We propose a solution that requires minimum infrastructure man-
agement and provides easy scalability by using serverless technologies. We observed that
the CaaS model could handle complex geospatial tasks such as raster calculations by de-
livering more computational power and longer runtime. Our proposed system design has
a container orchestration component to run custom-built containers that contain geospa-
tial analysis codes on the CaaS model. This unique contribution makes our data pro-
cessing system deployable entirely on serverless services, even for challenging geospatial
tasks. In addition, another notable contribution is to propose workflow definition models
to declare data processing flows easily to increase the useability of the system for non-
technical users. These definition models can engage non-technical users to design and run
geospatial workflows. Another significant contribution is to demonstrate how to use the
new OGC API Processes specification with such a system to increase interoperability.

In this paper, we implemented a proof-of-concept to explore the applicability of the
proposed system on a public cloud provider. In addition, we designed sample workflows
to challenge the system with the most used complex and long-running processes in the

Figure 1. Abstracted layers for each service model.

The serverless paradigm is introduced to provide automated orchestration of deploy-
ment and scalable platform that runs based on demand [4]. It is similar to the SaaS model
in layer abstraction, but it allows the developer to run any code on the serverless service.
Even though it attracts developers because of its ease-of-use capabilities and cost efficiency,
it is still a complex solution for most geospatial data processing scenarios to perform a
workflow consisting of multiple steps. Each step in a geospatial data process workflow
might require different computing power and amount of data [5]. A significant advantage
of the serverless application does not use any resources when idle.

The serverless model could be described with a few disparate concepts. A commonly
used concept called Function-as-a-Service (FaaS) provides a platform to run a custom
code developed by a developer on a cloud platform without dealing with infrastructure
management. FaaS applications are also run event-driven. They can execute the code in
response to any events, such as smart sensor data or an event from another cloud service.

Another relatively new serverless concept is called Container-as-a-Service (CaaS) runs
containers in a virtualization platform. A container consists of an application and operating
system with installed dependencies to ensure running a bundled application on every
platform as where it is initially developed. A CaaS service allows running containers
without requiring virtualization platform management [6]. This service model offers more
computational power and longer runtime than the FaaS model.

This paper proposes a data processing system design created explicitly for geospatial
workflows to execute real-world scenarios on serverless platforms by leveraging both CaaS
and FaaS models. We propose a solution that requires minimum infrastructure management
and provides easy scalability by using serverless technologies. We observed that the CaaS
model could handle complex geospatial tasks such as raster calculations by delivering more
computational power and longer runtime. Our proposed system design has a container
orchestration component to run custom-built containers that contain geospatial analysis
codes on the CaaS model. This unique contribution makes our data processing system
deployable entirely on serverless services, even for challenging geospatial tasks. In addition,
another notable contribution is to propose workflow definition models to declare data
processing flows easily to increase the useability of the system for non-technical users.
These definition models can engage non-technical users to design and run geospatial
workflows. Another significant contribution is to demonstrate how to use the new OGC
API Processes specification with such a system to increase interoperability.

In this paper, we implemented a proof-of-concept to explore the applicability of the
proposed system on a public cloud provider. In addition, we designed sample workflows
to challenge the system with the most used complex and long-running processes in the
geospatial field. Note that this is a challenging but worthwhile example to prove the system
design could be used for both simple and complex workflows.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 3 of 24

2. Related Works

Baldini et al. [7] reviewed the serverless paradigm by giving its characteristics and
comparing different major cloud platforms. They mentioned that one of the drawbacks
of the serverless approach is the risk of vendor lock-in, which makes the system highly
dependent on a cloud provider’s services. They also observed that the importance of
serverless technologies had not been recognized enough by the research community.

Kim et al. [8] proposed a framework called Flint to run PySpark based data processing
jobs on Amazon Web Services (AWS) Lambda service without provisioning a cluster. They
overcome long cold startup problems using the Python programming language, which
is not dependent on runtime for execution. They also indicated memory and execution
duration limitations in the AWS Lambda service.

Malawski et al. [9] studied a serverless architecture applied to scientific workflows.
They have open-source HyperFlow software to run on cloud platforms that offer serverless
services. They have proved that scientific workflows can be run on serverless architectures.
Moreover, they stated that all scientific workflows are not feasible for serverless platforms
because of some observations, such as resource management of tested cloud services such
as AWS Lambda.

Lee et al. [10] reviewed serverless systems on cloud providers and compared their
trade-offs with virtual machines. They also studied the dynamic behavior of serverless
computing for the parallel execution of partitioned tasks over small function instances.
They indicated that big data applications could be applied to serverless computing.

Ji et al. [11] evaluated the use of cloud computing for geospatial workflows. They
discussed the applicability of their proposed architecture on grid computing with a case
study. They concluded that large geospatial workflow applications could benefit from
cloud computing with shorter runtime and on-demand resource provisioning.

Krämer et al. [12] developed a workflow management system that offers new workflow
definition models similar to our proposed workflow definition models. They compared
their definition models with other two existing well-known workflow management sys-
tems. Their study also shows that our simplified workflow definition models can increase
usability and readability. They have examined the system in virtual machines in a cloud
provider. We used only serverless services in the evaluation and designed our system
deployable to any cloud provider offering serverless technologies.

Serverless Workflow [13] is an open-source project that provides a framework to run
and design workflows to execute functions. The functions used in workflows exposes the
Hypertext Transfer Protocol (HTTP) API endpoint to receive requests with arguments. The
framework also has its declarative workflow language.

2.1. Cloud Workflow Services

Major cloud providers (Google Cloud, Microsoft Azure, Amazon Web Services) offer
workflow solutions that enable serverless functions and containers to run tasks on them.

Amazon Web Services offers Amazon Step Functions (ASF) [14]. Workflow executions
are programmed in the Amazon States Language, based on JSON (JavaScript Object Nota-
tion). It provides sequence, parallel, and decision controllers to design workflow. Moreover,
it can call serverless functions (AWS Lambda) and containers (AWS Fargate) to execute
pre-deployed codes on serverless platforms. It can transmit JSON data between steps. It
also supports long-running processes and provides error handling features.

Microsoft Azure offers the Logic App service for workflow executions in a serverless
way [15]. It supports calling Azure Functions to run pre-deployed code on Microsoft
Azure’s FaaS platform. Furthermore, it has controller actions such as “switch”, “condition”,
and “for each”. These actions allow routing workflow execution to different paths based
on the conditions.

Google Cloud offers Google Cloud Workflows service [16]. Google Cloud Workflows
are represented as steps with essential logical flow control such as conditions or loops.
Every step makes an HTTP request that can be used, for example, to trigger a Google Cloud

ISPRS Int. J. Geo-Inf. 2022, 11, 20 4 of 24

Function. It is not designed for broad parallel tasks as it lacks the map primitive present in
other systems such as ASF.

2.2. Containerised Workflow Engines

There are open-source workflow engines that can also be deployed to any containeriza-
tion platform. Container native engine enables setting up a workflow execution platform
that can scale based on the demand and volume of the data to process. These engines take
advantage of container systems. Containers are lightweight and packageable, and thus
they can increase portability and efficiency in a workflow system [17].

Argo Workflows is a workflow engine for orchestrating parallel jobs on Kubernetes [18].
It is developed and maintained as an open-source project. Fundamentally, it parses and
executes its custom declarative workflow definition that has its own rules and structure.
Each step in the workflow corresponds to a container image run with inputs.

Kubeflow is another open-source project that runs machine learning workflows on
Kubernetes with containers [19]. Kubeflow Pipelines is an add-on to Kubeflow that runs
scalable end-to-end machine learning workflows. It can be deployed to cloud providers
as well as on-promises. It requires additional tools to run workflow orchestration, such
as Argo.

2.3. Review

Although the serverless computing paradigm is still a new concept and has become
popular, previous serverless works have primarily focused on the limits of computation
issues over the FaaS deployment model. Our proposed system explores the possibility of
overcoming these issues by using the CaaS model.

As we reviewed that cloud providers have solutions for workflow management, trade-
offs such as vendor-lock, quotas, limited supported technologies, and cost of execution
should not be neglected.

We reviewed some well-known containerized workflow engines that can be deployed
with the CaaS model. However, they are still complex solutions to build workflows for non-
technical users. Our proposed solution also presents simple workflow definition models to
simplify workflow design.

3. Materials and Methods

This section firstly explains our proposed workflow definition and task definition
models used to define a workflow and a task declaratively. Next, we present a high-level
component diagram of our proposed system and explain details of each component on the
high-level diagram. We considered using only necessary components to reduce architecture
and deployment complexity. We aimed to design the system loosely coupled with any
specific software or vendor, and thus, we considered defacto and commonly available
technologies in serverless platforms.

3.1. Workflow and Task Definition Models

Workflow definition models are commonly used to define data processing workflows
with rules. They explain how a workflow engine executes tasks with validatable and
interpretable rules [20]. In order to build a workflow system, we also needed to design
new definition models to handle workflow requests in a standard way. We chose to use
the Yet Another Markup Language (YAML) format for our proposed definitions because of
its simplicity and readability. The YAML has become very popular because of its simple
syntax and extensive support by programming languages [21]. YAML is considered a more
human-readable language than other syntaxes such as JSON (JavaScript Object Notation)
and XML (Extensible Markup Language).

Our proposed design introduced two types of definition models: task and work-
flow definition models. Each definition model has a different role and interpretation in

ISPRS Int. J. Geo-Inf. 2022, 11, 20 5 of 24

the system. In the following subsections, our proposed definition models are explained
in detail.

3.1.1. Task Definition

Task definition describes a new task that can be used as a step in a workflow to
execute deployed application code in the container image (Figure 2). As the workflows are
composed of different tasks, a task definition plays a vital role to add new capabilities to
the system.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 5 of 25

syntax and extensive support by programming languages [21]. YAML is considered a
more human-readable language than other syntaxes such as JSON (JavaScript Object No-
tation) and XML(Extensible Markup Language).

Our proposed design introduced two types of definition models: task and workflow
definition models. Each definition model has a different role and interpretation in the sys-
tem. In the following subsections, our proposed definition models are explained in detail.

3.1.1. Task Definition
Task definition describes a new task that can be used as a step in a workflow to exe-

cute deployed application code in the container image (Figure 2). As the workflows are
composed of different tasks, a task definition plays a vital role to add new capabilities to
the system.

Task definition has a set of rules for each property to keep task definitions consistent
It is also important to eliminate errors in task definitions before executing them.

Figure 2. Task definition structure.

Table 1 shows validation rules for each property in the definition. These rules are
embedded into the workflow system and run before storing in the database and also exe-
cuting them.

Table 1. Validation rules for task definition properties.

Property Name Validation Rules

Name

It cannot be empty.
Allowed characters: “Alphanumeric, -, _”.
It must be a unique name and should be not used by any other
existing stored tasks.

Description It cannot be empty

Image
It cannot be empty.
The container image must be available in the container registry.

Inputs[n]: Name
Outputs[n]: Name

It cannot be empty.
Allowed characters: Alphanumeric, -, _
It must be a unique name along with other inputs/outputs in the
task

Inputs[n]: Type
Outputs[n]: Type

It cannot be empty
The value must be “artifact” or “parameter”.

Inputs or outputs can be empty if there is no output or input for the task.
Parameter values are passed as a string to the associated container in runtime. The

containerized application’s responsibility is to handle and cast the value to another type.
Artifact refers to a binary data format, and they are passed as a file that is saved on the
container’s file system in runtime.

Figure 2. Task definition structure.

Task definition has a set of rules for each property to keep task definitions consistent It
is also important to eliminate errors in task definitions before executing them.

Table 1 shows validation rules for each property in the definition. These rules are
embedded into the workflow system and run before storing in the database and also
executing them.

Table 1. Validation rules for task definition properties.

Property Name Validation Rules

Name

It cannot be empty.
Allowed characters: “Alphanumeric, -, _”.
It must be a unique name and should be not
used by any other existing stored tasks.

Description It cannot be empty

Image
It cannot be empty.
The container image must be available in the
container registry.

Inputs[n]: Name
Outputs[n]: Name

It cannot be empty.
Allowed characters: Alphanumeric, -, _
It must be a unique name along with other
inputs/outputs in the task

Inputs[n]: Type
Outputs[n]: Type

It cannot be empty
The value must be “artifact” or “parameter”.

Inputs or outputs can be empty if there is no output or input for the task.
Parameter values are passed as a string to the associated container in runtime. The

containerized application’s responsibility is to handle and cast the value to another type.
Artifact refers to a binary data format, and they are passed as a file that is saved on the
container’s file system in runtime.

Figure 3 shows an example task definition that uses a “process-dem” tagged container
image to apply different filters on raster digital elevation model (DEM) files. We will use
this example in the implementation section as a part of the sample workflow.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 6 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 25

Figure 3 shows an example task definition that uses a “process-dem” tagged con-
tainer image to apply different filters on raster digital elevation model (DEM) files. We
will use this example in the implementation section as a part of the sample workflow.

Figure 3. An example task definition.

3.1.2. Workflow Definition
The workflow definition is the composition of different tasks run in a declared order

(Figure 4). Once a workflow is validated and stored, it can be called as many times as
desired to execute.

Figure 3. An example task definition.

3.1.2. Workflow Definition

The workflow definition is the composition of different tasks run in a declared order
(Figure 4). Once a workflow is validated and stored, it can be called as many times as
desired to execute.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 25

Figure 3 shows an example task definition that uses a “process-dem” tagged con-
tainer image to apply different filters on raster digital elevation model (DEM) files. We
will use this example in the implementation section as a part of the sample workflow.

Figure 3. An example task definition.

3.1.2. Workflow Definition
The workflow definition is the composition of different tasks run in a declared order

(Figure 4). Once a workflow is validated and stored, it can be called as many times as
desired to execute.

Figure 4. Workflow definition structure.

The proposed system supports sequential, parallel, and loop execution flows. In order
to carry out these types of flows, the workflow definition can have abstract steps named

ISPRS Int. J. Geo-Inf. 2022, 11, 20 7 of 24

“ForEach” and “Parallel” that are not linked to custom-built task definitions. The definition
supports nested iterations and parallel flows, and for example, a parallel step can contain
an iteration step, or an iteration branch can contain a parallel step.

Reference values are used to pass interim data generated by another step in the
workflow execution. Reference values are helpful to carry data between steps.

These are possible reference values:

{{step.[StepId].[OutputName]}} (1)

{{input.[InputName]}} (2)

The reference value is formalized with a step output or input name, and step id must
exist inside the same workflow definition. The steps inside an iteration step can also have a
“{{item}}” reference value as an input; however, this value cannot address upper iteration
scopes. Referenced values can only refer to previous steps.

Similar to the task definition model, our proposed workflow definition model also has
a set of validation rules (Table 2). Once a workflow is validated and stored, it can be called
as many times as desired to execute.

Table 2. Validation rules for workflow definition properties.

Property Name Validation Rules

Name

It cannot be empty.
Allowed characters: “Alphanumeric, -, _”.
It must be a unique name and should be not
used by any other existing stored workflows.

Inputs
Outputs

It is optional. It can be neglected if there is no
need to pass input to workflow.

Inputs: Parameters[n]: Name It cannot be empty.

Outputs: Parameters [n]: Name
Outputs: Artifacts [n]: Name

It cannot be empty.
It must name one of the task definition’s
parameter/artifact output names.

Steps It must contain at least one step.

Steps[n]: Id

It cannot be empty.
Allowed characters: “Alphanumeric, -, _”.
It must be a unique name along with other
steps in the workflow definition.

Steps[n]: Task

It cannot be empty.
It must be a value of one of these:
A registered task name
ForEach
Parallel

Steps[n]: Inputs It is optional. It can be neglected if there is no
need to pass an input.

Steps[n]: Inputs: Parameters
Steps[n]: Inputs: Artifacts

It is optional. It can be neglected if there is no
need to pass a parameter/artifact input.

Steps[n]: Inputs: Parameters[n]: Name
Steps[n]: Inputs: Artifacts [n]: Name

It cannot be empty.
It must name one of the task definition’s
parameter/artifact inputs names.

Steps[n]: Inputs: Parameters[n]: Value It cannot be empty.
It must be a scalar or reference value.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 8 of 24

Table 2. Cont.

Property Name Validation Rules

Steps[n]: Inputs: Artifacts [n]: Value It cannot be empty.
It must be a reference value.

Steps[n]: Outputs It is optional. It can be neglected if there is no
output from the step.

Steps[n]: Outputs: Parameters
Steps[n]: Outputs: Artifacts

It is optional. It can be neglected if there is no
need to store and use generated
parameter/artifact outputs.

Steps[n]: Outputs: Parameters[n]: Name
Steps[n]: Outputs: Artifacts [n]: Name

It cannot be empty
It must name one of the task definition’s
parameter/artifact output names

Steps[n]: Iterate It must be used if Steps[n]: Task value is
“ForEach”.

Steps[n]: Iterate: Collection It cannot be empty.
It must be a reference value.

Steps[n]: Iterate: MaxConcurreny It must be a number greater than 1.

Steps[n]: Iterate: Steps
It must contain at least one step to iterate.
All validation rules for the step above are also
valid for iteration steps.

Steps[n]: Branches

It must be used if Steps[n]: Task value is
“Parallel”.
It must contain a multidimensional array
Each row represents branches that will execute
in parallel
Each column represents a list of steps
It must contain at least two rows
Each row must contain at least one step
All validation rules for the step above are also
valid for parallel steps

All description properties are optional and can be free text. Even though they are
optional, it is recommended to populate description fields to generate user documentation
and useful metadata information.

There is no defined limit on the number of parallel branches and maximum concur-
rency limit in the validation rules. On the other hand, system administrators could advise
maximum limits based on the computational limits.

3.2. System Architecture

We aimed to keep the system architecture with minimum components to reduce com-
plexity on deployment and management. This simple architecture can be easily deployed
to any cloud provider or on-premises. On the other hand, it is easy to monitor and organize
a simple architecture for a system administrator. Another advantage is that it allows devel-
opers to troubleshoot quickly and contribute new functionalities when needed. Moreover,
we presume that a developer with basic knowledge of cloud technologies could set up our
proposed system design on a public cloud provider or on-premise infrastructure.

The system architecture components should work based on demand and not consume
any resources except for storage in the idle phase to achieve the serverless deployment
goal. Communications between each system component should be completed through
secured channels.

Figure 5 illustrates the high-level system architecture we examined with four different
components and two roles. These components are:

1. Workflow System

ISPRS Int. J. Geo-Inf. 2022, 11, 20 9 of 24

2. Workflow Container Registry
3. Workflow Outputs Storage
4. Client Applications

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 25

1. Workflow System
2. Workflow Container Registry
3. Workflow Outputs Storage
4. Client Applications

Figure 5. High-level system components and roles.

We will explain each component in detail with supporting diagrams. Furthermore,
the roles are;
1. User
2. Developer

In the next section, we will give details about these roles and explain their responsi-
bilities. Then, the following sections will give details about components.

3.2.1. Roles
The proposed system has two different roles: developer and user.
Developer. The developer is responsible for monitoring, extending, and maintaining

the system. This role should have access to monitoring and administration systems. In
some instances, a system administrator can share monitoring and administration respon-
sibilities. The developer develops the workflow tasks. The developer thus should be well
trained on the workflow task development and have the necessary tools and skills to in-
troduce a new workflow task to the system. As the system relies on containers and work-
flow tasks are coupled with container images, the developer should have access to push
new container images to the container registry system. The developer is also responsible
for creating documentation for each newly created workflow task. It must be considered
that a workflow task documentation should give all necessary information about the
workflow task to enable a user to use it in a workflow without any hassle. Since the system
does not require managing cloud infrastructure as it can use the cloud provider’s APIs to
control its container execution system, the developer does not need a comprehensive un-
derstanding of cloud infrastructure.

User. The user is responsible for designing a workflow with available workflow tasks
in the task repository. The user should decide which data sources will be used in the work-
flow and assess whether they can be used with the selected workflow task. The user role
and developer role may need to work collaboratively. For example, suppose a data source
is incompatible with the workflow task. In that case, the user and the developer may need
to join forces to modify the incompatible task or introduce a new one. The user should
have access to published documentation to learn how to use the system and available
workflow tasks.

Figure 5. High-level system components and roles.

We will explain each component in detail with supporting diagrams. Furthermore,
the roles are;

1. User
2. Developer

In the next section, we will give details about these roles and explain their responsibil-
ities. Then, the following sections will give details about components.

3.2.1. Roles

The proposed system has two different roles: developer and user.
Developer. The developer is responsible for monitoring, extending, and maintaining the

system. This role should have access to monitoring and administration systems. In some
instances, a system administrator can share monitoring and administration responsibilities.
The developer develops the workflow tasks. The developer thus should be well trained
on the workflow task development and have the necessary tools and skills to introduce
a new workflow task to the system. As the system relies on containers and workflow
tasks are coupled with container images, the developer should have access to push new
container images to the container registry system. The developer is also responsible for
creating documentation for each newly created workflow task. It must be considered that a
workflow task documentation should give all necessary information about the workflow
task to enable a user to use it in a workflow without any hassle. Since the system does not
require managing cloud infrastructure as it can use the cloud provider’s APIs to control its
container execution system, the developer does not need a comprehensive understanding
of cloud infrastructure.

User. The user is responsible for designing a workflow with available workflow tasks
in the task repository. The user should decide which data sources will be used in the
workflow and assess whether they can be used with the selected workflow task. The user
role and developer role may need to work collaboratively. For example, suppose a data
source is incompatible with the workflow task. In that case, the user and the developer may
need to join forces to modify the incompatible task or introduce a new one. The user should
have access to published documentation to learn how to use the system and available
workflow tasks.

The user should have enough insight to diagnose the problem in the failed workflow
execution. If the problem is rooted in the workflow system components, the user should
report it to developers. If a graphical user interface is provided to users for using a workflow
system, the user should also be well trained on this interface.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 10 of 24

3.2.2. Workflow System

The core component of the high-level architecture is the workflow system that handles
all user and container requests and generates a response or event.

Figure 6 shows that the workflow system consists of the following six child compo-
nents that will be explained in detail consecutively in this section:

1. Workflow Management
2. API Gateway
3. Container Service
4. Workflow Task Management
5. Database
6. Monitoring and Logging System

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 10 of 25

The user should have enough insight to diagnose the problem in the failed workflow
execution. If the problem is rooted in the workflow system components, the user should
report it to developers. If a graphical user interface is provided to users for using a work-
flow system, the user should also be well trained on this interface.

3.2.2. Workflow System
The core component of the high-level architecture is the workflow system that han-

dles all user and container requests and generates a response or event.
Figure 6 shows that the workflow system consists of the following six child compo-

nents that will be explained in detail consecutively in this section:
1. Workflow Management
2. API Gateway
3. Container Service
4. Workflow Task Management
5. Database
6. Monitoring and Logging System

Figure 6. The workflow system and its components.

We designed the system with components and technologies that can run on server-
less technologies. In hybrid scenarios, some components such as container services can be
selected either from a cloud provider services or deployed on-premises.

Workflow Management. The workflow management component is a backend service
that provides Representational State Transfer (RESTful) API to run and track workflow
executions. The workflow management service is responsible for carrying out the follow-
ing operations:
• Validate and store workflow definitions
• Run, stop and monitor workflow executions
• Present workflow execution deliverables such as literal and binary outputs

In our design, all workflow executions are considered long-running processes be-
cause they are highly coupled with other long-running processes such as container exe-
cution and pulling data from another data source. All workflow execution requests are
handled with the asynchronous request-reply pattern. This pattern makes it possible to
deploy the workflow management service on a stateless FaaS service with short execution
times.

Figure 6. The workflow system and its components.

We designed the system with components and technologies that can run on serverless
technologies. In hybrid scenarios, some components such as container services can be
selected either from a cloud provider services or deployed on-premises.

Workflow Management. The workflow management component is a backend ser-
vice that provides Representational State Transfer (RESTful) API to run and track work-
flow executions. The workflow management service is responsible for carrying out the
following operations:

• Validate and store workflow definitions
• Run, stop and monitor workflow executions
• Present workflow execution deliverables such as literal and binary outputs

In our design, all workflow executions are considered long-running processes because
they are highly coupled with other long-running processes such as container execution
and pulling data from another data source. All workflow execution requests are handled
with the asynchronous request-reply pattern. This pattern makes it possible to deploy the
workflow management service on a stateless FaaS service with short execution times.

Figure 7 shows how client requests are executed in which order via a sequence flow.
The OGC API Processes compliant actions are depicted in a purple shaded area.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 11 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 11 of 25

Figure 7 shows how client requests are executed in which order via a sequence flow.
The OGC API Processes compliant actions are depicted in a purple shaded area.

Figure 7. Workflow management service sequence flows for each type of request.

The workflow management service is also responsible for validating workflow defi-
nitions before executing and storing them.

In addition to custom RESTful API endpoints, the workflow management service
provides the OGC API Processes compliant endpoints to increase interoperability with
other geospatial desktop and mobile applications. OGC API Processes is the new version
of the OGC Web Processing Service (WPS) specification, and it defines geoprocessing ser-
vice standards [22]. The new specification version is built concerning modern web devel-
opment practices that ease integration with the new system architectures. Each stored
workflow definition can be retrieved as an OGC Process, and workflow names are repre-
sented as `Process Id` in the OGC responses. All stored workflows can only be executed
asynchronously, so the synchronous execution option should not be offered.

Execution results are generated using parameter and artifact outputs from completed
execution. The workflow manager service calls the workflow outputs storage API to gen-
erate temporary signed download Uniform Resource Locators (URL) if artifact outputs
are generated. So, the client application can download them without keeping the work-
flow management service instance busy.

The workflow management service is also responsible for executing workflows by
interacting with other components (Figure 8). We designed it to be deployed with the FaaS
model. Thus, it is a stateless service and uses the database to store all workflow execution

Figure 7. Workflow management service sequence flows for each type of request.

The workflow management service is also responsible for validating workflow defini-
tions before executing and storing them.

In addition to custom RESTful API endpoints, the workflow management service
provides the OGC API Processes compliant endpoints to increase interoperability with
other geospatial desktop and mobile applications. OGC API Processes is the new version
of the OGC Web Processing Service (WPS) specification, and it defines geoprocessing
service standards [22]. The new specification version is built concerning modern web
development practices that ease integration with the new system architectures. Each
stored workflow definition can be retrieved as an OGC Process, and workflow names
are represented as ‘Process Id‘ in the OGC responses. All stored workflows can only be
executed asynchronously, so the synchronous execution option should not be offered.

Execution results are generated using parameter and artifact outputs from completed
execution. The workflow manager service calls the workflow outputs storage API to
generate temporary signed download Uniform Resource Locators (URL) if artifact outputs
are generated. So, the client application can download them without keeping the workflow
management service instance busy.

The workflow management service is also responsible for executing workflows by
interacting with other components (Figure 8). We designed it to be deployed with the FaaS
model. Thus, it is a stateless service and uses the database to store all workflow execution
states. It provides RESTful APIs to handle HTTP requests from containers to update
execution and job status and proceed to the subsequent step in the workflow. The API
Gateway routes all HTTP requests from containers to the workflow management service.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 12 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 12 of 25

states. It provides RESTful APIs to handle HTTP requests from containers to update exe-
cution and job status and proceed to the subsequent step in the workflow. The API Gate-
way routes all HTTP requests from containers to the workflow management service.

Figure 8. Workflow orchestration sequence flows.

The workflow management service should know how to interact with the container
service to create, run, and kill containers based on the execution step’s requirements.
Therefore, the container service should be accessible to the workflow orchestrator via
APIs.

During task execution, the service should generate temporary upload and download
signed URLs from workflow output storage for inputs and outputs artifacts and send
these URLs to the caller container securely upload or download files. It is crucial to gen-
erate temporary URLs with enough time to upload and download large files without in-
terruption.

The workflow management service should set the required environment variables to
run containers. For example, the API Key needs to be injected as an environment param-
eter into the container to communicate with the workflow orchestrator securely.

API Gateway. The API gateway sits between the client applications and two manage-
ment services, and it routes HTTP traffic to a relevant backend service based on the rout-
ing configuration (Table 3). The API gateway should also translate HTTP requests into
FaaS events to invoke FaaS backend services [23]. It is essential because all management
services are designed to deploy as a FaaS when it is possible.

Figure 8. Workflow orchestration sequence flows.

The workflow management service should know how to interact with the container
service to create, run, and kill containers based on the execution step’s requirements.
Therefore, the container service should be accessible to the workflow orchestrator via APIs.

During task execution, the service should generate temporary upload and download
signed URLs from workflow output storage for inputs and outputs artifacts and send these
URLs to the caller container securely upload or download files. It is crucial to generate tem-
porary URLs with enough time to upload and download large files without interruption.

The workflow management service should set the required environment variables to
run containers. For example, the API Key needs to be injected as an environment parameter
into the container to communicate with the workflow orchestrator securely.

API Gateway. The API gateway sits between the client applications and two manage-
ment services, and it routes HTTP traffic to a relevant backend service based on the routing
configuration (Table 3). The API gateway should also translate HTTP requests into FaaS
events to invoke FaaS backend services [23]. It is essential because all management services
are designed to deploy as a FaaS when it is possible.

The API Gateway should be selected as a managed and serverless service in public
cloud providers to reduce management and increase scalability.

The API Gateway should support creating RESTful APIs and JSON payload support
in HTTP requests and responses.

Another role of API Gateway is to protect management services from unauthorized
requests [24]. It should support token-based authentication (Figure 9). In our proposed
design, backend services delegate authentication and authorization to the API Gateway.
Thus, the API gateway should have identity provider integration support to leverage a
user store and authorize requests with an access control list (ACL). In that way, backend
services are simplified from extra security layers. In addition, the API gateway should

ISPRS Int. J. Geo-Inf. 2022, 11, 20 13 of 24

support or allow the machine-to-machine communication that is needed for securing the
HTTP calls between workflow management and container service.

Table 3. API gateway rule table for routing.

Path Description Backend Service Role

/processes/*
/jobs/*

OGC API Processes
Endpoints[X]

Workflow
Management

User/Developer

/workflows/* Workflow Management
Endpoints

/stepexecutions/* Workflow Execution
Endpoints

Workflow
Management Container

/tasks/* Workflow Task
Management Endpoints

Workflow Task
Management Developer

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 13 of 25

Table 3. API gateway rule table for routing.

Path Description Backend Service Role
/processes/*

/jobs/*
OGC API Processes End-

points[X] Workflow Management User/Developer
/workflows/* Workflow Management End-

points

/stepexecutions/* Workflow Execution End-
points

Workflow Management Container

/tasks/* Workflow Task Management
Endpoints

Workflow Task Management Developer

The API Gateway should be selected as a managed and serverless service in public
cloud providers to reduce management and increase scalability.

The API Gateway should support creating RESTful APIs and JSON payload support
in HTTP requests and responses.

Another role of API Gateway is to protect management services from unauthorized
requests [24]. It should support token-based authentication (Figure 9). In our proposed
design, backend services delegate authentication and authorization to the API Gateway.
Thus, the API gateway should have identity provider integration support to leverage a
user store and authorize requests with an access control list (ACL). In that way, backend
services are simplified from extra security layers. In addition, the API gateway should
support or allow the machine-to-machine communication that is needed for securing the
HTTP calls between workflow management and container service.

Figure 9. API Gateway interactions with other components.

Container Service. The container service is the core computation element of the work-
flow system, and it is responsible for running requested container images to execute cus-
tom-built code with inputs. In our design, we proposed to use a CaaS based platform as a
container service in a public cloud provider. These platforms abstract complex operational
requirements and enable users to scale and manage the system quickly [25].

In the implementation, containers may need to access external or internal data
sources to process. In addition, containers need to make HTTP calls to the workflow man-
ager to report their status and pull the required information to run. In such circumstances,
the container service should allow containers to access external internet sources and the
workflow manager through the API Gateway component.

Figure 9. API Gateway interactions with other components.

Container Service. The container service is the core computation element of the work-
flow system, and it is responsible for running requested container images to execute
custom-built code with inputs. In our design, we proposed to use a CaaS based platform as
a container service in a public cloud provider. These platforms abstract complex operational
requirements and enable users to scale and manage the system quickly [25].

In the implementation, containers may need to access external or internal data sources
to process. In addition, containers need to make HTTP calls to the workflow manager
to report their status and pull the required information to run. In such circumstances,
the container service should allow containers to access external internet sources and the
workflow manager through the API Gateway component.

The container service should also have an API that integrates the workflow manage-
ment service to manage the container lifecycle. For instance, the workflow management
service needs to spin up or terminate containers based on the task execution status, so an
API should provide these procedures.

Workflow Task Manager. The workflow task management component is another backend
service that provides a RESTful API to manage workflow tasks, and it is designed to be
used by the developer role mainly. The workflow task management service is responsible
for validating and storing workflow task definitions. The service could need to call the
container registry to check whether the associated container image tag exists or not in the
scope of the validation process.

The workflow task manager service should also expose the API documentation based
on the Open API Specification (OAS) that is widely supported to allow the developer

ISPRS Int. J. Geo-Inf. 2022, 11, 20 14 of 24

to learn endpoints or make it possible to create a software development kit (SDK) or
command-line interface (CLI) tool to interact with the API [26].

The service uses the database to store task definitions in proposed task definition models.
Database. The proposed design does not have any mandatory criteria for database

selection. Nevertheless, the database should be selected as managed and serverless service
in public cloud providers to reduce management and increase resource optimization. Des-
ignated database technology should have indexing features to improve query performance.
In addition, it should have sufficient support for the programming languages used in
backend services development.

The database entity models should be designed concerning OGC Processing API speci-
fications to return Processing API compliant responses via the workflow management service.

Another essential point is to consider that each backend service should have its private
database or database table [27].

Monitoring and Logging System. Tracking system metrics and logs emitted from the
system components is crucial for management and monitoring [28]. Developer and user
roles should have access to the monitoring and logging component. The user should
only have read-only access and create alarms based on the metrics or logs. The developer
can configure metrics and design a monitoring dashboard to see the big picture. The
developer can also add new data sources to ingest more logs and metrics from the other
infrastructure components.

The system should have the necessary APIs and SDKs for the programming languages
used by backend services. Moreover, it should support integrating selected services to
collect enough metrics and logs.

3.2.3. Workflow Container Registry

In this component, container images built by the developer are stored. When the
workflow step is needed to be executed, the container service pulls the stored container
image from the workflow container registry based on the container image name (Figure 8).
The container image name value is obtained from the related workflow task definition.

These container images should be built with a caller agent. This caller agent is re-
sponsible for contacting the workflow management service via HTTP requests. When a
process is started or completed, the agent should download and upload inputs and outputs.
Fundamentally, this caller agent runs the given command in a child process and collects its
console outputs and errors. It can report all these console logs and errors to the workflow
orchestrator for logging. It can also obtain the return code from the child process. Thus it
can report when the process is completed with success or an error.

The caller agent can be embedded into a base container image in our proposed solution
to increase reusability. A container image can be inherited from another container image to
extend its functionality. Thus, container images for task executions can be inherited from
this base container image, as shown in Figure 10. Another critical point is that the caller
application should have a retry mechanism to keep the container alive in case of short
outages in the workflow management system or API gateway [29].

3.2.4. Workflow Output Storage

The workflow step executions need a storage component to save output artifact objects.
In public cloud providers, storage systems are called object storage, and object storages
manage binaries as objects, unlike file systems [30]. There are also open-source object
storage technologies that can be used in on-premise deployment [31]. We recommend
using object storage service in both deployment scenarios to enable secure, scalable and
accessible object management through HTTP requests.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 15 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 15 of 25

the caller application should have a retry mechanism to keep the container alive in case of
short outages in the workflow management system or API gateway [29].

Figure 10. An example docker file content that uses the base image contains the agent.

3.2.4. Workflow Output Storage
The workflow step executions need a storage component to save output artifact ob-

jects. In public cloud providers, storage systems are called object storage, and object stor-
ages manage binaries as objects, unlike file systems [30]. There are also open-source object
storage technologies that can be used in on-premise deployment [31]. We recommend us-
ing object storage service in both deployment scenarios to enable secure, scalable and ac-
cessible object management through HTTP requests.

The workflow output storage should be selected as an object storage service. This
type of storage service enables object management and access via APIs. As we explained
in previous sections, the workflow system should be accessible by the caller agents in con-
tainers and the workflow management service. They should be compatible with the work-
flow output storage APIs.

This storage should allow saving these artifact objects in a structure. Objects are
stored as partitioned by job id and step id as follows; “{job-id}/{step-id}/{iteration- id}/out-
put -name”. In this structure, “{iteration- id}” is zero by default, while iteration step out-
puts are stored with an incremental iteration index number.

The workflow output storage API should have endpoints to generate temporary
URLs for stored objects, accessing objects securely via different components or roles.

3.2.5. Client Applications
The client applications can be grouped into two categories. The first category can be

called “User Interfaces”, which are different types of applications that target the user role.
The second category can be called “Developer Tools”, which are applications and SDKs
used by the developer role (Figure 11). All client applications perform API calls with to-
ken-based authentication against the workflow system.

Figure 10. An example docker file content that uses the base image contains the agent.

The workflow output storage should be selected as an object storage service. This
type of storage service enables object management and access via APIs. As we explained
in previous sections, the workflow system should be accessible by the caller agents in
containers and the workflow management service. They should be compatible with the
workflow output storage APIs.

This storage should allow saving these artifact objects in a structure. Objects are stored
as partitioned by job id and step id as follows; “{job-id}/{step-id}/{iteration- id}/output
-name”. In this structure, “{iteration- id}” is zero by default, while iteration step outputs are
stored with an incremental iteration index number.

The workflow output storage API should have endpoints to generate temporary URLs
for stored objects, accessing objects securely via different components or roles.

3.2.5. Client Applications

The client applications can be grouped into two categories. The first category can
be called “User Interfaces”, which are different types of applications that target the user
role. The second category can be called “Developer Tools”, which are applications and
SDKs used by the developer role (Figure 11). All client applications perform API calls with
token-based authentication against the workflow system.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 15 of 25

the caller application should have a retry mechanism to keep the container alive in case of
short outages in the workflow management system or API gateway [29].

Figure 10. An example docker file content that uses the base image contains the agent.

3.2.4. Workflow Output Storage
The workflow step executions need a storage component to save output artifact ob-

jects. In public cloud providers, storage systems are called object storage, and object stor-
ages manage binaries as objects, unlike file systems [30]. There are also open-source object
storage technologies that can be used in on-premise deployment [31]. We recommend us-
ing object storage service in both deployment scenarios to enable secure, scalable and ac-
cessible object management through HTTP requests.

The workflow output storage should be selected as an object storage service. This
type of storage service enables object management and access via APIs. As we explained
in previous sections, the workflow system should be accessible by the caller agents in con-
tainers and the workflow management service. They should be compatible with the work-
flow output storage APIs.

This storage should allow saving these artifact objects in a structure. Objects are
stored as partitioned by job id and step id as follows; “{job-id}/{step-id}/{iteration- id}/out-
put -name”. In this structure, “{iteration- id}” is zero by default, while iteration step out-
puts are stored with an incremental iteration index number.

The workflow output storage API should have endpoints to generate temporary
URLs for stored objects, accessing objects securely via different components or roles.

3.2.5. Client Applications
The client applications can be grouped into two categories. The first category can be

called “User Interfaces”, which are different types of applications that target the user role.
The second category can be called “Developer Tools”, which are applications and SDKs
used by the developer role (Figure 11). All client applications perform API calls with to-
ken-based authentication against the workflow system.

Figure 11. Client application types and their relations with the system components.

User interfaces are applications with a graphical user interface that provide an easy and
intuitive way to interact with the APIs provided by the proposed system architecture. They
can be run on desktop, mobile and web platforms. The user interface applications also need
to access workflow output storage to download generated outputs with temporary URLs.

Developer tools could help build user interfaces, register new workflow task defini-
tions, and publish new container images. When the selected containerization technologies
provide tools, they can be used to build and publish container images by the developer [32].

ISPRS Int. J. Geo-Inf. 2022, 11, 20 16 of 24

4. Implementation

To evaluate the proposed system architecture, we first implemented it in one of the
commonly used and mature public cloud providers as a proof of concept. The AWS cloud
provider was selected because it has various serverless services that we can leverage to
deploy a complete serverless system. The other public cloud providers have similar services
that can also be used for deployment. Another reason to select AWS is that it offers a Well-
Architected framework to review whether cloud architectures follow architectural best
practices [33]. Therefore, we examined the proposed system architecture over the proof of
concept in the evaluation section with this framework’s pillars.

4.1. Cloud Implementation

This section examines the deployment of the proposed system architecture with AWS
as a public cloud provider. We designed our system architecture that can be deployed as
serverless, so we preferred the cloud provider’s only serverless services for each component
to demonstrate its applicability with serverless deployment. Figure 12 illustrates the system
implementation diagram with AWS service names and component names in the system
architecture section. We explain each component deployment and implementation by
giving details of the selected service and programming language.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 16 of 25

Figure 11. Client application types and their relations with the system components.

User interfaces are applications with a graphical user interface that provide an easy
and intuitive way to interact with the APIs provided by the proposed system architecture.
They can be run on desktop, mobile and web platforms. The user interface applications
also need to access workflow output storage to download generated outputs with tempo-
rary URLs.

 Developer tools could help build user interfaces, register new workflow task defini-
tions, and publish new container images. When the selected containerization technologies
provide tools, they can be used to build and publish container images by the developer
[32].

4. Implementation
To evaluate the proposed system architecture, we first implemented it in one of the

commonly used and mature public cloud providers as a proof of concept. The AWS cloud
provider was selected because it has various serverless services that we can leverage to
deploy a complete serverless system. The other public cloud providers have similar ser-
vices that can also be used for deployment. Another reason to select AWS is that it offers
a Well-Architected framework to review whether cloud architectures follow architectural
best practices [33]. Therefore, we examined the proposed system architecture over the
proof of concept in the evaluation section with this framework’s pillars.

4.1. Cloud Implementation
This section examines the deployment of the proposed system architecture with AWS

as a public cloud provider. We designed our system architecture that can be deployed as
serverless, so we preferred the cloud provider’s only serverless services for each compo-
nent to demonstrate its applicability with serverless deployment. Figure 12 illustrates the
system implementation diagram with AWS service names and component names in the
system architecture section. We explain each component deployment and implementation
by giving details of the selected service and programming language.

Figure 12. The public cloud deployment of the proposed system architecture with serverless services
on AWS.

4.1.1. Used Services in Amazon Web Service

All AWS services provide APIs enable integration with other services and deployed
applications. The communication between AWS services is seamlessly established securely.
In addition, AWS supports various Infrastructure-as-a-Code (IaaC) deployment models that
enable infrastructure management with machine-readable descriptive models [34]. This
deployment model makes it easier to keep infrastructure in a versioning system. Another
common point of all selected services is integrating with a central monitoring and logging
service named Amazon CloudWatch. This service gives valuable insight into problems and
resource utilization [35].

ISPRS Int. J. Geo-Inf. 2022, 11, 20 17 of 24

Amazon S3 service was selected to use as workflow outputs storge. It manages object
storage and supports organizing objects by using prefixes. Furthermore, it is also possible
to generate temporary URLs for downloading and uploading objects [36].

Amazon API Gateway is the only API gateway solution in the AWS service portfolio,
so we placed it for the API gateway component. We configured it to route traffic to
backend services based on path mappings. When used with Amazon Lambda, it can route
HTTP requests to Amazon Lambda function as events [37]. It also supports token-based
authorization to protect APIs from unauthorized access.

We used Amazon Cognito as an identity provider to authorize requests based on the
access control list with proposed user and developer roles. Amazon Cognito is also an
authentication provider that can handle user sign-in.

Amazon Lambda was used to deploy all backend services in our design. It is an
event-driven FaaS based service, and it supports a wide range of programming languages
and is triggered by events originating from other AWS services [38]. It has explicitly built-in
integration with Amazon API Gateway.

Amazon DynamoDB is a document-based key-value database, so it brings an ap-
proach to database modelling different from traditional relational databases [39]. Amazon
DynamoDB was used as a database component to store all entities. We used the on-demand
type of provisioning. Our design supports OGC API Processes, so we honored the specifi-
cation in the data modelling. An alternative serverless database service option could be
Amazon Aurora Serverless. It could be preferred when there is a need to construct a more
complex and relational database since it is based on PostgreSQL relational database server
with geospatial data support [40].

Amazon Container Registry is another fully-managed service that supports storing,
managing, and deploying Docker container images. It is used as the container registry
component to store container images associated with workflow tasks.

Amazon Fargate is a relatively new AWS service that gradually replaces the older
EC2 Container Service (ECS) for production and sandbox workloads [41]. It is offered
with a serverless CaaS model and supports running Docker containers on-demand or on
schedule. We configured Amazon Fargate to run workflow task containers with internet
and workflow storage account access. Thus, containers can access internal and external
data sources during runtime.

4.1.2. Backend Development

We developed two backend services designed as microservices. Each service can be
deployed and scaled separately. As we deployed them on Amazon Lambda, scaling and
availability are managed by AWS. We used the .Net Core Framework version 3.1 with
C# programming language to develop all components. We followed and applied Adam
Wiggins’s twelve-factor app methodology in the development [42].

Backend services were created with the .Net Core Web API framework that allows
creating RESTful APIs with built-in support for the JSON format. Since we designed
our workflow and task definition models in the YAML format, we added a library to
parse YAML requests to accept workflow and task definitions. In addition, we used
other open-source libraries to implement additional requirements. For example, we used
the MediatR library to implement Command Query Responsibility Segregation (CQRS),
an architectural pattern that separates the commands and the queries by two different
methods of communication [43]. CQRS is commonly used for systems that handle complex
interactions with multiple changing data sources across process boundaries. Besides these
libraries, AWS .Net libraries are also used to securely interact with the Amazon Fargate,
Amazon S3 and Amazon DynamoDB APIs [44].

The container agent was compiled as executable for Linux environments. The .Net
Core framework supports compiling self-executable files for the Linux operating system.
This is crucial because the Docker images that we used in the evaluation are Linux based.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 18 of 24

4.2. Evaluation

For the sake of brevity, we evaluated the system with two inclusive sample workflows
that leveraged all presented features in workflow definition models and challenged the
system design over execution models such as parallel and iterative processing. Therefore,
we demonstrated how our workflow definition model could define complex geospatial
processes with the proposed serverless system. In addition, we reviewed the proposed
architecture with AWS Well-Architected tool that describes the key concepts, design princi-
ples, and architectural best practices for designing and running workloads in the cloud [33].

As a first example, we defined a sample workflow to process digital elevation models
(DEM) downloaded from a public source and perform slope and relief raster calculations
on each file together with coordinate system reprojection. The demonstrated sample is
challenging for serverless data processing flows because computational requirements could
not be handled in the FaaS model. We specifically preferred raster processing to show that
the proposed system is applicable for long-running executions requiring more computation
power and memory. Moreover, the sample workflow includes our proposed parallel and
iterative execution tasks to demonstrate “ForEach” and “Parallel” tasks usages. Figure 13
illustrate the sample workflow that uses “ForEach” task to iterate a set of tasks to download
DEM files and applies raster functions iteratively. When all iterations are completed, the
next step reprojects DEM files to another coordinate system in parallel to demonstrate
“Parallel” task and produce outputs.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 19 of 25

Figure 13. A sample workflow definition in the proposed workflow definition model.

To handle this workflow, we developed three different task definitions and docker
container images to be used in the workflow (Figure 14). We used open-source geospatial
Python libraries for these tasks.

Figure 14. Visual representation of the sample workflow.

Figure 13. A sample workflow definition in the proposed workflow definition model.

To handle this workflow, we developed three different task definitions and docker
container images to be used in the workflow (Figure 14). We used open-source geospatial
Python libraries for these tasks.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 19 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 19 of 25

Figure 13. A sample workflow definition in the proposed workflow definition model.

To handle this workflow, we developed three different task definitions and docker
container images to be used in the workflow (Figure 14). We used open-source geospatial
Python libraries for these tasks.

Figure 14. Visual representation of the sample workflow.

Figure 14. Visual representation of the sample workflow.

Figure 15 shows example input parameters to execute and retrieved output param-
eters at the end of the execution of the sample workflow defined above. The request
payload and the response body are in JSON format that complies with the OGC API
Processes specification.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 20 of 25

Figure 15 shows example input parameters to execute and retrieved output parame-
ters at the end of the execution of the sample workflow defined above. The request pay-
load and the response body are in JSON format that complies with the OGC API Processes
specification.

(a) (b)

Figure 15. HTTP request payload to execute the sample workflow (a) Workflow execution response body that has gener-
ated signed URLs to download output raster files (b).

For a real-world example, we considered the flood inundation model. It is one of the
most common geospatial analyses that visualize the impact of flooding on public infra-
structure, critical facilities, and vulnerable populations. We used the flood inundation
workflow developed by Joel Lawhead [45]. Briefly, this model starts with a seed point and
floods an area with an inundation level. The flooded area is generated as a vector polygon
for each terrain area. Figure 16 shows the workflow definition defined in the proposed
workflow definition model.

Figure 15. HTTP request payload to execute the sample workflow (a) Workflow execution response
body that has generated signed URLs to download output raster files (b).

For a real-world example, we considered the flood inundation model. It is one of
the most common geospatial analyses that visualize the impact of flooding on public
infrastructure, critical facilities, and vulnerable populations. We used the flood inundation
workflow developed by Joel Lawhead [45]. Briefly, this model starts with a seed point and
floods an area with an inundation level. The flooded area is generated as a vector polygon
for each terrain area. Figure 16 shows the workflow definition defined in the proposed
workflow definition model.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 20 of 24

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 20 of 25

Figure 15 shows example input parameters to execute and retrieved output parame-
ters at the end of the execution of the sample workflow defined above. The request pay-
load and the response body are in JSON format that complies with the OGC API Processes
specification.

(a) (b)

Figure 15. HTTP request payload to execute the sample workflow (a) Workflow execution response body that has gener-
ated signed URLs to download output raster files (b).

For a real-world example, we considered the flood inundation model. It is one of the
most common geospatial analyses that visualize the impact of flooding on public infra-
structure, critical facilities, and vulnerable populations. We used the flood inundation
workflow developed by Joel Lawhead [45]. Briefly, this model starts with a seed point and
floods an area with an inundation level. The flooded area is generated as a vector polygon
for each terrain area. Figure 16 shows the workflow definition defined in the proposed
workflow definition model.

Figure 16. A real-world example, workflow definition of flood inundation prediction in the proposed
workflow definition model.

We defined the workflow with a composition of three steps (Figure 17). The first step
uses “ForEach” iteration task that loops the DEM URLs and runs the steps that perform the
flood analysis for each downloaded DEM file.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 21 of 25

Figure 16. A real-world example, workflow definition of flood inundation prediction in the pro-
posed workflow definition model.

We defined the workflow with a composition of three steps (Figure 17). The first step
uses “ForEach” iteration task that loops the DEM URLs and runs the steps that perform
the flood analysis for each downloaded DEM file.

.

Figure 17. Visual representation of the flood inundation prediction workflow.

Similarly, we also dockerized the flood prediction code and defined and registered
the workflow tasks via Workflow Task Management API. We reused the “Download
DEM” task from the previous sample to download terrain models

Figure 18 illustrates an example request payload containing input parameters to ex-
ecute the flood workflow. In addition, an example response body has deducted URLs for
representing signed download URLs of flood areas in vector format. The seed points are
passed in the Well-known text (WKT) MultiPoint format, and the flood analysis calcula-
tion is executed for each intersected point in the terrain area.

(a) (b)

Figure 18. HTTP request payload to execute the flood prediction workflow (a) Workflow execution
response body that has generated signed URLs to download output vector files (b).

We examined the implemented serverless cloud architecture with AWS Well-Archi-
tectured tools with its five pillars, and they are helpful to produce stable and efficient
systems. AWS claims that these pillars help architects build secure, high-performing, re-
silient, and efficient infrastructure.

Figure 17. Visual representation of the flood inundation prediction workflow.

Similarly, we also dockerized the flood prediction code and defined and registered
the workflow tasks via Workflow Task Management API. We reused the “Download DEM”
task from the previous sample to download terrain models

ISPRS Int. J. Geo-Inf. 2022, 11, 20 21 of 24

Figure 18 illustrates an example request payload containing input parameters to
execute the flood workflow. In addition, an example response body has deducted URLs for
representing signed download URLs of flood areas in vector format. The seed points are
passed in the Well-known text (WKT) MultiPoint format, and the flood analysis calculation
is executed for each intersected point in the terrain area.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 21 of 25

Figure 16. A real-world example, workflow definition of flood inundation prediction in the pro-
posed workflow definition model.

We defined the workflow with a composition of three steps (Figure 17). The first step
uses “ForEach” iteration task that loops the DEM URLs and runs the steps that perform
the flood analysis for each downloaded DEM file.

.

Figure 17. Visual representation of the flood inundation prediction workflow.

Similarly, we also dockerized the flood prediction code and defined and registered
the workflow tasks via Workflow Task Management API. We reused the “Download
DEM” task from the previous sample to download terrain models

Figure 18 illustrates an example request payload containing input parameters to ex-
ecute the flood workflow. In addition, an example response body has deducted URLs for
representing signed download URLs of flood areas in vector format. The seed points are
passed in the Well-known text (WKT) MultiPoint format, and the flood analysis calcula-
tion is executed for each intersected point in the terrain area.

(a) (b)

Figure 18. HTTP request payload to execute the flood prediction workflow (a) Workflow execution
response body that has generated signed URLs to download output vector files (b).

We examined the implemented serverless cloud architecture with AWS Well-Archi-
tectured tools with its five pillars, and they are helpful to produce stable and efficient
systems. AWS claims that these pillars help architects build secure, high-performing, re-
silient, and efficient infrastructure.

Figure 18. HTTP request payload to execute the flood prediction workflow (a) Workflow execution
response body that has generated signed URLs to download output vector files (b).

We examined the implemented serverless cloud architecture with AWS Well-Architectured
tools with its five pillars, and they are helpful to produce stable and efficient systems.
AWS claims that these pillars help architects build secure, high-performing, resilient, and
efficient infrastructure.

Pillar 1: Operational Excellence—We adopted the principles of this pillar. Infrastructure
and code deployment can be automated in our design. In the implementation, we also au-
tomated code and infrastructure deployment with continuous integration and deployment
tools and AWS cloud development kit. API deployments, workflow, and task deployments
can be historically versioned and reversible in case of any failure in the deployment. We
also refined user roles and procedural responsibilities in the System Architecture section.
We tested the proposed system with different scenarios to increase its stability and reduce
failures. For example, we presented two inclusive examples to challenge the system design
in this paper.

Pillar 2: Security—This pillar focuses on protecting data and systems. As it suggests,
we defined the roles with different privileges and put security first while designing the
system. The API gateway component protects all backend endpoints with centralized
identity management, and all data transmission between components uses secure channels.
Workflow outputs are stored in private storage and can only be accessed by the workflow
manager. Public URLs of the requested files are generated with a short lifetime and unique
parameters.

Pillar 3: Reliability—The reliability pillar ensures that the system performs the intended
function correctly and consistently when needed. We designed the system with serverless
technologies, and this approach maximizes reliability as it brings scalability and availability.
Thus, the system does not require a workload assessment as we used fully managed
services. Unit and end-to-end tests in production-level implementations are needed to spot
failures after each code change in the evaluation phase.

Pillar 4: Performance Efficiency—The performance efficiency pillar recommends using
computing resources efficiently to meet requirements and maintain efficiency as demand
changes. We proposed a serverless design and avoided using any continuously running
service. Serverless architectures, by default, increase performance efficiency as much as
possible by utilizing infrastructure resources in an optimum way. The proposed system
design performance depends on the implementation and cloud infrastructure performance.
For instance, container initialization adds latency for each step execution. This latency
duration could differ between different container services for the CaaS model.

Pillar 5: Cost Optimization—The pillar of cost optimization focuses on eliminating
unnecessary expenditures. Even though our primary focus on this paper is not to offer a

ISPRS Int. J. Geo-Inf. 2022, 11, 20 22 of 24

cost-optimized system, serverless architectures are also cost-efficient by default. They use
resources on-demand and usually do not cost when idle in public cloud providers. Once
the system is deployed, it should be monitored continuously, and it may require limiting
resource consumption to keep costs under control. On the other hand, serverless services
abstracted infrastructure management and scalability automation from the user; thus, the
proposed system design does not require an allocated system administrator who knows
depth knowledge in cloud infrastructure management. The proposed developer role can
handle necessary tasks for system management.

5. Discussion and Conclusions

Designing a geospatial workflow management system with minimum human inter-
vention is still an issue in the geospatial community. We presented a study that can offer a
solution to this phenomenon. We aimed to provide a system design that can be applied
in real-world scenarios on any major cloud provider or on-premises that offers serverless
technologies. The serverless technologies bring many new possible solutions for existing
debating problems in data processing and application deployments.

The geospatial community is working on the area with different research types that
require workflow to execute state of the art algorithms. They are actively developing
new specifications to standardize and increase interoperability, and the OGC is one of
the most well-known organizations that work on these specifications. They have been
working on the WPS specification, and the last version is 2.0 [46]. On the other hand, they
have also initiated a new set of specifications to replace existing standards with modern
web development approaches. The WPS is to be replaced with a new name is OGC API
Processes. Even though OGC API Processes is still in draft and open to breaking changes,
we preferred to use this standard to review and examine it with serverless technologies. We
found that the new standard has a steep learning curve compared to the previous version,
and we could easily add endpoints that respond in the standard’s format and rules. We
aimed to increase awareness of serverless technologies in the geospatial community by
exploring a geospatial data processing workflow on the serverless model with the OGC
API Processes.

We observed that Amazon Fargate service is a bit complex to run one-off containers
than other providers. For example, Microsoft Azure provides Container Instances service
with much fewer configuration requirements. On the other hand, Amazon Cloud Deploy-
ment Kit (CDK) made it easier to deploy cloud infrastructures in the same programming
language we used for development. We observed that the system also works as expected
with hybrid scenarios. We ran the system with a local container service. The only problem
with the hybrid system is that the network speed is throttling the speed of executions
because the containers download and upload the data through the internet.

In the implementation, we used the CaaS service for executing tasks because they are
more capable and less restrictive to run long-running data processing tasks. We think that
FaaS could also be used for running these types of tasks in the future. As we have seen the
container image deployment support in some public cloud providers’ FaaS services, we
think it could be possible soon.

In our design, the communication from workflow manager to task manager is syn-
chronous, and we think adding messaging queue can increase reliability and fault-tolerance
in the design. However, we thought it could also increase complexity, and the failures
could be mitigated with other design patterns such as the circuit breaker or retry.

This study also presented a new workflow and task definition model. Moreover, the
workflow model has two custom-built tasks: “ForEach” and “Parallel”. These help run
iterative and concurrent operations. We are also planning to add control statements to
change the direction of the flow during the runtime.

We designed the system within the geospatial context, but it can be applied to other
data processing workflows. We plan to publish the source code of proof-of-concept as an
open-source project once the code documentation is completed.

ISPRS Int. J. Geo-Inf. 2022, 11, 20 23 of 24

Author Contributions: Conceptualization, Mete Ercan Pakdil and Rahmi Nurhan Çelik; method-
ology, Mete Ercan Pakdil; software, Mete Ercan Pakdil; validation, Mete Ercan Pakdil and Rahmi
Nurhan Çelik; writing—original draft preparation, Mete Ercan Pakdil; writing—review and editing,
Rahmi Nurhan Çelik; supervision, Rahmi Nurhan Çelik. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We acknowledge colleagues from Mott MacDonald Digital Ventures for their
support and encouragement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de Oliveira, D.; Ogasawara, E.; Baião, F.; Mattoso, M. SciCumulus: A Lightweight Cloud Middleware to Explore Many Task

Computing Paradigm in Scientific Workflows. In Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing,
Miami, FL, USA, 5–10 July 2010; pp. 378–385.

2. Mell, P.M.; Grance, T. The NIST Definition of Cloud Computing. NIST 2011, SP 800-145, 2–3.
3. Lloyd, W.; Ramesh, S.; Chinthalapati, S.; Ly, L.; Pallickara, S. Serverless Computing: An Investigation of Factors Influencing

Microservice Performance. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering, Orlando, FL, USA,
17–20 April 2018; pp. 159–169.

4. Rahman, M.M.; Hasan, M.H. Serverless Architecture for Big Data Analytics. In Proceedings of the 2019 Global Conference for
Advancement in Technology, Bangaluru, India, 18–20 October 2019; pp. 1–5.

5. Krämer, M. A Microservice Architecture for the Processing of Large Geospatial Data in the Cloud. Ph.D. Thesis, Technische
Universität Darmstadt, Darmstadt, Germany, 2018.

6. Agarwal, G. Modern DevOps Practices; Packt: Birmingham, UK, 2021.
7. Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A.; et al.

Serverless Computing: Current Trends and Open Problems. In Research Advances in Cloud Computing; Chaudhary, S., Somani, G.,
Buyya, R., Eds.; Springer: Singapore, 2017; pp. 1–20.

8. Kim, Y.; Lin, J. Serverless Data Analytics with Flint. In Proceedings of the 2018 IEEE 11th International Conference on Cloud
Computing, San Francisco, CA, USA, 2–7 July 2018; pp. 451–455.

9. Malawski, M.; Gajek, A.; Zima, A.; Balis, B.; Figiela, K. Serverless Execution of Scientific Workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions. Future Gen. Comput. Sys. 2020, 110, 502–514. [CrossRef]

10. Lee, H.; Satyam, K.; Fox, G. Evaluation of Production Serverless Computing Environments. In Proceedings of the IEEE 11th
International Conference on Cloud Computing, San Francisco, CA, USA, 2–7 July 2018; pp. 442–450.

11. Ji, X.; Chen, B.; Huang, Z.; Sui, Z.; Fang, Y. On the Use of Cloud Computing for Geospatial Workflow Applications. In Proceedings
of the IEEE 20th International Conference on Geoinformatics, Hong Kong, China, 15–17 June 2012; pp. 1–6.

12. Krämer, M.; Würz, H.M.; Altenhofen, C. Executing Cyclic Scientific Workflows in the Cloud. J. Cloud Comp. 2021, 10, 25. [CrossRef]
13. Serverless Workflow. Available online: https://serverlessworkflow.io/ (accessed on 23 October 2021).
14. AWS Step Functions. Available online: https://aws.amazon.com/step-functions (accessed on 23 October 2021).
15. Azure Logic Apps documentation. Available online: https://docs.microsoft.com/en-us/azure/logic-apps/ (accessed on 23

October 2021).
16. Google Cloud Workflows. Available online: https://cloud.google.com/workflows (accessed on 23 October 2021).
17. Huang, W.; Zhang, W.; Zhang, D.; Meng, L. Elastic Spatial Query Processing in OpenStack Cloud Computing Environment for

Time-Constraint Data Analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 84. [CrossRef]
18. Argo Workflows. Available online: https://argoproj.github.io/argo-workflows/ (accessed on 23 October 2021).
19. Kubeflow. Available online: https://www.kubeflow.org/ (accessed on 23 October 2021).
20. van der Aalst, W.M.P.; ter Hofstede, A.H.M. YAWL: Yet Another Workflow Language. Info. Sys. 2005, 30, 245–275. [CrossRef]
21. YAML Ain’t Markup Language. Available online: https://yaml.org/ (accessed on 23 October 2021).
22. Pross, B.; Vretanos, P.A. OGC API—Processes—Part 1: Core, 1.0-Draft.7; Open Geospatial Consortium: Arlington, VA, USA, 2021;

Available online: https://docs.ogc.org/is/18-062r2/18-062r2.html (accessed on 23 October 2021).
23. Taibi, D.; Spillner, J.; Wawruch, K. Serverless Computing-Where Are We Now, and Where Are We Heading? IEEE Softw. 2021, 38,

25–31. [CrossRef]
24. Taibi, D.; Lenarduzzi, V. On the Definition of Microservice Bad Smells. IEEE Softw. 2018, 35, 56–62. [CrossRef]
25. Ingeno, J. Software Architect’s Handbook; Packt: Birmingham, UK, 2018.
26. Karavisileiou, A.; Mainas, N.; Petrakis, E.G.M. Ontology for OpenAPI REST Services Descriptions. In Proceedings of the IEEE

32nd International Conference on Tools with Artificial Intelligence, Baltimore, MD, USA, 9–11 November 2020; pp. 35–40.

http://doi.org/10.1016/j.future.2017.10.029
http://doi.org/10.1186/s13677-021-00229-7
https://serverlessworkflow.io/
https://aws.amazon.com/step-functions
https://docs.microsoft.com/en-us/azure/logic-apps/
https://cloud.google.com/workflows
http://doi.org/10.3390/ijgi6030084
https://argoproj.github.io/argo-workflows/
https://www.kubeflow.org/
http://doi.org/10.1016/j.is.2004.02.002
https://yaml.org/
https://docs.ogc.org/is/18-062r2/18-062r2.html
http://doi.org/10.1109/MS.2020.3028708
http://doi.org/10.1109/MS.2018.2141031

ISPRS Int. J. Geo-Inf. 2022, 11, 20 24 of 24

27. Messina, A.; Rizzo, R.; Storniolo, P.; Urso, A. A Simplified Database Pattern for the Microservice Architecture. In Proceedings of
the 8th International Conference on Advances in Databases, Knowledge and Data Applications, Lisbon, Portugal, 2–4 June 2016;
pp. 35–40.

28. Cinque, M.; Corte, R.D.; Pecchia, A. Microservices Monitoring with Event Logs and Black Box Execution Tracing. In IEEE
Transactions on Services Computing; IEEE: Greenvile, SC, USA, 2019.

29. Raj, P.; Raman, A.; Subramanian, H. Architectural Patterns; Packt: Birmingham, UK, 2017.
30. Klimovic, A.; Wang, Y.; Kozyrakis, C.; Stuedi, P.; Pfefferle, J.; Trivedi, A. Understanding ephemeral storage for serverless analytics.

In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference, Boston, MA, USA, 9–13 July 2018;
pp. 789–794.

31. McKendrick, R. Kubernetes for Serverless Applications; Packt: Birmingham, UK, 2018.
32. Nickoloff, J.; Kuenzli, S.; Fisher, B. Docker in Action, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2019.
33. AWS Well-Architected. Available online: https://aws.amazon.com/architecture/well-architected (accessed on 23 October 2021).
34. Sisák, M. Cost-optimal AWS Deployment Configuration for Containerized Event-driven Systems. Master’s Thesis, Masaryk

University, Brno, Czechia, 2021.
35. Diagboya, E. Infrastructure Monitoring with Amazon CloudWatch; Packt: Birmingham, UK, 2021.
36. Beach, B.; Armentrout, S.; Bozo, R.; Tsouris, E. Simple Storage Service. In Pro PowerShell for Amazon Web Services; Apress: Berkeley,

CA, USA, 2019; pp. 275–299.
37. Vijayakumar, T. API Gateways. In Practical API Architecture and Development with Azure and AWS; Apress: Berkeley, CA, USA,

2018; pp. 51–96.
38. Poccia, D. AWS Lambda in Action: Event-Driven Serverless Applications; Manning Publications: Shelter Island, NY, USA, 2017.
39. Guo, D.; Onstein, E. State-of-the-Art Geospatial Information Processing in NoSQL Databases. ISPRS Int. J. Geo-Inf. 2020, 9, 331.

[CrossRef]
40. Mete, M.O.; Yomralioglu, T. Implementation of Serverless Cloud GIS Platform for Land Valuation. Int. J. Dig. Earth 2021, 14,

836–850. [CrossRef]
41. Amazon Fargate Service. Available online: https://aws.amazon.com/fargate/ (accessed on 24 October 2021).
42. The Twelve-Factor App. Available online: https://12factor.net/ (accessed on 24 October 2021).
43. Marcotte, C.-H.; Zebdi, A. An Atypical ASP.NET Core 5 Design Patterns; Packt: Birmingham, UK, 2020.
44. AWS Documentation. Available online: https://docs.aws.amazon.com/index.html (accessed on 6 December 2021).
45. Lawhead, J. Learning Geospatial Analysis with Python, 3rd ed.; Packt: Birmingham, UK, 2019.
46. Mueller, M. OGC WPS 2.0.2 Interface Standard Corrigendum 2, 2.0.2; Open Geospatial Consortium: Arlington, VA, USA, 2015;

Available online: http://docs.opengeospatial.org/is/14-065/14-065.html (accessed on 1 December 2021).

https://aws.amazon.com/architecture/well-architected
http://doi.org/10.3390/ijgi9050331
http://doi.org/10.1080/17538947.2021.1889056
https://aws.amazon.com/fargate/
https://12factor.net/
https://docs.aws.amazon.com/index.html
http://docs.opengeospatial.org/is/14-065/14-065.html

	Introduction
	Related Works
	Cloud Workflow Services
	Containerised Workflow Engines
	Review

	Materials and Methods
	Workflow and Task Definition Models
	Task Definition
	Workflow Definition

	System Architecture
	Roles
	Workflow System
	Workflow Container Registry
	Workflow Output Storage
	Client Applications

	Implementation
	Cloud Implementation
	Used Services in Amazon Web Service
	Backend Development

	Evaluation

	Discussion and Conclusions
	References

