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Abstract: The road surface area extraction task is generally carried out via semantic segmentation 

over remotely-sensed imagery. However, this supervised learning task is often costly as it requires 

remote sensing images labelled at the pixel level, and the results are not always satisfactory (pres-

ence of discontinuities, overlooked connection points, or isolated road segments). On the other 

hand, unsupervised learning does not require labelled data and can be employed for post-pro-

cessing the geometries of geospatial objects extracted via semantic segmentation. In this work, we 

implement a conditional Generative Adversarial Network to reconstruct road geometries via deep 

inpainting procedures on a new dataset containing unlabelled road samples from challenging areas 

present in official cartographic support from Spain. The goal is to improve the initial road represen-

tations obtained with semantic segmentation models via generative learning. The performance of 

the model was evaluated on unseen data by conducting a metrical comparison where a maximum 

Intersection over Union (IoU) score improvement of 1.3% was observed when compared to the ini-

tial semantic segmentation result. Next, we evaluated the appropriateness of applying unsuper-

vised generative learning using a qualitative perceptual validation to identify the strengths and 

weaknesses of the proposed method in very complex scenarios and gain a better intuition of the 

model’s behaviour when performing large-scale post-processing with generative learning and deep 

inpainting procedures and observed important improvements in the generated data. 

Keywords: conditional learning; generative adversarial network; generative learning; image 

inpainting; image post-processing; road extraction; unsupervised learning 

 

1. Introduction 

In one of our previous works [1] related to road extraction using state-of-the-art se-

mantic segmentation models for automatic mapping purposes, we observed the problem 

of inaccurate extraction of road geometries, even when working with a large-scale dataset 

containing information from different regions of Spain (built to improve the generalisa-

tion capacity of the resulting models). In the study, frequent discontinuities in the ex-

tracted segmentation masks (gaps and missing connection points) were observed, result-

ing in unconnected road segments. The predictions displayed higher rates of False Posi-

tives (FP) in areas where surrounding geospatial objects have a similar spectral signature 

with the roads, and higher rates of False Negatives (FN) in areas where obstructions are 
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present in the scenes. We concluded that these imperfections were caused by the complex 

nature of the geospatial object (roads have large curvature changes, different materials 

used in the pavement, different widths, depending on the importance of the route, and 

very often have no clearly defined borders) by the presence of occlusions in the scenes, 

and by the limitation of existing semantic segmentation algorithms. These imperfections 

and errors are in line with issues raised by other investigations, as similar problems were 

identified in other works tackling the road extraction task from high-resolution remote 

sensing images [2], [3], [4], [5], and are very problematic when pursuing a large-scale road 

extraction operation for automatic mapping purposes. As a consequence, we consider that 

adding a post-processing operation to improve the initial segmentation predictions is es-

sential for a successful road extraction. In this work, the goal of the post-processing oper-

ation is to link road segments more fluidly, to infer small missing road segments, and to 

eliminate isolated road segments (that have no continuity). 

As mentioned previously, one of the most common problems encountered was re-

lated to the overlook of connection points, resulting in unconnected road segments (an 

example can be seen in Figure 1). Traditionally, the post-processing operation has been 

carried out using conditional random fields [6] or shape filtering [7], [8]. However, now-

adays, approaches based on inpainting operations are more widely used. Inpainting is a 

popular computer vision operation introduced by Bertalmío et al. in [9] to reconstruct 

missing image parts and is aimed at recovering deteriorated areas in images. For an initial 

post-processing test, we developed an inpainting algorithm containing a kernel of size 4 

× 4 pixels to apply morphological operations over the initial segmentation maps (pro-

cessing based on shapes). The algorithm is able to perform an initial suboperation of ero-

sion of the road boundaries to diminish the features and remove noise, followed by a di-

lation sub-operation to increase the object area and to accentuate features. Using the same 

kernel, the objects are returned to their original size. These two operations combined 

achieve an isolation of individual elements and a more efficient joining of slightly sepa-

rated elements. 

 
               (a)                           (b)                          (c) 

Figure 1. An example of inpainting post-processing with morphology operators based on shapes to 

fill missing parts (c) of the initial segmentation mask predictions (b) delivered by the semantic seg-

mentation model after evaluating an unseen aerial orthoimage (a). 

However, we believe that in order to successfully tackle a large-scale post-processing 

of challenging geospatial targets (such as the road network), more complex post-pro-

cessing implementations based on deep learning (DL) are required. DL models proved to 

be better suited for data-intensive applications, traditional machine learning (ML) algo-

rithms having a more limited generalisation capability [10]. Pathak et al. [11] were among 

the first to use unsupervised learning to understand the context of an image and produce 

plausible pixel predictions for the missing parts. They proposed a model based on gener-

ative learning and convolutional neural networks (CNNs) to generate plausible missing 

image content at the pixel level, conditioned on its surroundings. 
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In this work, we pose the post-processing operation as a deep inpainting task (given 

the nature of the imperfections and the errors identified) and propose a conditional Gen-

erative Adversarial Network (cGAN) to tackle it. The cGAN training is done via unsuper-

vised generative learning techniques on a novel dataset with the goal of learning the dis-

tribution of roads present in official cartography and reducing the effect of the problems 

encountered over the initial predictions. The performance of the model was evaluated on 

unseen data, and maximum improvements in the order of 1.3% in terms of Intersection 

over Union (IoU) score, 𝐼𝑜𝑈 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁), were observed. It is known that the 

IoU score is very sensitive, especially in remote sensing scenarios where classes tend to be 

very unbalanced cases (road pixels generally occupy around 10% of the pixels in the im-

age), because it does not consider True Negatives in computing the performance metric, 

and even small increases can result as significant [12]. For this reason, we also conduct a 

qualitative evaluation of the results to identify some of the strengths and weaknesses of 

the proposed method in very complex scenarios and to establish future research direc-

tions. To the best of our knowledge, this is the first instance of large-scale road post-pro-

cessing using such an approach.  

The contributions of this paper are summarised as follows: 

 We implemented a cGAN model for the deep inpainting task to improve the initial 

semantic segmentation predictions of roads. We proposed generator, 𝐺, and discrim-

inator, 𝐷, architectures in order to make the training better suited for our learning 

objective. 𝐺 is a U-Net [13]-like network, heavily modified for computational effi-

ciency, while 𝐷 is a modified PatchGAN [14], adapted to process images of 256 × 256 

pixels. 

 We trained the model on a new dataset composed of 𝑛 = 6784 real segmentation 

maps of roads present in official cartography. Here, we applied randomness in the 

form of synthetic gaps to the input for training 𝐺 (which will result in many possible 

corrupted images [15]). This source of randomness applied to the conditional infor-

mation allows 𝐺 to generate realistic images. We validated the model on a new test 

set composed of 𝑛 = 1696 real semantic segmentation predictions obtained by a 

state-of-the-art semantic segmentation network (with U-Net as base architecture and 

SEResNeXt50 [16] as segmentation backbone). We performed this operation at large-

scale, with an intent to obtain a production model capable of successfully reducing 

human participation in the road extraction task. 

 We studied the appropriateness of applying generative learning with inpainting op-

erations for the task of road post-processing by evaluating the model’s ability in gen-

erating new samples from the learned domain and conducting metrical comparison 

and perceptual validation operations. The cGAN proposed achieved a maximum in-

crease of 1.28% over the IoU score obtained by the semantic segmentation model. 

We proceed as follows. In Section 2, we discuss works related to road extraction and 

post-processing. In Section 3, we offer background on conditional Generative Adversarial 

Networks and their training procedure. The data used in the study is described in Section 

4. Details regarding our cGAN implementation are presented in Section 5. The experi-

mental results of the post-processing via deep inpainting are analysed in Section 6 from a 

quantitative and qualitative perspective. Section 7 presents the conclusions. 

2. Related Work 

Similarly to Abdollahi et al. [17], we believe that existing work tackling road extrac-

tion with DL can be classified based on the type of neural network (NN) applied. First, we 

have the approaches based on CNNs. Here, the road labels are predicted at a patch level 

using CNNs, and the final prediction is obtained by assembling the labelled patches. For 

example, Li et al. [18] proposed a CNN-based approach based on anticipating the possi-

bility of each pixel belonging to a road segment. They also proposed a road centreline 
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extraction technique based on simple image processing with morphological operators and 

obtained IoU scores of maximum 0.78. 

However, the majority of the works related to road extraction with DL techniques 

follow the semantic segmentation approach, where the fully connected (FC) layers are 

replaced with interpolation layers that upsample the feature maps from the last layer to 

the input’s size to predict the labels. Buslaev et al. [19] developed a model following the 

encoder–decoder structure based on U-Net [13] and ResNet [20] to extract roads from re-

mote sensing imagery and proposed a loss function combining the binary cross-entropy 

and the Jaccard score to reduce the cost. The model obtained an IoU score of 0.64 on un-

seen data. Similarly, Xu et al. [21] introduced M-Res-U-Net, a model based on ResNet and 

U-Net, where a Gaussian filter is applied during pre-processing to reduce the noise in the 

images. The authors rasterised existing vectoral road cartography data, but the approach 

underperformed in areas where other geospatial objects had similar colours to the road 

distribution. Cheng et al. introduced CasNet [22], which includes two cascaded net-

works—one for detecting road regions and the other for extracting the road centrelines— 

while taking advantage of the feature maps learned by the first network. The model was 

trained and tested on a dataset composed of 224 Google Earth images [23] and achieved 

an IoU score of maximum 0.88. However, the authors recognised the unsuitability of the 

network for processing areas where tree occlusions are present. 

Recently, approaches based on Generative Adversarial Networks (GANs) [24] have 

emerged. This type of NNs was introduced by Goodfellow et al. in 2014. They are DL 

generative models based on unsupervised learning (a paradigm of learning where the 

model is only given the input variables, and no output variables), where two networks 

(called generator, 𝐺, and discriminator, 𝐷) are trained simultaneously in an adversarial 

setting with the goal of finding the probability function that best describes the training 

examples. GANs have evolved over the following years [25]. Deep Convolutional GANs 

(DCGANs) [26] feature deep CNNs in 𝐺 and 𝐷 and have proved their usefulness in un-

supervised machine vision tasks. The conditional Generative Adversarial Network 

(cGAN) [27] emerged as an extension that provides both the generator and the discrimi-

nator with additional information (for example, using class labels as inputs before apply-

ing the noise distribution). 

In the field of deep image inpainting, Iizuka et al. proposed GLCIC [28], featuring a 

global discriminator processing at the image level and a local discriminator processing the 

centre of the regions to inpaint. In this way, the filled regions achieve a higher global and 

local consistency. Liu et al. introduced Partial Convolutions (Pconv) [29] (comprising 

masked and re-normalised convolution operations followed by a mask-update setup) as 

a method to inpaint multiple irregular holes using deep generative learning and achieved 

high quality results over irregular masked images. Based on DeepFill v1 [30] (trained to 

match and combine generated features inside and outside the missing hole), Yu et al. im-

plemented DeepFill v2 [31], featuring Gated Convolution (a Pconv where an extra stand-

ard convolutional layer followed by a sigmoid function is added). The model represents 

the state-of-the-art in the deep image inpainting field. 

These advancements allowed the road extraction task to be approached from an un-

supervised learning perspective. In [32], de la Fuente Castillo et al. successfully applied 

unsupervised learning based on grammar-guided genetic programming to obtain new 

neural network architectures specialised in road recognition in aerial imagery. Varia et al. 

[33] used the FCN-32 variant [34] and Pix2pix [14] to extract roads from a unmanned aerial 

vehicle dataset containing 189 training and 23 test images, but observed high rates of FN 

predictions. Shi et al. [35] developed a cGAN architecture using SegNet [36] (based on the 

encoder–decoder architecture) as 𝐺 to segment roads in high-resolution aerial imagery 

and achieved an F1 score of 0.8831 (3.6% improvement when compared to the F1 score of 

0.8472 obtained by SegNet when not trained in an adversarial setting). Yang et al. [37] 

added the Wasserstein distance penalty to a GAN to achieve an IoU score of 0.73 when 

extracting road geometries from rural areas in China. 
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Hartmann et al. [38] trained a GAN architecture to synthetise road information in 

areas where the extraction is complicated (e.g., where discontinuities are present). Costea 

et al. [39] proposed a road extraction method composed of an edge detection phase with 

a GAN, and a later stage of smoothing to post-process the results and improve the initial 

segmentation predictions. Lastly, Zhang et al. implemented a Multi-conditional GAN 

(McGAN) [40] to refine the road topology and obtain more complete road network 

graphs. Different from these works, we wanted to avoid focusing on small, ideal study 

areas and decided to build a new dataset containing 8480 tiles of 256 × 256 pixels contain-

ing roads from official cartography and their correspondent segmentation masks to add 

real world complexity to the generative task and carry out the experiments on a large 

scale. 

Although there are many works tackling road surface area extraction, post-pro-

cessing the segmentation predictions is still an active area of research. In [41], we studied 

the post-processing of semantic segmentation predictions via image-to-image translation 

operations and proposed a method based on Pix2pix [14], observing impressive results. 

We believe that another important post-processing application, directly applicable to re-

mote sensing and geospatial element detection, is the inpainting operation, which can be 

used to reconstruct missing segments by filling in missing parts of the initial semantic 

segmentation mask. Following this line, Chen et al. [15], [42] proposed a method combin-

ing adversarial learning with reinforcement learning (a Policy Gradient component [43], 

where a reinforcement learning approach based on the REINFORCE algorithm [44] is 

added to a global discriminator) to recover gaps from thin structures in large images, the 

model proving its performance on reduced datasets containing structures such as retinal 

vessels, roads, or plant roots. It is worth noting that many models proposed for deep im-

age inpainting follow the multiscale discriminator design, where a global discriminator is 

used at image level, and a local discriminator is used at the level of the corrupted region. 

In this paper, we approach the road post-processing task via generative learning and 

propose a conditional GAN model to generate improved road semantic segmentation pre-

dictions. The model works by corrupting the training images with random holes, and sub-

sequently learning to reconstruct the resulting corrupting images using a cGAN trained 

for inpainting operations. Finally, the initial segmentation masks, unseen during training, 

are passed through 𝐺 to calculate the performance metrics of the model and conduct a 

perceptual validation of the results. 

3. Problem Description 

Inpainting [9] is aimed at recovering missing information from images by filling in 

the deteriorated areas. In this work, we take a model-based approach and train a cGAN 

using unsupervised learning techniques (where no labelled data is required) for a deep 

inpainting task. Here, we have a domain, 𝑌, with distribution, 𝑝𝑌, containing the repre-

sentations belonging to the official road cartography domain. However, we only have ac-

cess to a limited number of samples, 𝑦𝑛. The goal is that 𝐺 learns a plausible mapping to 

𝑌, given an observation (condition), 𝑦, and a random variable, 𝑧 (resulting a realistic re-

construction, �̃� = 𝐺(𝑧|𝑦)) [45]. Because 𝑧 is random, the mapping 𝐺  learns will come 

from many possible corrupted images. 

𝐺 is trained to produce outputs, �̃�𝑖 (belonging to the domain of the reconstructions 

�̃�), that cannot be distinguished from “real” images, 𝑦 (belonging to the domain 𝑌), by 

an adversarially trained discriminator, 𝐷 , which is trained to detect the generator’s 

“fakes”. This way, 𝐺 will learn to generate synthetic samples, �̃�, as close as possible to 

real samples coming from 𝑌. To avoid saturating gradients early on (when 𝐺 is not doing 

well at generating data), instead of taking the traditional approach to minimise the log-

probability of 𝐺 being wrong, 𝑚𝑖𝑛 [1 − 𝑙𝑜𝑔 (𝐷(𝐺(𝑧|𝑦)))], we apply a modified minimax 

objective, 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝐺𝐴𝑁(𝐺, 𝐷), and train 𝐺 to maximise the log-probability of the dis-
criminator 𝐷(𝑦, 𝐺(𝑧|𝑦)) being mistaken, 𝑙𝑜𝑔(𝐷(𝐺(𝑧|𝑦)). This encourages 𝐺 to produce 



ISPRS Int. J. Geo-Inf. 2022, 11, 43 6 of 20 
 

 

samples with a low probability of being “fake”. 𝐷 is trained via stochastic gradient as-

cent, 𝑚𝑎𝑥 [𝑙𝑜𝑔 𝐷(𝑦) + log (1 − (𝐷(𝐺(𝑧|𝑦))))]. 

The generator network is trained in an unsupervised setting. 𝐺 takes a sample, 𝑦, 

from the training data and applies randomness, 𝑧, to it (random gaps) to enable the out-

put of many different reconstructed images, instead of only one. By applying the genera-

tive function, we obtain a new sample, �̃�. 𝐺 is trained so that the fake observation, �̃� =

𝐺(𝑧|𝑦), has a distribution similar to the one of the real observations, 𝑦 (𝑝𝑌). We also need 

to take into account that GANs training tends to be unstable and does not always converge 

as each of the two different players minimises their own cost function [46]. 

4. Data 

In this work, we will use a binarized version of the dataset introduced in [1], obtained 

from the available openly National Topographical Map, scale 1:50,000 [47], which covers 

a land area of approximately 181 km2 from representative areas of Spain. This ground 

truth dataset is based on openly available road data, distributed by a public agency (Geo-

graphical National Institute of Spain (Spanish: “Instituto Geográfico Nacional”). Accord-

ing to its producer, the samples were manually tagged by an operator. We divided the 

dataset containing 8480 tiles with the 80:20% division criteria, resulting in 6784 tiles used 

for training (80%) and 1696 tiles used for testing (20%) [48]. In this dataset, pixel values of 

0 are assigned to pixels belonging to the “No road” class, and pixel values of 1 are assigned 

to pixels belonging to the “Road exists” class. 

The best-performing semantic segmentation model trained on this dataset obtained 

a maximum IoU score of 0.6726 on the test set containing unseen data (an IoU score higher 

than 0.5 is considered a good prediction [49]). This value represents our initial perfor-

mance value and will be used in the metrical evaluation of the model. Although we do 

not have any kind of supervision, the segmentation masks obtained from evaluating the 

test set with the best performing semantic segmentation model (U-Net [13]—

SEResNeXt50 [16]) were stored in the lossless PNG (Portable Network Graphics) format 

and are considered the initial segmentation predictions, being used to assess and study 

the performance of the proposed cGAN. Please note that only the maximum results de-

livered are considered (which become our starting point, or base values), as we seek to 

improve the road extraction via deep inpainting operations. In Figure 2, we can find ex-

amples describing the correspondence between the aerial orthoimage, the binarised 

ground-truth segmentation mask (used for training), and the initial segmentation predic-

tion (used for testing) from ten random tiles. 
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Figure 2. The relation between the aerial orthoimage (first row, (a1–a10)), the rasterised segmenta-

tion mask (ground-truth or real sample, seen in the second row, (b1–b10)) used as conditional in-

formation for training 𝐺), and the semantic segmentation predictions (seen in the third row, (c1–

c10), used for testing the performance of the model). Note: The training set contains 𝑛 = 6784 tiles 

with road representation present in official cartography, while the test set contains 𝑛 = 1696 tiles 

with initial segmentation predictions resulted from evaluating the aerial images with the segmen-

tation model. In this figure, white is used to represent pixels labelled with “No road”, or “Back-

ground”, and black is used to represent the pixels belonging to “Road” class. 

We want our model to learn the distribution of the roads present in official carto-

graphic support. Therefore, we will use images from the second row as conditional infor-

mation during training. Afterwards, we will evaluate the initial segmentation masks 

(third row) using the trained generator to obtain the results of the deep generative inpaint-

ing operation. The predictions will be stored to calculate the performance metrics of the 

proposed model and conduct an exhaustive analysis of the inpainting results delivered. 

5. cGAN for Post-Processing Road Predictions via Deep Inpainting Operations 

The deep inpainting operation is carried out using a conditional Generative Adver-

sarial Network, where the ground truth label is added as a condition to the input. Gener-

ative models are capable of generating new data instances, and the training objective is 

that 𝐺 learns how to synthetise data from a distribution, 𝑌 (describing the road network 

present in official cartography), using the training examples, in a way that 𝐷 is no longer 

able to distinguish between the data coming from the real road distribution, 𝑌, and the 

generated data from the synthetic distribution, �̃�. We do that by constraining �̃� = 𝐺(𝑧|𝑦) 

to be close to 𝑦 via a defined adversarial loss. 

5.1. Generator 𝐺 

𝐺 will take as input tiles of 256 × 256 pixels corrupted with random gaps of different 

sizes and is trained to correctly reconstruct the corrupted tiles. 𝐺 does not know the lo-

cation of the introduced gaps and is forced to learn to automatically detect and inpaint 

gaps using feedback received from the discriminator network. By applying the generative 

function, 𝐺 will output a reconstructed tile, �̃� = 𝐺(𝑧|𝑦). This new sample, 𝐺(𝑧|𝑦), should 

be reasonably similar to the training data distribution, 𝑌. 

In terms of the architecture, the generator is a U-Net-like network and features a se-

ries of convolutional layers with a kernel size of 3 × 3 and zero padding added (to avoid 

tile shrinking during processing) that progressively downsample the input tile. Following 

the recommendations from [26], in the downsampling blocks of the encoder, the convolu-

tional layers are followed by Batch Normalisation [50] to ensure faster training and Recti-

fied Linear Unit (ReLU) [51] activations. 

In the decoder, the process is reversed, and the representations learned are upsam-

pled to 256 × 256 pixels. The feature maps are expanded to the original size through the 

use of transposed convolutions (by means of fractional-strided convolutions, instead of 

pooling layers—following recommendations from [26]). In these upsampling blocks of the 

decoder, the upconvolutions are followed by convolutional layers (as proposed in [52]), 

Batch Normalisation, and Leaky ReLU activations [53] (as this activation function proved 

to help with stabilising the cGAN training [54]). 

The information passes through all the layers of the generator network. Similarly to 

U-Net [13], we added skip connections that enable the sharing of low-level information 

between the encoder and decoder to preserve the features learned in the first layers and 

provide a better gradient flow. SoftMax activation is applied to the last layer of 𝐺 to keep 

the argmax for each channel and output a single-channel synthetic tile of 256×256 pixels 

(a probability map). A graphical representation of the proposed generator network is pre-

sented in Figure 3. 
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We also focused on increasing the computational efficiency of our generator network. 

The 𝐺 architecture described in Figure 4 features 2,006,974 parameters, a 93.53% decrease 

when compared to the number of parameters featured by the original U-Net architecture 

for the same input size (31,031,685 parameters). 

 

Figure 3. The generator architecture proposed for the deep inpainting operation. 
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Figure 4. The discriminator architecture proposed for the deep inpainting task. 

5.2. Discriminator 𝐷 

The discriminator network, 𝐷, is a modified PatchGAN [14] trained to classify the 

input tiles and assign the correct distribution of where the input comes from (road distri-

bution present in official cartography, 𝑌, or reconstructed road distribution, �̃�). The input 

tiles of 256 × 256 pixels in size are divided into four patches of 128 × 128 (instead of 32 × 

32, as proposed in the original implementation) to decrease the probability of patches not 

containing any road element. Each of them is evaluated, and the final decision is the av-

erage of the score obtained in each of the four patches (as described in Figure 5 of [41]). 

From an architectural viewpoint, 𝐷 is composed of seven convolutional blocks. The 

first convolution block features a convolutional layer with a kernel size of 3 × 3 and a stride 

of 1. We added spectral normalization in each convolutional block to reduce the instability 

of training the discriminator [55]. The next five convolution blocks consist of convolu-

tional layers with a kernel size of 4 × 4 and a stride of 2, followed by Batch Normalisation. 

Following the recommendation from [26], we applied Leaky ReLU activation (with a neg-

ative slope of 0.2) to all layers from the discriminator and also replaced pooling layers 

with strided convolutions, as it was proved to ensure a more stable training behaviour 

[14]. The last block of the discriminator consists of a convolutional layer, with a kernel of 

4 × 4 and a stride of 1, ending with a sigmoid activation function that maps the feature 

maps into a scalar classification score for each patch of 128 × 128 pixels. 

A simplified representation of the discriminator network implemented can be found 

in Figure 4. The total number of parameters of 𝐷 is 2,791,009, an 85.61% decrease when 
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compared to the original PatchGAN (which features 6,968,257 parameters). Please note 

that we built our generator and discriminator networks using concepts introduced by U-

Net and PatchGAN (e.g., encoder–decoder structures with skip connections, or modelling 

an image as a Markov random field over a determined patch size), but we focused on 

reducing the computational footprint of the networks to take advantage of the computa-

tional budget available. 

The gradient of the output of the discriminator network with respect to the recon-

structed data will force 𝐺 to generate more realistic data (closer to the real data distribu-

tion of the road present in the official cartography). In an ideal case, the synthetic data is 

so close to the real data distribution that 𝐷 is unable to detect differences between the 

two data distributions. 

5.3. Learning Process 

Each input conditional sample, 𝑦𝑖, is artificially corrupted by introducing random-

ness, 𝑧, consisting of gaps of different shapes and sizes (square and circular gaps [52], 

brush gaps [31], and even more unstructured blob gaps [56], or a mix of all of them), as 

also proposed in [15]. These artificial gaps are randomly rescaled to different sizes, and 

added online, and represent the source of randomness in the training data that allows 𝐺 

to output many different synthetic outcomes. The gaps are added without a specified lo-

cation to the conditional data, 𝑦; 𝐺’s training objective is to learn how to inpaint them 

without knowing their position in the image (the positions of the regions to inpaint are 

not provided to 𝐺). We also added data augmentation consisting of random 90-degree 

flips to expose the model to more aspects of the training data and reduce the overfitting 

behaviour. 

The generator, 𝐺, takes a corrupted tile of 256 × 256 pixels as input and provides an 

inpainted version, where the gaps are filled. Next, 𝐷 evaluates the four patches of the 

generated image and the four patches of the original sample from 𝑌 (containing a road 

representation from the official road cartography, without gaps) to calculate the cross en-

tropy between the corresponding pairs of patches of 128 × 128. The error is then backprop-

agated through the model. A simplified representation describing the learning procedure 

of the cGAN model implemented can be found in Figure 5. 

In Figure 5, it can be seen that the discriminator network is trained with sets of fake 

and real samples. 𝐷 tries to identify which images are real (𝑦) and which are generated 

by 𝐺 (𝐺(𝑧|𝑦)), while 𝐺’s objective is to generate synthetic tiles that are indistinguishable 

from the real tiles. The discriminator network takes as input the real sample, 𝑦 (𝐷(𝑦) to 

be near 1), and the fake sample, 𝐺(𝑧|𝑦), analysing the distribution to decide whether the 

data is generated or comes from the real sample dataset. 𝐷 tries to maximise the differ-

ence between its output on real tiles and its output on reconstructed tiles (trying to make 

𝐷(𝐺(𝑧|𝑦)) near 0, meaning the input is fake), while 𝐺 tries to make 𝐷(𝐺(𝑧|𝑦)) near 1 

(meaning the input is real). 

In this case, the discriminator is trained using supervised learning via stochastic gra-

dient ascent with the Least Squares Generative loss (LSGAN) proposed in [57], ℒ(𝐷) =

(1 − 𝐷(𝑦))2 + (𝐷(𝐺(𝑧|𝑦))
2
. 𝐷 acts like a binary classifier trained to differentiate between 

the generated �̃�  =  𝐺(𝑧|𝑦) [58] and the real sample, 𝑦, and features a sigmoid function to 

assess if the gaps were correctly filled (if the sample is real or not), every input of 𝐷 hav-

ing a 0.5 probability of being real and 0.5 of being fake. 𝐷 compares each input/target pair 

at the patch level and estimates the cross entropy between the conditional information, 𝑦 

(before the gaps were introduced), and the reconstructed �̃� = 𝐺(𝑧|𝑦)) with the formula 

ℒ(�̂�𝑖 , 𝑦𝑖) =  
1

𝑚
∑ 𝑦𝑖 ∗ log �̂�𝑖 + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − �̂�𝑖)

𝑚
𝑖=1 . 𝐷 then provides a probability score 

at patch level on how realistic they look, averaging the results to provide the overall image 

mean (used for the model’s loss function). Based on the discriminator’s classification error, 

the weights are then adjusted to maximise its performance (maximises the probability of 

𝐷 being right) with the following formula: 𝑚𝑎𝑥 [𝑙𝑜𝑔 𝐷(𝑦) + log (1 − (𝐷(𝐺(𝑧|𝑦))))]. 



ISPRS Int. J. Geo-Inf. 2022, 11, 43 11 of 20 
 

 

 

Figure 5. An overview of the learning process of the cGAN model trained for deep inpainting. (1) 

Firstly, random gaps are introduced into the conditional data, 𝑦, to produce corrupted inputs for 

𝐺. (2) The generator (a U-Net-like network with skip connections) is then trained to fill the gaps and 

inpaint the corrupted tiles. (𝐺 does not have access to the real samples, 𝑦, from the real data distri-

bution, 𝑌.) (3) The discriminator is a modified PatchGAN that classifies patches from pairs of y and 

�̃� and decides whether they come from the real data distribution, 𝑌, or from the synthetic data dis-

tribution, �̃�. (4) 𝐺 receives feedback from 𝐷 and iteratively improves the synthetic data generator 

to “fool” the discriminator network. Notes: (A) The real data is fed both into 𝐺 (after adding z) and 

into 𝐷. In our deep inpainting task, a sampled image, y, will be corrupted with randomness, z (in 

this case, random gaps of different sizes). 𝐺 will reconstruct this corrupted image and produce �̃� =

𝐺(𝑧|𝑦). The synthetic results, �̃�, will iteratively improve as 𝐺 receives feedback from 𝐷. (B) The 

graphic should be interpreted at stage level and was created using random tiles to offer insights and 

enable a better understanding of the training procedure presented in Section 5.3. 

The generator network is trained to repair the corrupted tiles, taking a corrupted 

patch as input, and providing an inpainted version where the random gaps were filled. 𝐺 

predicts a probability map, �̃� , indicating a pixel’s likelihood to be “Road” or “Back-
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ground”, and its training objective is to generate synthetic tiles that would be indistin-

guishable from the real tiles. Unlike 𝐷, 𝐺 does not have access to the real distribution, 𝑌, 

and uses 𝐷 ’s gradients to see how realistic the reconstructed tiles are to update its 

weights. As explained in Section 3, the weights of the generator are adjusted based on the 

output of the discriminator to maximise the loss predicted by 𝐷 for generated images 

marked as “real”; the adversarial cost of 𝐺  is ℒG = (1 − 𝐷(𝐺(𝑧|𝑦))2 . This way, 𝐷 ’s 

weights indicating that the generated images were real will force large weight updates in 

𝐺 toward generating more realistic images. 

The combined loss function of the model is given by ℒcGAN = 𝜆1ℒ(�̂�𝑖 , 𝑦𝑖) + 𝜆2ℒG , 

where 𝜆1 = 1000 and 𝜆2 = 1. During training, we apply a higher weight to 𝜆1 for the 

reconstruction loss to strongly encourage the model towards generating plausible recon-

structions of the input image (more realistic images) as it improves the generator’s perfor-

mance [11]. Over time, 𝐺 will create more realistic data, while 𝐷 will become better at 

differentiating it from the real data distribution, 𝑌  [25]. When 𝐷  cannot determine 

whether the data comes from the real dataset or the generator (no longer distinguishes 

real images from fakes), the optimal state is reached. 

6. Experiments and Analysis of the Results 

We defined the conditional model using the PyTorch v1 [59] deep learning library 

for Python [60] and trained it on a Ubuntu Linux [61] server with a 20-core Intel Xeon 

processor and a Nvidia Tesla V100 graphics card with 16 GB of VRAM. We trained the 

cGAN model with 𝑛 = 6784 real samples of tiles obtained from official cartographic sup-

port where road segments are connected (with a size 256 × 256 pixels, as described in Sec-

tion 4). 

For training 𝐺, we used the Adam optimiser [62] with a learning rate of 0.001 and 

initial decay rates 𝛽1 = 0.5 and 𝛽1 = 0.999. The same optimiser was used for 𝐷’s training, 

but with a learning rate of 0.002 and initial decay rates 𝛽1 = 0.5 and 𝛽1 = 0.999. We 

adopted a twice higher learning rate for 𝐺 to improve the convergence of GANs and dif-

ferent learning rates for 𝐺 and 𝐷 to avoid damaging the learned representations [63]. 

Each training step involves randomly selecting a batch of real samples and generating a 

batch of synthetic samples based on the real tiles (following the training procedure de-

scribed in Figure 5). The chosen batch size was 32 images (the maximum allowed by the 

GPU). During training, the gradient of the loss function with respect to the weights of the 

network for a single input-output example was backpropagated. 

We repeated the experiments five times using random initialization to enable the sta-

tistical interpretation of the performance results. Each time, an initial value of 40 epochs 

was selected, but the loss of the model was monitored, the training stopping when its cost 

value had not decreased in the previous five epochs. For comparison reasons, we also 

trained the state-of-the-art, Thin-structure-inpainting model [15] for the same number of 

repetitions on the same training dataset. We leave for a future study the implementation 

of a conditional GAN featuring the standard U-Net as generator and the standard 

PatchGAN as discriminator, due to the significantly higher number of trainable parame-

ters it would feature, and the computational expense required for training such a condi-

tional GAN. 

Afterwards, the initial segmentation masks from the test were evaluated with the 

generators of the trained networks and the predictions were stored in lossless PNG for-

mat. The test set contained 𝑛 = 1696 initial segmentation predictions obtained by U-Net 

[13]—SEResNeXt50 [16], and achieved an IoU score of 0.6726 (as described in Section 2). 

The quality of the generated data would prove if the models correctly learned the distri-

bution of the roads present in official cartography and will be used to assess the perfor-

mance of the networks. Next, the generated data was compared with the ground truth 

data from the test set (unseen data, to test the generalization capacity of the model) to 

compute the following performance metrics: IoU score, F1 score, accuracy, and precision 

and recall, together with the corresponding values calculated for the positive and negative 
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classes. The task of road extraction involves highly unbalanced classes (roads occupy a 

small portion of an image, generally less than 10%) and the weighted metrics were not 

computed. The reported results can be found in Table 1. 

As shown in Table 1, our implementation outperforms the other methods and obtains 

the highest performance scores. In relation to the chosen performance metrics, we con-

sider that the IoU score is the most appropriate for evaluating the performance of a model 

trained for binary operations of geospatial elements (e.g., road and non-road). The reason 

for this is that classes in such scenarios tend to be very unbalanced (in our dataset, pixels 

of roads generally occupy around 10% of the pixels), and the traditional ML metrics can 

mislead regarding the performance of a model [12]. The IoU score is calculated with the 

formula 𝐼𝑜𝑈 𝑠𝑐𝑜𝑟𝑒 (𝑃, 𝑄) =
|𝑃∩𝑄|

 |𝑃∪𝑄|
 =

|𝑃∩𝑄|

|𝑃|+|𝑄|−|𝑃∩𝑄|
, for any two sets, 𝑃  and 𝑄  (e.g., the 

ground truth set and the reconstructed set generated by 𝐺). 

Table 1. Comparison between the performance metrics obtained by the best performing semantic 

segmentation model trained for road extraction, and the original Thin-structure-inpainting model 

[15] and our cGAN implementation trained for deep inpainting operations on the test set containing 

unseen data (𝑛 = 1696 tiles). 

Performance Metric 

(1) Best 

Performing 

Semantic 

Segmentation 

Model 

(2) Thin-Structure-Inpainting [15] (3) Our cGAN Implementation 

Average 

Result and 

Standard 

Deviation 

Mean Percentage 

Difference 

(Initial 

Segmentation 

Results) 

Maximum 

Result 

Average 

Result and 

Standard 

Deviation 

Mean Percentage 

Difference 

(Initial 

Segmentation 

Results) 

Maximum 

Result 

IoU score (positive class) 0.4100 0.4068 ± 0.0012 −0.32% 0.4088 0.4149 ± 0.0073 +0.49% 0.4252 

IoU score (negative class) 0.9352 0.9414 ± 0.0009 +0.61% 0.9412 0.9454 ± 0.0028 +1.02% 0.9484 

IoU score 0.6726 0.6741 ± 0.0008 +0.15% 
0.6750 

(+0.24%) 
0.6801 ± 0.0040 +0.75% 

0.6854 

(+1.28%) 

F1 score (positive class) 0.5686 0.5638 ± 0.0012 −0.48% 0.5658 0.5714 ± 0.0082 +0.28% 0.5819 

F1 score (negative class) 0.9648 0.9692 ± 0.0005 +0.44% 0.9690 0.9711 ± 0.0016 +0.63% 0.9729 

F1 score 0.7667 0.7665 ± 0.0006 −0.02% 0.7674 0.7713 ± 0.0040 +0.46% 0.7765 

Accuracy 0.9379 0.9437 ± 0.0009 +0.58% 0.9448 0.9475 ± 0.0026 +0.96% 0.9503 

Precision (positive class) 0.4183 0.4247 ± 0.0019 +0.64% 0.4271 0.4546 ± 0.0187 +3.63% 0.4673 

Precision (negative class) 0.9976 0.9953 ± 0.0002 −0.23% 0.9953 0.9937 ± 0.0014 −0.39% 0.9953 

Precision 0.7080 0.7100 ± 0.0009 +0.20% 0.7112 0.7242 ± 0.0089 +1.62% 0.7302 

Recall (positive class) 0.9504 0.8908 ± 0.0062 −5.96% 0.8904 0.8376 ± 0.0459 −11.28% 0.8947 

Recall (negative class) 0.9372 0.9452 ± 0.0012 +0.80% 0.9452 0.9509 ± 0.0040 +1.37% 0.9558 

Recall 0.9438 0.9181 ± 0.0025 −2.57% 0.9178 0.8943 ± 0.0210 −4.95% 0.9205 

The proposed cGAN model achieved a median IoU score of 0.6801 ± 0.004, which 

represents an average improvement of 0.75% over the initial semantic segmentation re-

sults. The best performing cGAN implementation obtained a maximum IoU score im-

provement of 1.28% (a performance value of 0.6854, an increase from 0.6726 obtained by 

U-Net [13]—SEResNeXt50 [16]). When comparing the IoU score results with the ones ob-

tained by Thin-structure-inpainting [15] trained for the same task on the same training set, 

it can be seen that our implementation outperformed the state-of-the-art model with a 

maximum difference of 1.04%. Nonetheless, Thin-structure-inpainting [15] also obtained 

an average IoU score improvement of 0.15% with respect to the initial IoU value obtained 

by the semantic segmentation model. 

Regarding the other performance metrics computed, the precision-recall trade-off 

scenario [64] is present in both deep inpainting models—both cGAN models trained for 

deep inpainting operations reduce the FP rates to increase their precision values (a higher 

precision involves minimising FP rates) at the cost of a decrease in the recall metrics (a 

higher recall involves minimising FN rates). Our cGAN implementation sacrificed an av-

erage of 4.95% from the recall values (which decreased from 0.9438 in the case of the best 
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segmentation model to 0.8943 ± 0.021) to achieve average gains in precision of 1.62% (in-

creases from 0.9379 to 0.9533 ± 0.012) when compared to the original model. This trade-

off scenario is to be expected considering that the ground truth dataset contained imbal-

anced classes with fewer positive samples due to the nature of the studied geospatial ob-

ject. It is also important to remember that the road representations delivered by the se-

mantic segmentation model had an increased width compared to the considered ground 

truth (as found in Figure 2b,c), and therefore, the probability of them containing more 

pixels correctly tagged with the “Road” label in the ground truth (positive samples) was 

higher. As a result, significant differences can be observed in recall and precision; the deep 

inpainting models sacrificed recall to increase their precision by increasing the TN and FN 

ratios. However, precision and recall scores should not be discussed in isolation, and for 

this reason, the F1 score was also computed. Our implementation achieved a mean in-

crease of +0.46% (0.7713 ± 0.0040) over the initial F1 score value of 0.7667. In Table 1, it can 

be observed that, although the performance metrics from the positive classes are generally 

lower, the overall performance scores increased.  

In order to study the relationship between the error rates obtained by the neural net-

works trained in this work and the significance of the performance metrics, in Figure 6 we 

illustrate the confusion matrices obtained by the models when evaluating the test set con-

taining unseen data (𝑛 = 1696 tiles). In the confusion matrix obtained by our implemen-

tation (presented in Figure 6c), it can be found that our model correctly recognised 

3,795,275/4,360,728 pixels belonging to the “Road” class (TP ratio of 0.87) and 

101,552,358/106,788,328 “No Road” instances (TN ratio of 0.951), while incorrectly label-

ling 5,235,970/106,788,328 pixels of the “No Road” category (FP ratio of 0.049) and missing 

565,453/4,360,728 instances of the “Road” class (FN ratio of 0.130). In the confusion matrix, 

FN and FP are the samples that were incorrectly classified and represent 5.22% of the pre-

dictions, while TN and TP are the samples that were correctly classified and represent 

94.78% of the predictions. By comparison, the segmentation model that provided the ini-

tial predictions correctly classified 93.79% of the pixels, while the best version of the Thin-

structure [15] model, trained for deep inpainting, correctly classified 94.36% of the pixels. 

The results from the confusion matrices are aligned with the results presented in Table 1. 

   
(a) (b) (c) 

Figure 6. The confusion matrices obtained by (a) the semantic segmentation model U-Net [13]—

SEResNeXt50 [16], and (b) Thin-structure-inpainting [15], together with (c) our implementation pro-

posed in Section 5 (trained for deep inpainting operations) on the test set (𝑛 = 1696 tiles). 

It can be observed that, in line with the performance metrics from Table 1, the condi-

tional GANs trained decreased the TP and FP and increased the FN and TN rates in order 

to optimize their overall performance and inpaint the gaps in the initial road line repre-

sentations. It can be noted that, although the TP rates are lower compared to the initial 

segmentation masks, the models significantly improved the TN predictions and increased 
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their mean IoU scores. Overall, the correct predictions have a higher ratio in both deep 

inpainting scenarios compared to the initial segmentation masks—Thin-structure-inpaint-

ing achieved a mean accuracy of 0.9437 ± 0.001, while our implementation achieved a 

mean accuracy of 0.9475 ± 0.003 and mean improvements of +0.58% and +0.96%, respec-

tively, over the initial accuracy value of 0.9379 obtained by the best performing segmen-

tation model. 

In order to obtain a better intuition of what these improvements in performance met-

rics mean, we conducted a non-numerical qualitative interpretation of the results through 

means of perceptual validation. We sampled ten images from the test set (containing data 

unseen by the models during training) and performed a visual inspection of the generated 

images to compare the results obtained by our implementation and to the ones obtained 

by the other models. This operation allows us to identify patterns in the studied object 

that might be impossible to observe with the quantitative methodology (for example, sce-

narios with higher concentrations of FP and FN). The results are found in Figure 7. 

 

Figure 7. Qualitative interpretation carried out on ten samples from the test set. In the first row (a1–

a10), we have the aerial orthoimage. The second row (b1–b10) presents the samples from the raster-

ised ground truth set, or conditional data distribution (road representations present in official car-

tography). The third row (c1–c10) shows the initial segmentation prediction obtained using a state-

of-the-art semantic segmentation model. The fourth row (d1–d10) presents the predictions gener-

ated with the Thin-Structure-Inpainting model [15] trained for deep inpainting operations, while 

the fifth row (e1–e10) presents the reconstructed road masks generated with the conditional gener-

ative model proposed in this paper. 

In Figure 7, it can be observed that our implementation generates the most consistent 

reconstructions, the results delivered being more similar to the ground-truth masks when 

compared to the initial segmentation masks. We can also identify the reason for the pre-

cision-recall trade-off scenario—although the roads representations from official cartog-

raphy contain no gaps, they do not cover the true road surface area (the lines used to draw 
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the road segments only have cartographic significance and were chosen based on the im-

portance of the road). Although the rates of FP are lower, the models still deliver higher 

FP rates when compared to the ground truth data because of the representation errors 

from the available official cartographic support. However, we consider that our condi-

tional implementation correctly learned the road distribution in official cartography, gen-

erated less FP rates, and achieved considerable improvements in the results. 

We also noted the effect of randomness applied to the conditional data, as our gen-

erated data often presented small gap artifacts. However, our real-world dataset con-

tained many more gaps, and the machine predictions obtained with our conditional im-

plementation can be considered significantly improved. In addition, we observed a thin-

ning effect on the post-processed road lines, which helped the networks trained achieve 

higher performance metrics, as the road representation from official cartography feature 

an arbitrary-sized width that does not cover the entire surface area of the road. 

Although the post-processing results are not perfect, they confirm the appropriate-

ness of applying generative learning for the post-processing task of road semantic seg-

mentation, and we strongly believe that the technique can be applied for a better extrac-

tion of geospatial elements from aerial imagery. We consider that the training objective of 

this study (obtaining road representation closer to the ones present in official cartography) 

was successfully achieved, as the generated results are clearly representing an improve-

ment over the initial segmentation predictions. The qualitative interpretations carried out 

proved that the post-processing operation reduced the gaps and the generated predictions 

that are closer to the target domain (road representations present in official cartography) 

with the mention that the deep inpainting models are sensitive to the number of holes in 

the data. 

7. Conclusions 

To overcome the deficiencies caused by the extraction of roads via semantic segmen-

tation, we implemented a conditional GAN trained to learn the distribution of roads pre-

sent in official cartography in an unsupervised setting. To the best of our knowledge, this 

was one of the first attempts for a large-scale post-processing of initial road segmentation 

with deep inpainting operations based on generative learning to reduce the imperfections 

found in the initial predictions (e.g., discontinuities and gaps) in an adversarial way. 

The proposed cGAN model obtained a maximum improvement of 1.28% in the IoU 

score on unseen test data when compared to the initial segmentation mask results and 

outperformed other state-of-the-art models. The qualitative assessment conducted on sev-

eral scenarios demonstrated the relevance of the reconstruction approach and asserted the 

performance improvements observed in the metrical comparison—the generated tiles fea-

ture road representations that are more similar to the target domain (road distribution 

present in official cartographic support). 

However, as in the case of most deep learning models, the quality of the generated 

machine predictions was highly dependent on the quality of the conditional training data, 

and our model is sensitive to the number of holes in the data, the most important source 

of error being the imperfections present in official cartography. It should be noted that in 

tasks involving the extraction of unbalanced classes (such as road extraction), even small 

increments in performance metrics can result as significant, and an additional qualitative 

evaluation is required on unseen areas. 

These results demonstrate the effectiveness of applying conditional generative learn-

ing for post-processing image segmentation masks of roads extracted from aerial or-

thoimages. Although there is room for improvement, our proposal shows the benefit of 

deep inpainting operations with generative learning as a technique applied to reconstruct 

gaps in extracted remote sensing objects caused by occlusions in the scenery. The pro-

posed cGAN model is applicable to the binary segmentation results of roads delivered by 

any segmentation model (where discontinuities are present), and we expect similar im-

provements over the results. 
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We believe that, in a world where autonomous vehicles gain in increased importance, 

the way state administration handles official road cartography must evolve and change 

from simple road cartographic symbolisation to having complete and openly available 

road surface area cartography. We plan to keep on improving these road extraction results 

with other unsupervised approaches, such as image-to-image translation. The end goal is 

to design an end-to-end solution that can successfully extract roads from extended areas, 

while correctly preserving the topological properties of the geospatial element. 
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