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Abstract: With the recent increase in urban drift, which has led to an unprecedented surge in urban
population, the smart city (SC) transportation industry faces a myriad of challenges, including the
development of efficient strategies to utilize available infrastructures and minimize traffic. There
is, therefore, the need to devise efficient transportation strategies to tackle the issues affecting the
SC transportation industry. This paper reviews the state-of-the-art for SC transportation techniques
and approaches. The paper gives a comprehensive review and discussion with a focus on emerging
technologies from several information and data-driven perspectives including (1) geoinformation
approaches; (2) data analytics approaches; (3) machine learning approaches; (4) integrated deep
learning approaches; (5) artificial intelligence (AI) approaches. The paper contains core discussions
on the impacts of geo-information on SC transportation, data-driven transportation and big data
technology, machine learning approaches for SC transportation, innovative artificial intelligence
(AI) approaches for SC transportation, and recent trends revealed by using integrated deep learning
towards SC transportation. This survey paper aimed to give useful insights to researchers regarding
the roles that data-driven approaches can be utilized for in smart cities (SCs) and transportation. An
objective of this paper was to acquaint researchers with the recent trends and emerging technologies
for SC transportation applications, and to give useful insights to researchers on how these technologies
can be exploited for SC transportation strategies. To the best of our knowledge, this is the first
comprehensive review that examines the impacts of the various five driving technological forces—
geoinformation, data-driven and big data technology, machine learning, integrated deep learning,
and AI—in the context of SC transportation applications.

Keywords: geo-information; transportation; smart cities; machine learning; data analytics; big data;
deep learning; artificial intelligence (AI)

1. Introduction

The initial concept of a SC has been acknowledged as a framework that builds upon
the advancements in the ICT (information and communication technology) field to address
urbanization challenges. People are increasingly engaging with SC platforms in multiple
ways (e.g., mobile devices, connected cars, smart homes). However, the development
of frameworks for SCs has not fully matured to be able to take advantage of new and
emerging data-driven technologies. The advancement of new technologies in big data,
AI, machine learning, deep learning, and internet of things (IoT) will further shape the
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framework of a SC and revolutionize the different sectors in SCs [1,2]. Geoinformation and
communication technology (GeoICT) [3] is another emerging field which is increasingly
being utilized to foster urban sustainability and SCs. GeoICT has significant importance
for the implementation of ICTs, involving geographic information science and systems in
SCs to support analysis and decision-making.

SCs involve various ICTs and advanced technologies, which can transform many
socio-economic aspects of society including health, energy, education, and transportation,
thus enabling smart technologies to create change in society. The SC transportation industry
is bound to face myriads of technological challenges as a result of unprecedented urban
migration. Hence, it is expedient to devise efficient strategies to utilize the available
infrastructure and to minimize traffic. Smart transportation systems play an important
role in urban areas to address issues such as traffic control and urban congestion. Smart
transportation systems can provide services to improve road safety, reduce accidents, and
give on-time information to drivers and users. An example of a SC deployment can be
found in the proposal by Alphabet (Google) to build public WiFi kiosks on streets in
New York, with the potential to exchange data with autonomous vehicles & other urban
systems [4].

SCs utilize a variety of tools and techniques, including technologies that rely on Intel-
ligent Transportation Systems (ITS), big data, and data analytics, as well as AI, machine
learning, deep learning, IoT, and edge analytics. SC technology-focused research addresses
several research areas in smart transportation and its applications, which are significant
components of SC requiring intelligent instrumentations and interconnections. These ap-
plications in transportation include driver experience, autonomous vehicles, collaborative
traffic control, and management and traffic flow prediction.

In recent years, big data analytics has been utilized in the design and planning of
smart transportation, control systems, and communities. In smart transportation, data is
obtained from multiple heterogeneous sources such as GPS data, transportation logistic
data, video data, social media data, sensors, and systems data e.g., vehicle-sensing data
(VSD), vehicular mobile service data, advanced driver-assistance data, connected cars
data, etc. A generic architecture of utilizing and deploying big data analytics in smart
transportation systems is shown in Figure 1. The architecture has three layers for data
sensing and collection, data analytics, and smart transportation application.

Figure 1. Generic architecture for big data analytics in smart transportation.

In the field of data science, machine learning is used for modelling and analytics
to derive trends and patterns from data. In general, there are three categories for ma-
chine learning algorithms: (1) supervised learning algorithms; (2) unsupervised learning
algorithms; (3) reinforcement learning algorithms. Neural networks (NN) are a popular su-
pervised learning technique for both classification and regression [5]. Supervised learning
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algorithms require the use of labelled data for classification and regression. Unsupervised
learning algorithms do not require labelled data and have been used for different smart
transportation applications, such as traffic flow prediction [6,7], transportation travel route
evaluation [8], parking spaces forecasting [9], bus arrival time prediction [10], etc.

A recent trend in modern machine learning algorithms is the emergence of deep
learning (DL) models. Some DL models are the convolutional neural network (CNN),
deep restricted Boltzmann machine, recurrent neural network, deep reinforcement learning
models, stacked auto-encoders, etc. A survey of deep reinforcement learning for intelligent
transportation can be found in [11]. Some applications include vehicle detection [12], traffic
data imputation [13], and prediction of traffic flow density [14,15]. This paper focuses on
innovative AI techniques for traffic modelling and prediction, traffic management and
control, transportation and mobility, public transportation and other related applications
for SCs.

The motivation behind this study was to investigate the impacts of the five driving,
emerging technological forces—geoinformation, big data analytics, machine learning,
integrated deep learning, and AI approaches—in the context of SC transportation strategies.
The study was aimed to acquaint researchers with the recent trends and useful insights
into the emerging technologies for SC transportation applications and using the state-of-
the-art techniques to address the enormous challenges of the SC transportation industry.
Although different methods have considered adopting each of the various techniques for
the transportation industry, none have considered addressing the enormous challenges in
the context of SC transportation strategies, using a combination of the various approaches.
Due to the large volumes of real-time data being generated daily as a result of a rapid
and unprecedented surge in urban migration, the existing conventional data processing
tools are deficient to effectively realise the key targets of a SC transportation ecosystem.
Consequently, this has brought enormous challenges for the SC transportation sector,
including in traffic congestion, route planning issues, fleet management problems, parking
request modelling problems, short-term forecasting problems, as well as the development
of efficient strategies to utilize available infrastructures to minimize traffic/accidents and
improve road safety. Thus, there is need to address these challenges by considering the
integration of big data technology with other emerging technologies into the transportation
sector and exploiting them for SC transportation applications. Hence, this paper considered
the need to devise a state-of-the-art integrated approach to tackle the enormous challenges
facing the SC transportation industry, with a focus on the use of emerging information
and data-driven technologies (referred to as the five driving emerging technological forces)
for SC transportation applications. The paper also examines several use cases that can be
exploited for SC transportation strategies.

In this paper, we present a comprehensive review and representative studies with the
focus on the emerging technologies from five information and data-driven perspectives:
(1) geoinformation approaches; (2) data analytics approaches; (3) machine learning ap-
proaches; (4) integrated deep learning approaches; (5) artificial intelligence approaches. The
remainder of the paper is as follows. Section 2 presents the research method while Section 3
gives an overview of smart transportation and comparison. This is followed by Sections 4–6
which give discussions on the impacts of geo-information on SC transportation, data-driven
transportation, and big data technology, as well as machine learning approaches for SC
transportation. Section 7 discusses recent trends using integrated deep learning towards
SC transportation and Section 8 gives some discussions on transportation empowered by
other artificial intelligence (AI) techniques. Section 9 concludes the paper.

2. Research Method

One of the main objectives and contributions of this paper was to present a compre-
hensive study of the state-of-the-art for SC transportation techniques and approaches, with
a focus on the emerging technologies, termed as the five driving technological forces. The
literature review has been considered as a valid approach and a necessary step in structur-
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ing a research field, and thus constitutes an integral part of research [16]. Consequently,
this study adopts a four-step research method used in [16,17] for collecting and analyz-
ing the literature, namely, (1) defining the unit of analysis, (2) selecting the classification
context, (3) collecting publications and delineating the field, (4) analyzing or evaluating
the materials. Thus, within the parameters of this objective, this study presents literature
covering over 867 research articles from journals and over 203 cited references at the end.

The literature has been structured under two main categories, namely: (1) an overview
of smart city transportation and comparison, and (2) emerging technologies for SC trans-
portation. Figure 2 shows a summary of the scope of reviews in this paper and Table 1
shows a summary of the classification descriptors and references showing areas, discussion,
and studies. The relevant papers have been searched using Google Scholar, IEEE Explore,
and Scopus databases from 2010 onwards, while others have been obtained via cross-
referencing. However, a wide range of publications was found between 2017 and 2020, as
shown in Figure 3; this was instrumental for the authors to refine their search in order to
identify any missing publications, including traditional and new items relating to the key-
words. In finding relevant publications, the authors also considered a single research paper
as the unit of analysis, and employed a set of keywords to ensure the collection of a large
number of studies. These studies have been analyzed under two major contexts, namely:
(1) the problem context and (2) the solution/methodology context, to sufficiently cover
both studies on smart city transportation strategies, as well as methods utilizing emerging
technologies for smart city transportation applications, in order to address problems.

Figure 2. Scope of reviews.

Table 1. Classification descriptors and references.

Classification Descriptor References
Overview of Smart City Transportation and Comparison

Intelligent transportation [18,19]
Transportation system architectures [20–24]
Traffic monitoring and management [25–28]

Social transportation and crowdsourcing [29–31]
Platooning for sustainable transportation [32,33]

UAV-enabled transport for smart city [34]
Ridesharing in smart city [35]

Multi-station vehicle sharing in smart city [36]
Waste transportation in smart city [37]

Emerging Technologies for Smart City Transportation

Impacts of geo-information on smart city
transportation [38–66]

Data-driven transportation and Big data
technology [67–136]

Machine learning approaches for smart city
transportation [137–159]

Integrated deep learning towards smart city
transportation [160–182]

Transportation empowered by AI and other
techniques [183–205]
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Figure 3. Statistics of distribution of the papers by the publication year.

3. Overview of SC Transportation and Comparison

This section presents an overview of SC transportation and the comparison of some
of the literature. Several research efforts have been made to study previous works and
determine how the SC transportation-enabling technologies can effectively be utilised.
Smart cities (SCs) utilize a variety of sensors for data collection to perform analytics. The
authors in [18] discussed several characteristics of SCs such as smart governance, smart
communities, smart economy, smart environment, and smart mobility. The characteristic
of smart mobility refers to the integration of ICT and sustainable transportation. The role
of ITS in SCs is a key focus of a SC. A smart transport system allows for several useful
applications, such as traffic monitoring, and informs traffic participants about potential
hazards and situations. The following discussions give an overview of SC transportation,
which are compared with the current review.

Intelligent Transportation: Intelligent transportation systems (ITS) utilize various
technologies ranging from core applications such as traffic signals, control, and monitoring
systems to useful applications such as parking guidance and decision-based information
systems. An example of an intelligent transportation application is the intelligent vigilare
system (IVS) for intelligent transportation services for SCs proposed by the authors in [19].
Figure 4 shows the architecture of the proposed IVS framework. The IVS utilizes several
forms of ICT technology for data sensing, information processing, and cloud storage, which
are integrated to perform the useful IVS application. The authors proposed the application
of one of the five driving technological forces under our review—big data technology (in-
corporating IoT, ICT, and data-mining technologies, which they termed as the three pillars
of any SC transportation project) for ITS. Their main purpose was to utilize the big data
technologies to tackle the various ITS issues, including safety, security, and management. In
contrast, we studied the combination of the five driving technological forces in the context
of SC transportation strategies. Our main purpose was to acquaint researchers with the
recent trends using integrated deep learning approaches and with useful insights into the
data-driven approaches that can be exploited for SCs and transportation architectures.

Transportation System Architectures: This section presents some review studies on
SC transportation architectures. The authors in [20] conducted a study and discussed
various transportation architectures for SC applications. The architectures addressed
different applications, such as traffic communications, shared vehicles, navigation, and
energy. In [21], the authors proposed a cloud-based, smart car-parking transportation
architecture for SCs. They first established this in a university campus using three tiers in
the architecture (see Figure 5): (1) Cloud Tier—cloud storage and computation services.
The data include parking lots, the car driven, and the user’s location; (2) Web Servers Tier—
connection of the mobile applications tier and the cloud tier. It supports the deployment of
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applications and provides the environment to modularize the applications into a bundle;
and (3) Mobile Applications Tier—makes requests to the car parking web server asking for
available car parking lots. The server will find an available car parking lot by following the
user’s profile and return application driving information to the user.

Figure 4. Architecture of IVS framework [18].

Figure 5. Smart parking transportation architecture [21].

The authors in [22] proposed a smart public transport system architecture by utiliz-
ing smart GPS-based buses, smart ticketing, and automatic fare collection. Their system
architecture consisted of three modules: (1) Bus Transmitter Module; (2) Bus Terminus
Control Module; and (3) Passenger Service Module. The Bus Transmitter Module con-
sisted of a GPS module, a single board computer (Raspberry Pi), and a GSM Module. The
Passenger Service Module consisted of a smart phone application to find the location of
the bus and the time it will take to reach the destination. The authors in [23] discussed
a SC transportation system and a framework for systems governance using the classifi-
cation of the Singapore Land Transportation System (SLTS). Figure 6 shows the entities
and relationship within the SLTS. The governance framework for the next-generation SC
transportation system is shown depicting the governing body and the SLTS. The authors
in [24] proposed an approach termed as ACP (artificial system, computational experiment,
and parallel execution) and focused on a parallel transportation management and control
system (PTMS). A new architecture for building new generation intelligent transportation
systems (ITS), which is an expansion of PTMS, was proposed. Figure 7 shows the proposed
ACP smart transportation architecture. Their approach utilized IoT and cloud-computing
technologies for social transportation and agent-based systems. In their approach, the
agent-based traffic control utilizes its autonomy and adaptability to handle the dynamic
nature of the traffic environments. In contrast to conventional control approaches, which
are static, the agents can be adapted in real time based on the surrounding traffic status.
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The traffic agents are implemented as software as a service (SaaS) and are mobile within
the network. The application was implemented on the MapReduce framework.

Figure 6. SLTS main entities and relationships [23].

Figure 7. ACP smart transportation architecture [24].

The above discussions are limited to existing SC transportation architectures and
compared to various parameters with the aim of building robust and generic software archi-
tectures for the SC transportation sector. The proposed architectural solutions are targeted
to address a few issues, including car-parking, navigation, energy management, etc. When
compared to our study, the aforementioned discussions do not present a comprehensive
review study and are limited to only architectural solutions. Moreover, recent studies
reveal that the challenges of the SC transportation industry surpass the mere provision
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and application of only architectural solutions, but rather require some integrated solution–
strategies, which are examined in the present study. This is because such architectural
solutions are not encompassing and have a limited capacity to address a variety of issues
affecting the SC transportation sector.

Traffic Monitoring and Management—This section reviews a few research works
related to traffic management and monitoring for SCs. The objective of traffic management
is to ensure the effectiveness of intersections, roads, and motorways. These systems provide
useful information to road users (e.g., real-time information and traffic density forecasts)
and on the implementation of intelligent systems to reduce negative impacts (e.g., road
accidents, traffic congestion). Useful information on traffic patterns can be gathered by
connecting smart lighting and signals with traffic control systems. The authors in [25]
proposed an intelligent traffic system to reduce the waiting time for vehicles. Their adaptive
system uses detectors to gather information about the state of the road, which is used to
calculate the optimal traffic signal time. The authors in [26] proposed an approach for
spatio-temporal congestion-aware path planning for ITS. They embedded SDN technology
into the ITS and proposed a grid-based model to quantify the traffic-congestion probability
for forecasting. Figure 8 shows the SDN-enabled SC and the grid-square-embedded model.
The traffic-congestion probability of an area is proportional to the average traffic flow at
each square area.

Figure 8. SDN-enabled smart city and the grid-square embedded model [26]: (a) SDN-enabled SC
with distributed path planning management; (b) Grid-based network model.

Traffic flow prediction is an important problem to address for SC environments. The
predictive tasks can be classified into three categories based on the traffic duration to be
forecasted: (1) long-term traffic prediction; (2) medium-term traffic prediction; and (3) short-
term traffic prediction. The authors in [27] have presented a review in this SC application
area. The authors in [28] classify traffic flow prediction approaches into five categories:
(1) statistical analysis models; (2) artificial intelligence (AI) models; (3) nonlinear theory
models; (4) traffic simulation models; (5) combined prediction models. The aforementioned
studies are restricted to traffic flow predictions and monitoring, and thus have limitations
with regards to devising comprehensive solution–strategies, which require a collaboration
of the five technological forces, as presented in our study for SC transportation applica-
tions. The summation of their investigations is just a component of the several solution
mechanisms reviewed in the present study. In contrast to our study, their studies lack a
comprehensive review of an integrated approach to address the various issues affecting the
SC transportation industry.

Social Transportation and Crowdsourcing—Social networking systems can be utilised
to develop smart transportation systems. For example, maintenance and improvement
of public transportation services are important in SCs. However, the implementation of
new and improved features can be costly. A social-based approach can be utilised to collect
real-time tracking data using participatory sensing, also termed as mobile crowdsensing or
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crowdsourcing. In this approach, the mobile devices from passengers are used to collect
data. The authors in [29] proposed a crowdsensing-based public transport information
service for SC applications (shown in Figure 9).

Figure 9. Mobile crowdsensing smart transportation architecture [29].

Their approach utilized an Android user interface termed as TrafficInfo (shown in
Figure 10), which is implemented on a XMPP communication framework to facilitate
the development of the crowd-assisted smart city application. The authors used XMPP
and its generic publish/subscribe communication model in the framework to implement
interactions. It could also be configured to use the OpenStreetMap (OSM) [30], which is
a crowdsourcing-based mapping service. The TrafficInfo has three main features: (1) vi-
sualization; (2) information sharing, and (3) sensing. The figure shows the TrafficInfo
screenshots for vehicle visualization, the user feedback form and the sensor data flow in
TrafficInfo. Again, these approaches do not address the critical issues of the SC transporta-
tion sector, as being examined in our study, which require an integrated solution using the
five emerging technologies currently being reviewed by the present study.

Figure 10. TrafficInfo smart transportation application [29].

Package delivery services are in high demand due to the rapid growth of online
retailers. The authors in [31] proposed a city-wide package distribution and a framework
called the crowdsourced public transportation system (CPTSs). This approach aims to
utilise the of idle capacity of CPTS vehicles. There are four states (waiting, riding, re-waiting,
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and unloaded) in package delivery. The delivery scheme determines the state of any
package at any time slot, and calculates the optimal time for delivering all packages. The
authors formulated the problem as an NP-hard problem and proposed an efficient heuristic
solution using ILP techniques. Figure 11 shows a comparison between the traditional
logistic distribution model, where each logistic company distributes packages to their
customers independently, and the proposed approach. Their experimental work was
validated using simulations with data from a real bus transportation network.

Figure 11. Comparison between traditional logistic distribution (a) and CPTS model (b) [31].

Platooning for Sustainable Transportation in Smart Cities—In an SC, it is important
to ensure the sustainable development of urban transportation, which considers fuel
consumption as well as traffic efficiency. Platooning is a cooperative driving application
where autonomous vehicles move on the same lane in a train-like manner [32]. The vehicles
in the lane are maintained at a constant inter-vehicle distance to reduce fuel consumption
and to achieve road safety. The authors in [33] proposed a systematic framework for
vehicular platoon formation. In their approach, an optimal speed model is first computed
to optimise the total fuel consumption. Next, an insertion point based on a Q-learning
model is derived and used for the vehicles in the platoon. Their approach also designed a
collision detection model for new vehicles joining the platoon.

UAV-Enabled Transport for Smart Cities—UAVs have also been proposed to play a
role in smart transportation for SCs. The authors in [34] discussed the potential of UAVs in
SC transportation. Some examples of the applications that can be enabled by UAVs include
aerial accident report agents, aerial speed cameras, aerial policing, and aerial traffic signals.
Figure 12 shows a UAV smart transportation architecture for an aerial accident report agent,
where one UAV could fly to the accident location and issue a report or alarm (e.g., video),
and then land and transmit its report or alarm for other UAVs.

Ridesharing in Smart Cites—Ridesharing in smart cities provides benefits such as a
reduction in traffic congestion, reductions in carbon footprint and travel cost, enabling a
partial solution to parking problems, etc. The authors in [35] discussed the possibility of
quantifying an individual contribution towards sustainability and a reciprocal incentive
approach to encourage voluntary behavioural development towards sustainable mobility
solutions. They also proposed a framework called WeDoShare, which is a ridesharing
framework in transportation for sustainable mobility in SCs. Figure 13 shows the conceptual
view of WeDoShare in an IoT-based transportation System. This work addressed the issues
of ridesharing and promoting the long-term engagement of Single Occupancy Vehicles
(SOV) owners in ridesharing.
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Figure 12. UAV smart transportation architecture [34]: (a) a UAV is exploited to provide the rescue
team an advance report prior to reaching the incident scene; (b) Police exploits UAV to catch traffic
violations; (c) a UAV is used as a flying RSU that broadcasts a warning about road hazards detected
in areas devoid of an RSU.

Multi-Station Vehicle Sharing in Smart Cities—The authors in [36] proposed a trans-
portation system architecture for multi-station vehicle sharing. There are three components
in this architecture: (1) the User Trip Registration component; (2) the System Management
component; (3) the Vehicle component. The User Trip Registration Component registers
the requests for vehicles, which requires signing up. The System Management Component
contains the information of users, vehicles, and requests. The data from the vehicles and
registration kiosks can be analyzed to give information on user trip behavior and vehicle
operation. Radio transponders can be used to communicate with the system management.
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Figure 13. Ride sharing transportation architecture [35].

Waste Transportation in Smart Cities—An important function in SCs is solid waste
collection and management. The authors in [37] discussed a study on methods for efficient
waste transportation and recycling. Their work considered IoT-based solutions for waste
transportation management, which included two use cases: (1) survey and data collection;
(2) IoT-based smart waste transportation system. The authors performed simulations and
implemented a prototype system using a case study of a metro region. The simulation
scenarios were for: (1) waste collection; (2) waste recycling. Figure 14 shows the waste
collection simulation and the waste recycling simulation. Their work demonstrated sev-
eral benefits for SCs, including reducing traffic congestion, and thus saving both fuel
consumption and time.

Figure 14. Waste transportation architecture [37].

All the aforementioned works are advancing the topic but have overlooked or over-
sighted the need to comprehensively examine the technological impacts of the five driving
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forces and emerging technologies—(1) geoinformation, (2) data-driven & big data technol-
ogy, (3) machine learning, (4) integrated deep learning, and (5) artificial intelligence (AI)
in the context of SC transportation strategies. Such a comprehensive study is crucial and
critical with regards to acquainting researchers with the recent trends and state-of-the-art
technologies that can be exploited for SC transportation strategies. When compared to
other approaches, this study aimed to comprehensively examine the combined impacts of
the five driving technological forces in the context of SC transportation strategies. We also
note that, to the best of our knowledge, this is the first comprehensive review to consider
and examine these five technological approaches for SC transportation applications.

4. Impacts of Geo-Information on SC Transportation

This section presents the impact of geo-information on SC transportation and some
representative works in this area. Some studies on the utilization of geoinformation and
geospatial technologies in SCs can be found in [38–40]. The authors in [41] discussed
the transformation of traditional urban spaces to digital spaces and the utilization of
geoinformation for deployment in SCs. The authors in [42] explored SC frameworks and the
environmental impacts of ICT solutions. Geoinformation and communication technology
(GeoICT) offers solutions for sustainability in SCs. The authors in [43] presented a study
which highlighted the role of GeoICT in the development of SCs. The authors in [39]
presented an approach for geomatics contribution called GeoSmartCity. Their approach
utilized data such as location, routing, correlation, and spatial interactions. Visualization
tools provide real-time information on colored maps showing traffic flow.

The authors in [44] discussed the application of GeoDesign in SCs and how three-
dimensional planning can be utilized for sustainable design. The authors in [45] proposed
an approach to three-dimensional model fusion in geographical information systems (GIS).
In this work, the authors discussed the usefulness of a three-dimensional model which can
be used as an input for other urban models such as telecommunication networks, disaster
management, and renewable energy planning. The authors in [46] proposed a multi-scale
3D-GIS approach for the assessment and dissemination of solar income of digital city
models. The authors in [47] proposed the usage of location-based services (LBS) by the
utilization of mobile devices, networks, and service providers. The location of users and
their contexts are important to LBS [48]. Some applications of LBS for SCs include security,
disaster management, and mobile workforce management.

The authors in [49–51] proposed utilizing large volume of spatiotemporal and big
data for SCs. Location analytics or geospatial big data analytics [52] involves the use of
geo-computing and spatial analysis to mine for new knowledge which could be embedded
in the spatio-temporal data. Examples of applications can be found in the analysis of
geo-tagged location data (e.g., Twitter), such as activity patterns, population estimation,
and disaster management [53–56]. Advancements in remote sensing (e.g., satellite data)
could also assist by providing information about the environment [57]. These GeoICTs are
derived from satellite images and form the concept of the digital earth and a georeferenced
digital representation of the planet. The use of geospatial technologies can be utilized
towards analysis and monitoring of urban areas based on environmental indicators [58].

The authors in [59] proposed an approach to analyze vulnerabilities in urban transport
systems through the metrics of complex networks. Complex network metrics is an approach
to model complex interactions between objects in high dimensionality (e.g., transportation
routes and stops can be modelled as a graph). The authors in [60] discussed some key
technologies in smart transportation for SCs. Figure 15 shows the structural diagram of the
smart transportation system. The system utilizes different ICT technologies to combine the
interactions and communication among the various entities (e.g., people, vehicles, roads)
into a digital map. Some applications include the selection of the optimal driving route
based on real-time traffic information and location of vehicles, using the GPS positioning
technology.
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Figure 15. Structural diagram of smart transport architecture [58].

The authors in [61] proposed an approach termed as ELTRO for a geo-information
model of a magnetic levitation transport system. A recent advancement in GIS presents
the concept of simultaneous localization and planning (SLAM). The authors in [62] pro-
posed a framework to integrate the GIS and SLAM technologies for smart transportation
systems. Their work proposed the utilization of SLAM for power distribution networks
to support urban transport systems and the charging of electric vehicles (EVs). Their
implementation utilized a cloud-based centralized SLAM on the GIS framework to ensure
stable power delivery, based on load forecasting through vehicle localization. The authors
in [63] proposed geostatistical methods for estimating individual transport speeds. Their
approach utilized geographically weighted regression techniques and methods of Kriging
family and considered real urban conditions. Their experimental work used real data from
Novosibirsk. The authors in [64] proposed an urban sprawl classification analysis using
image processing in GIS. Their work used Lansat satellite images for feature extraction.

The authors in [65] proposed an approach termed as the latent factor modelling of
traffic trajectory data. They proposed a generative model termed as TraLFM to mine the
human mobility patterns underlying traffic trajectories. Their approach used three observa-
tions: (1) mobility patterns are reflected by the sequences of locations in the trajectories;
(2) mobility patterns vary with people; (3) mobility patterns are cyclical and vary over time.
The authors performed extensive experiments on vehicle passage records (VPR) and taxi
data. The VPR data were collected from the traffic surveillance system in the city of Jinan.
The taxi data were collections from the complete trips of 442 taxis in the city of Porto. Their
experimental results showed that the proposed TraLFM approach could outperform the
predictions from other state-of-the-art methods.

The authors in [66] proposed an approach to estimate the influence distance of bus
stops using the bus GPS data and bus stop properties. The influence distance of a bus stop
is the distance between the start and end points of the zone where the road traffic nearby is
adversely affected by the buses. Their work aimed to analyze the traffic behavior of the
buses around the bus stops and to show the effects of the surrounding network. Their work
also aimed to determine whether different traffic behavioral dynamics are influenced by
the contextual properties (e.g., number of lanes, traffic light locations). Figure 16 shows
the data preprocessing with map matching. Their experimental work was validated using
data from 12 distinct bus routes in the city of Istanbul, which contained GPS data from over
5000 bus vehicles and 450 bus stops.
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Figure 16. Data preprocessing with map matching [66].

5. Data-Driven Transportation and Big Data Technology

Data is revolutionizing our world and transforming the way we live in and interact
with our society. It is transforming the way our society and its infrastructures are operated,
and how industries produce goods and offer services. Data are considered as a digital
commodity, which, if properly utilized, can pilot significant social change, as well as eco-
nomic development [67]. With the development of SCs, massive number of sensor devices,
wireless communication devices, hardware devices, as well as software applications have
been integrated with infrastructures and services to generate data about our everyday life,
which are utilized to enhance infrastructural development and service delivery.

The transportation system as an integral part of the society and a key element in the
SC ecosystem generates large volumes of data daily. As a result of the volume, variety, and
variability of transportation data, it is highly necessary to realize data-intensive jobs such as
data integration, data visualization, data querying, and data analysis for extensive real-time
applications, in order to efficiently utilize the potential of data. Existing conventional data
processing tools are deficient in the effective realization of the aforementioned tasks for
extensive real-time applications [68]. Big data in this context, has been proposed as the
key technology that can efficiently address data-related challenges in the transportation
industry, due to its ability to obtain, store, manage, and analyze large volumes of data to
extract useful information needed for implementing ITS [69].

5.1. Data Collection and Sources

Advances in technology such as IoT, social media, etc. have widened sources through
which huge amounts of data can be generated and collected from devices, vehicles, sensors,
and people, for utilization in ITS. Data collection in ITS therefore refers to the job of collating
data generated from these sources using suitable various channels. The authors in [70,71]
provide insights on the transportation data sources and types. One of the transportation
data collection sources is the smart card. Many urban transportation systems (BRT, rail, etc.)
make use of automatic fare collection (AFC) systems, which require that passengers would
have to use their smart cards to pay for fares. When passengers use (touch) their smart
cards, the electronic reader captures details about their boarding time, source–destination
information etc. Figure 17 shows some sources of data collection for ITS. Table 2 presents a
summary of transportation data collection sources and their applications.
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Figure 17. Data collection sources for SC transportation strategies.

Table 2. Summary of transportation data collection sources and applications.

Data Sources Data Collection Tools Data Type Applications Ref.

Smart card Smart card OD flows, travel time

Passenger travel behaviour
pattern, public
transportation services
planning and management

[70]

Video Video camera

Vehicle position, vehicle
speed, vehicle density,
vehicle classification, plate
number

Traffic flow detection, and
monitoring, vehicle
identification, incident
detection, vehicle emission
modelling

[70,72]

GPS GPS
Vehicle position, vehicle
density, vehicle
classification, road quality

Navigation services, traffic
monitoring, travel mode
detection, travel delay
measurement, routing
optimisation,

[73]

Road site sensors

Pneumatic road tubes,
inductive magnetic loops,
microwave radars,
piezoelectric loop arrays,
ultrasonic sensors, acoustic
sensors, IR sensors, light
detection and ranging
(LIDAR) sensors, toll
plazas, vehicle detectors,

Vehicle position, vehicle
flow, vehicle density,
vehicle speed, vehicle
classification, trip time

Vehicle counting, and
identification, traffic
density and speed
estimation, congestion
prevention and route
planning, short-time
forecasting, parking
demand modelling

[74]

Floating car sensors

Automatic vehicle
identification (AVI),
transponder, license plate
recognition (LPR)

OD flow, travel time

Travel route selection and
estimation, driver
monitoring, driver
behaviour modelling

[75]

Wide area sensor

GPS, cell phone tracking,
video processing sound
recording,
photogrammetric
processing, space-based
radar, airborne sensors,

OD flow, travel time Wide area traffic
monitoring [71,75]
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Table 2. Cont.

Data Sources Data Collection Tools Data Type Applications Ref.

Connected and
autonomous vehicles
(CAVs) and VANET

Various sensors Coordinates, speed,
acceleration, safety data

Online vehicle diagnosis,
smart charging planning,
travel delay reduction,
safety performance
enhancement, congestion
and accident detection,
traffic flow prediction

[76–78]

Passive collection

Social media (tweeter,
Facebook, Weibo,), mobile
phone, collaborative
applications

Travel time, OD flow
Real-time congestion
avoidance routing, OD
estimation

[79–81]

Other sources
Smart grid, smart meters,
cellular service, dedicated
tests

Electric and energy
consumption, location,
channel data

Performance and efficiency
improvement, dashboard
analysis

[82,83]

5.2. Data Analytics for Transportation

Data analytics is the process of inspection, selection, transformation, governance, and
representation of data, with the goal of discovering useful information and assisting or
boosting decision-making systems. Transportation is an integral part of our contemporary
society. It provides the means of movement of people and goods and drives economic
development. As the urban population surges, the transportation industry faces the
challenge of developing effective and efficient strategies to utilize available infrastructure
and reduce traffic [84]. With the advent of SC and ITS, sensors, GPS devices, smart
phones, automatic fare collection (AFC) systems, etc., have been deployed to generate data
daily from passengers, infrastructures, and transport services. The large volumes of data
generated are processed with data processing models to gain valuable information that
can be utilized by governments and private companies to conduct in-depth analysis and
monitoring to make informed decisions to enhance the quality of their services.

However, most conventional tools for data analysis, such as relational databases,
are deficient in storing and managing such highly voluminous data [85]. Recently, big
data analytics has been applied in many sectors including the transportation industry
because it provides big data platforms at the highest level for the application of learning,
pattern inference, and optimization techniques. Big data provides some features that give
it a competitive edge over traditional models. Several studies propose that applying a
simple model to highly voluminous data produces a more reliable accurate result than
applying sophisticated learning algorithms to less voluminous data [68]. Also, big data
analytics defines the sophistication of the models themselves and how they support scholars
obtaining fresh insight. Big data promises speed and efficiency in the transportation
services, although the enormousness of real-time data in transportation, and in the manner
that big data analytics predicts the condition of components in ITS, constitute some major
challenges that need to be addressed. In this context, several studies have been conducted
to incorporate big data analytics into the transportation sector.

The authors in [87] designed an analytic technique to manage the massive data regard-
ing traffic volume count, and to carry out congestion analysis. The study was done using
huge traffic volume count data collected by radio frequency identification (RFID) devices in
Nanjing, China. Their aim was to apply software, analytical, and virtualization approaches
to data to determine the peak hours, off-peak hours, and places of high and low traffic
volume. The authors acquired three sets of data for vehicle movement, RFID reader, and
vehicle type. Attributes captured in the vehicle movement data included license number,
the time and date detected by the RFID reader, the vehicle type identification code, the
road lane’s number, where the vehicle was detected, and the RFID reader identification
codes that detected the vehicle.
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The authors in [88] proposed a real-time vehicle traffic analysis framework based on
big data analytics and IoT devices to provide predictions for future policy-making in smart
transportation. The study was carried out in four routes in the Ernakulam district of the
state of Kerala during a two-peak period of 7.00 am to 8:30 am and 4:00 pm to 6:30 pm,
using four buses. Their aim was to provide the decision-making authorities a guide for
developing transport policies, such as deciding if a road bumper or speed breaker is needed
by correlating the data with daily traffic analysis, and in allocating funds to infrastructure
projects in the future. The proposed system was composed of four modules—a GPS module,
an IoT module for GPS data collection, a server module (for receiving data), and a mobile
app module. The proposed system also employed Hadoop and Apache Spark for the
analysis of stored historic data and real-time data, respectively. The GPS module was
placed on vehicles while the receiver module was placed in the control section, and the
data generated were collected and analyzed at various intervals of time to identify regular
congested routes. The results were transmitted by the transmitter module to the control
section, which, alongside with the software section, assesses the congestion and presents a
graphical analysis of traffic flow as output to end users via a mobile application.

The authors in [89] proposed a method to estimate passengers alighting behaviors at
bus stations using automated fare collection (AFC) transaction data generated from bus
rapid transit (BRT) users’ smart cards between bus terminals and corridors. The method
used the origin–destination (OD) matrices as its parameters for estimation. The study used
transaction data obtained from AFC payment systems, with the entry–exit mechanism of
a BRT system in Jakarta. The data was preprocessed to remove duplicate data and single
transactions, filter completed transactions (tap-in and tap-out), and classify transactions
tapped at adjacent times. Information extracted and used for the algorithm implementation
included the transaction timestamp, smart card serial no, flag status (in or out), bus stop,
sub-corridors, corridors reference, and stops. The study estimated BRT user’s alighting
station in Jakarta at several levels of available corridors by developing OD matrices as
a result. The result was validated with the AFC exit data as a valid alighting station. A
comparison of the result of this method at different levels of validity with OD matrices
estimation showed that this method gives results with up to 94% accuracy.

The authors in [90] employed taxi booking and GPS trajectories datasets combined
with mobile-sensing datasets to build a system for city transportation service analytics
called TRANSense. To give a practical realization of the proposed framework, the au-
thors demonstrated two analytic applications: (1) the taxi service analyzer (TSA) which
detects commuters queuing for taxis and utilizes taxi trip information to identify possible
high demand taxi locations and selectively activate mobile sensing-based analytics for
nearby commuters to evaluate their waiting time; (2) subway boarding analyzer (SBA),
which identifies instances of travelers failure to board arriving trains. It achieved this by
approximating the arrival times of trains from the temporal patterns of travelers’ depar-
ture at station booths, and subsequently used mobile sensing-based analysis of travelers’
behavioral movement on platforms. Experiments performed with real-world datasets
collected from over 20,000 taxis and 1.7 million passengers in Singapore revealed that TSA
detected passengers queuing with an accuracy of over 90%, with an insignificant energy
overhead, and estimated wait time with less than a 15% error margin. On the other hand,
SBA detected failed boarding situations with over 90% precision.

The authors in [91] applied data analytics to determine city hotspots depending on
time and location, using the 2016 city of Chicago big taxi dataset. The authors provided
descriptive, predictive, and prescriptive analysis to help determine taxi companies that
needed improvements in customer service, maximize drivers’ earnings, obtain information
on trips, examine the average range of drivers’ drop-offs and next pick-ups, and work out
better commute patterns. In the descriptive analysis, the authors visualized the data by
employing the Python library MatPlotLib to enable the plotting of the data to discover
patterns. The graph revealed the volume of trips undertaken by the ten highest earning
companies.
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The authors in [92] employed real-time big data acquired from the Florida Department
of Transport (FDOT), online data streamed from vehicles on the road, and data collected
from vehicle detectors on the roadside to develop a big data system to increase roadway
safety, prevent or minimize accidents, and decrease congestion. Their method was based on
splitting the roadway into sections utilizing the available infrastructure and minor accident
features. They applied a linear regression (LR) model to the data to accurately provide
the estimated time of arrival (ETA), while naïve Bayes (NB) and distributed random forest
(DRF) were used to predict accidents and congestion before they occurred. In an accident
or congestion situation, the ETA is updated by predicting the correct time needed to clear
it. To make the proposed system fast, accurate, and reliable, the authors integrated the
lambda architecture into their framework, based on its ability to provide scalability, speed
and fault tolerance. They ensured that a relevant set of features was selected to enhance the
efficiency, accuracy, and speed of the proposed model.

Using city-scale transport data (bus, subway, etc.,), the authors in [93] developed an
analytics framework for identifying tourists and understanding their preferences, called
TourSense. They first presented a graph-based iterative propagation learning algorithm
to identify tourists from public passengers and designed an analytical model for tourist
preferences to learn and predict the tourists’ next trips. Experiments performed on real-
work datasets collected from over 5.1 million passengers and their 462 million trips showed
that the proposed framework was very effective. In [94], authors designed a proof-of-
concept system that analyses bus schedules and real-time bus locations for the city of
Brasov, Romania. Their aim was to develop a system to revamp public transportation in
the city and to enhance the city’s attractiveness. The system was built atop of the CityPulse
framework, which supports many smart city solution creations using data analytics, real-
time IoT data, distributed systems, social media data streams, and so on.

The authors in [95] proposed a MATLAB-based data analytic method to model the
demand and route planning for a bus transport system, utilizing data gathered from
electronic ticket machines (ETM). The authors used ETM data generated from the daily
ticket sales transactions made by the Road Transport Corporation in the state of Kerala
(KSRTC), at six bus stations in the city of Trivandrum between the period of 2010 and 2013.
The extremely huge dataset generated by the ETM is estimated to be around one million
points, on average, of commuters’ monthly transactions. The authors focused on auditing
and compiling the dataset to ascertain commuters’ demand, operators’ performance, and
operators’ service effectiveness. With the MATLAB tool, the dataset could be queried to
ascertain the origin–destination (OD) matrix of bus passengers, which assists in modelling
demands, in making decisions, and in formulating policies for future predesign of the
transport system. Likewise, it is possible with the use of the analytic tool to ascertain the
link-volume of the transport network, and also to obtain information about boarding and
alighting of commuters at bus stops from the ETM dataset.

The authors in [85] designed a data analytic approach integrated with Hadoop to
enhance the operational efficiency of transportation and logistics companies. The authors
collected data about speed, fuel, acceleration, driver’s ID, date, GPS location coordinates
and time from vehicle sensors and GPS devices, which were then transferred to a Hadoop
clustered server. These raw data were generated and sent in packets to a HDFS system by
hundreds of motor vehicles every two seconds. These terabytes of raw data are analyzed
weekly or monthly using analytics method to enable transportation firms to monitor the
driving behavior of drivers, determine fuel usage, and assess risks undertaken by drivers.
This will help to cut down cost and enhance productivity.

The authors in [97] proposed an effective route planning technique called SubBus for
shared subway commute buses using crowd-sourced mobile data to predict commuter
flow at bus stations and for the effective planning of routes. First, the authors analyzed
the travel behaviors of residents to ascertain five predictive attributes which included
flow, location, time, week, and bus, and used them to predict the travel needs for shared
buses using machine learning model. Using the operating features of the shared buses,
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the authors designed a dynamic programming algorithm to create dynamic a best route
with fixed destinations for several running buses. The authors therefore incorporated the
dynamic programming algorithm together with the five predictive features into the shared
bus dynamic route planning approach (SubBus) to plan workable routes using the actively
changing travel needs. The evaluation of SubBus showed it outperformed other methods.

The authors in [98] proposed a hybrid data-driven transportation simulation model
that can assess and visualize parameters that measure network performance to enhance the
operational response to real-world smart city scenarios. The traffic model incorporates the
merging of preset data intersections and real-time data-driven intersections and depicts
a traffic passageway partly provisioned with smart devices capturing high velocity, high
volume datasets with short lifespans. The model has emulated seventeen successive inter-
sections on a passageway where the vehicle volume and signal control at two intersections
were driven by real-time emulation data from in-field sensors, while the other intersections
were controlled by preset data in the calibrated model. The study used various Python and
PERL scripts to fetch data continuously from the in-field sensors to populate the database.
Because of the high volume, velocity, and broad variation of the stream of data, the archi-
tecture employed data analytics to extract useful features. The result of the simulation with
the proposed hybrid model showed strong effectiveness in working with high volumes of
data when compared to models that employed preset values. The proposed model also
responded sufficiently to changing values of real-time input data.

The authors in [99] designed a graph-based algorithm to reduce the pressure on the
University of Nebraska Omaha (UNO) shuttle transport system. The system utilized data
about time, the number of students expected to use the shuttle, and the cost of fuel to
optimize the route in order to reduce user pressure and minimize carbon impact of the
transportation network. The implementation of the model when compared with an existing
routing model revealed that an average of 1.2 min was saved per shuttle run. For 257 shuttle
runs daily, the proposed model made a saving of 308.4 min daily and 1542 min weekly.
This eventually paid off in the long run with respect to CO2 emissions, fuel consumption,
and cost.

The authors in [100] proposed a traffic-aware approach for offloading data from big-
data-enabled ITS applications with a focus on discovering and selecting gateways. Their
aim was to offer reliable communication with little delay for offloading data while allevi-
ating network overhead incurred in gateway discovery. To achieve this aim, the authors
designed an adaptive gateway advertisement algorithm that managed the frequency and
area of advertisement dynamically using network and traffic reports in the gateway’s
environment. The proposed system was evaluated using practical simulation domain with
respect to gateway access overhead and data offloading success ratio. Results showed a
remarkable improvement in regards to permitting big traffic data centric ITS. Using New
York City taxi and limousine commission datasets, the authors in [101] designed a system
to analyze the runtime and predictive performance of several machine learning algorithms
on a Spark cluster. They found that increasing the size of the dataset had an insignificant
improvement on the accuracy of their classification, and the use of complex tree-ensemble
methods contributed little to enhance the results produced by simpler algorithms.

5.3. Big Data Technology and Transportation

Big data describes blending advanced analytic techniques (such as machine learning
and pattern recognition) together with a huge assembly of structured and unstructured,
enormously and exponentially increasing in size, and extremely complex data to discover
useful patterns, realize complex facts, trends, and relationships that exist in the data in
order to improve decision making and process optimization [102]. Big data technologies
refer to software frameworks that enable fast and efficient extraction, processing, and
analysis of data from highly complex and vast datasets in a manner which conventional
data management tools can never deal with. Big data has been employed in the transporta-
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tion industry to resolve many conventional data-based challenges, and has enabled new
applications, services, and opportunities [68].

5.3.1. Big Data Technological Frameworks

Some big data platforms have been used tremendously for research in SC trans-
portation. This subsection reviews some big data technological frameworks for big data
processing. It particularly describes some of the widely used technological platforms
(i.e., software frameworks) for processing very large volumes of data and their use cases.

Apache Hadoop: Hadoop is a technology that satisfies the requirements of big data
as it is scalable and designed as a software for big data processing. Hadoop is the most
commonly used open source, distributed, and scalable software framework for storing and
processing highly voluminous datasets. It offers a general big data process platform that
enables the execution of diverse data analytical operations. Hadoop’s capability to handle
distributed processing makes it very suitable for analyzing data generated in ITS (e.g., smart
card, social media, various sensors, GPS data, etc.). It was originally designed for use in the
area of business intelligence, but its use has widened to various urban domains that utilize
big data applications [104]. Hadoop enables the distribution of processing load among the
nodes of the cluster which improves the processing strength. The number of nodes in a
cluster can be increased or decreased depending on the need and can form homogenous
clusters using diverse categories of machines to process unstructured data, rather than
using a single costly supercomputer [105]. One main advantage of Hadoop is that it is
inexpensive to use, since it is an open-source framework.

The Hadoop framework is made up of three major layers. The first layer is the Hadoop-
distributed file system (HDFS) which uses the master–slave architecture to store, process,
and analyze huge datasets to extricate relevant insight from data. The HDFS splits the big
files and puts them into standard blocks and saves the blocks into the big cluster. In the
second layer is the MapReduce, which has four basic elements (input, mapper, reducer, and
output). Its operation involves splitting the big job into smaller jobs and executing them
appropriately. At the third layer is the Yet Another Resource Negotiator (YARN), which is
the resource manager responsible for allocating resource requests (CPU, memory) of the
Hadoop cluster to different tasks. Because of Hadoop’s popularity in big data processing
in both industry and research communities, several of its extensions have been proposed
such as HadoopGIS, HadoopTrajectory, HadoopDB, Hadoop++, etc. [106].

Apache Spark: Spark is a general and an extensively used distributed framework
implemented using a large in-memory cluster of machines to better handle the processing
of big data. Unlike Apache Hadoop, which is a disk-based system developed for I/O
efficiency, Spark takes advantage of increased growth in the main memory capacity of
machines that make up the cluster to attain better performance [107]. It permits the loading
of user program data into the cluster and queries it repeatedly. Spark is very suitable
for the deployment of machine learning methods and applications. The authors in [108]
designed a method to analyze transportation data using Hadoop together with Spark to
process transportation data in real-time. The architecture of the system is made up of four
distinct layers—the data collection and acquisition layer, network layer, data processing
layer, and application layer. The first employs methods that use sensors to collect data,
and the collected data is then subjected to cleaning and transformation using data-filtering
techniques to remove noise and unwanted information. At the processing layer, the data
received from the data collection layer is further preprocessed and normalized using the
Min-Max normalization technique. This technique was employed by the Hadoop ecosystem
to efficiently process data [109], since the data was collected from diverse sources (e.g., road,
parking). The proposed architecture provides modules for processing offline and online
data. The Hadoop ecosystem was utilized to process offline data, while Spark together with
the Hadoop ecosystem was used to process the online data. MapReduce of the Hadoop
was used to deal with the big data. To optimize the processing power of the MapReduce,
a scheduling algorithm was incorporated to split the task on the Hadoop server and to
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adaptively regulate the task on the Hadoop ecosystem using memory requirement and
CPU utilization to move a task from one node to another.

Two drawbacks were observed in the Hadoop ecosystem—high performance nodes
often switch to idle mode while low performance nodes maintain the active mode and
remain busy always. To deal with these problems, the system incorporated a load balancer
to monitor and balance the load among Hadoop and Spark nodes. After the data processing,
the result (output) was stored using the HDFS. The HDFS enables the efficient and speedy
processing of output data by the decision module. The proposed system incorporated
HBASE in order to provide fast real-time access, and optimized caching of the output data.
The output data from the Hadoop ecosystem is transferred to the application layer where it
is used to make informed decisions. This work demonstrates how big data technologies
enable the design and implementation of big data systems.

Python Library: Python recently has been utilized as a data analytics platform. The
PyStack is well equipped with libraries that support data analysis, but a lot of these libraries
are implemented to run on one CPU core and to handle data of similar sizes as that of
the main memory. As a result, Python is not effective in processing big data. On the
other hand, one can make use of PySpark to execute big data utilizing Spark on a cluster
of machines. Presently, Spark remains the most commonly used distributed in-memory
all-round execution engine that enables the use of a range of key libraries (e.g., SparkSQL,
MLlib, etc.).

5.3.2. Big Data Architectures

This section reviews some of the big data architectures proposed by different re-
searchers in this domain. The authors in [70] proposed a three-layered architecture of
conducting big data analytics in ITS as shown in Figure 18. Their proposed architecture
has three layers: (1) the data collection layer; (2) the data analytics layer; (3) the application
layer. The data collection layer supplies the upper layers with the diverse data sources. The
data analytics layer receives data from the previous data collection layer and then utilizes
various machine learning and analytics techniques. The application layer utilizes the data
processing results from the data analytics layer for various SC transportation scenarios
(e.g., traffic signal control, traffic flow prediction, and traffic emergency rescue).

Figure 18. Three layered architectures for big data analytics [70].
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The authors in [108] proposed a four-layered architecture to analyse big data and
bring forward a system that can handle real-time transportation data. Figure 19 shows their
proposed architecture. The architecture has four layers: (1) the data collection layer (2); the
data communication layer; (3) the data processing layer; (4) the data application layer. Their
proposed system collects data from various RFIDs installed at various locations in an SC.
The RFIDs are programmed to identify malicious vehicles using their registration numbers,
vehicle models, etc. The network layer consists of an SDN architecture to efficiently
process and transport the data to the next layer. The data processing layer utilises various
machine learning algorithms to efficiently analyse the data using the Hadoop platform.
The application layer distributes the data to the users.

Figure 19. Four layered architectures for Big data analytics [110].

The authors in [111] proposed a big data analytics platform for smart urban trans-
portation management (Figure 20). Their platform focuses on the City Administration
Dashboard, which is a public transport analytics application that has been developed on top
of the Europe-Brazil Collaboration of Big Data Scientific Research through Cloud-Centric
Applications (EUBra-BIGSEA) platform. The City Administration Dashboard provides sta-
tistical trends about bus usage. The architecture includes several services such as PRIVAaaS
(PRIVAcy as a Service), DQaaS (Data Quality as a Service), and EMaaS (Entity Matching as
a Service).

5.3.3. Research Works on Big Data for Transportation

Researchers have utilized big data to try and solve challenges to improve the trans-
portation system for SCs. Some of the problem areas that will be largely aided using
big data includes transport planning, road safety, environment, traffic management, avia-
tion, connected and autonomous vehicles (CAVs), freight and logistics, cost-effectiveness,
railway, and data-related issues [102]. Major challenges related to planning includes: cross-
media traffic operation, mobility on demand, changes in infrastructure to accommodate
CAVs, ticketing, etc.
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Figure 20. Integrated Big data analytics platform for smart urban transportation [111].

Using Shanghai traffic data alongside taxi and subway trajectory data, the authors
in [113] designed a transit–transportation planning strategy between taxi and subways.
Experiments showed that the strategy offered a very timely and bounded travel time using
real city traffic, saving travel cost and time. Consequently, it can alleviate pressure on cities’
road networks, minimize the general energy utilization of society, and expand the scope
of public transport systems. The authors in [114] utilized vehicle positioning and smart
card data to analyze the planning and operational processes of two real cases from Sweden
and Netherlands. The processing and relevant insight obtained from data enabled good
decision making and enhanced the public transport system.

To increase the efficient use of the road infrastructure, there is a need for dynamic traffic
management. Big data applications have been utilized in major areas in traffic management,
such as in congestion prevention and route planning, short-term forecasting, individualized
travel information systems, parking request modelling, and fleet management, to provide
insights at real-time. The authors in [115] proposed a graph-oriented scheme to analyze
big data of traffic and vehicular networks, such as timestamps, geographical locations,
and traffic intensity (speed and vehicle count) generated from IoT sensors installed on
roads and vehicles to enable road users and traffic management authorities to make smart
transport decisions. The architecture employed Graph tools along with parallel processing
servers to realize real-time efficiency. The system implementation utilized Spark and Graph
tools mounted on Hadoop parallel nodes to create and process graphs almost at real-time.

The authors in [116] designed a three-layer big data method for smart bus transporta-
tion management. The study was conducted with real world data acquired from roughly
2000 buses during a period of seven months from a vast bus network containing about
300 routes that span almost 5000 bus stops in the city of Fortaleza, Brazil. GPS tracking
devices were installed on the buses to send the latitude and longitude coordinates every
15–30 s. Transaction data from automatic fare collection (AFC) machines at all bus stops
were also collected. The big GPS signal and AFC data were processed using MapReduce
to calculate the bus travel time and to determine travelers boarding location in the first
layer. The authors in [117] discussed the role of big data analytics for smart transportation
systems. The authors in [24] proposed a traffic flow prediction service based on cloud
computing and big data analysis and conducted a traffic flow prediction based on the
MapReduce framework, consisting of three stages: (1) model selection; (2) parameter
estimation; (3) model combination. In [118], authors utilized big data generated from a
microwave vehicle detection system (MVDS) installed on a motorway network in Orlando
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to design a dynamic strategy to monitor traffic and to simultaneously evaluate operation
and safety in real-time. Their study confirmed that congestion significantly impacts the
likelihood of a crash. The authors in [92] employed H2O and WEKA tools to analyze five
classifiers on a big traffic accident dataset. Their analysis showed effectiveness in predicting
accidents before they occurred and that traffic flow and safety decisions are tremendously
impacted by drivers’ behavior.

The authors in [120] designed a big data platform to show how big data can motivate
large scale deployment of green vehicles. They used two datasets made up of 4.5 million
trips and recorded parking events of 28,000 conventional fuel vehicles, which were moni-
tored for more than one month period. The result of their analysis revealed the potential of
big data for policy assessment towards low-emissions and the deployment of green vehicles.
The authors in [121] conducted an analysis to investigate the driving range and factors
influencing the energy consumption rate of completely battery-powered, electric vehicles
(BEV) using real-world patterns and found that weather variables and driving pattern
influence the driving range of BEVs in the real-world. The authors in [122] proposed a
method to measure the carbon emission flow data of self-driving tour traffic from the year
2014 and evaluated its spatial connection with attractive locations based on data-mining
techniques.

Rail transportation systems have enjoyed substantial transformation as a result of
the increased attention and adoption of big data analytics in recent years [123]. This is
because of their ability to generate and process huge amount of data that includes real-time
train speed and location, departure and arrival time at certain stations, and passenger
OD information. Big data analytics can enable operators of rail transport system to make
informed decisions about train control and to improve operation efficiency. The areas where
big data is expected to positively impact the rail transport system includes information
management (e.g., passenger information, ticketing, tracking), train control (communi-
cation systems, automation, etc.), energy (intelligent power supply, smart metering etc.),
infrastructure (track condition, signal systems, surveillance analytics etc.), and predictive
maintenance (safety, real-time rescheduling). The authors in [124,125] proposed a big data
analytic method that analyses rail big data and displays an overview of a selected railway
network area. This enables operators to study operations and make informed decisions.
The authors in [126] applied big data analytics to optimize the shortest path fare strategy of
Beijing rail transit. Big data analytics was then used to process the basic data of passengers’
entry and exit from stations to obtain a real travel time distribution from any origination
to destination. The result of the analysis achieved by the proposed method will enable
operators to determine the actual fare payable by passengers for any trip.

The authors in [127] proposed a model to analyze the cascading failure of weighted
urban railway transit networks (URTNs). The model adopted the estimated operation
interruption time of the station (EOITS) to distinguish the disturbance intensity of the
system. The authors in [128] applied big data analytics to determine passengers’ flow in
Shenzhen’s subway using smart card data. The result of the analysis enabled the derivation
of policies for reducing urban congestion and optimizing network traffic. In [129], authors
proposed a big data visualization framework to analyze passenger flow, while in [130], the
authors proposed an approach for big data classification and transportation in rail networks.
They presented a new framework for future data-driven railway condition monitoring
systems (RCM). Figure 21 shows the proposed architecture for classified transportation
of large-scale sensor data in rail networks. The architecture is composed of two main
parts (data analysis and data transmission). The authors proposed two ways to perform
classification on the data, which are signal analysis (SA)-based methods and machine
learning (ML)-based approaches. To convert a signal from the time-domain to frequency-
domain, discrete Fourier transformation (DFT) is used for time-frequency conversion. The
one-class support vector machine (SVM) is selected for classification. The performance of
the classifier was evaluated using real experimental data. Their work demonstrated good
performances on various data sets under different operating conditions.
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Figure 21. Big data classification and transportation in rail networks [130].

In achieving a smart aviation industry, big data is considered a key element. The
authors in [102] categorized the challenges in the aviation sector into three types: (1) op-
erations and air transport management (delay mitigation, weather resistance, flight plan
optimization); (2) security and safety (on-board monitoring, privacy, air space operations
in all weather, resilience against cyber-attacks); (3) incorporation of new technologies (de-
ploying drones for air logistics). Big data has been employed to address some of these
challenges. The authors in [132] proposed a hybrid analytic model to manage air cargo
logistics. Their model combined a cluster and associative models for their analysis and
incorporated the Diffusion of Innovative theory together with Resource Dependence theory
into the analysis result to generate the operational strategy. The assessment of their strategy
proved effective to improve cargo logistics.

The authors in [133] proposed a policy analytic framework for air connectivity in
India and discussed how application of big data can help improve operational efficiency. A
big data analytic method to optimize airline route profitability was presented by authors
in [134], while the authors in [135] proposed a civil aircraft big data for civil aviation to
facilitate developmental decisions. The authors in [136] proposed a big data-based security
framework to preserve privacy and protect data.

6. Machine Learning Approaches for SC Transportation

Machine learning offers an auspicious avenue for SC transportation, considering
its capability to exploit the power of data that has become increasingly available to SC
transportation administrators and researchers. With the high volumes of data generated
by SC transportation data sources (e.g., sensors, smart cards, videos, etc.) that cannot be
examined individually, it is necessary to have a system that can learn and optimize on its
own, based on previous experience. The operational changes in the context of SC trans-
portation applications necessitate a generic, dynamic, and continuous learning technique.
Therefore, for increased efficiency, it is critical to investigate the potentials of machine
learning in the development of individualized services in SC transportation. Machine
learning techniques are rapidly evolving due to improved algorithms, enhanced data col-
lection methods, improved communication networks, new sensor/IO units, and interest in
self-customization in response to user activity. The primary goal of machine learning is to
effectively interpret new data and make predictions beyond the training sample, similar to
real-time data. In general, machine-learning-based methods can offer descriptive (describe
the current state of a system), predictive (predict the future state and values of a system) or
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prescriptive (recommend actions to maintain or improve system functionality) analyses.
Researchers have proposed machine learning techniques and approaches to address real-
world problems for SC transportation. The authors in [137] presented a study on intelligent
transportation using machine learning. Their study explored machine learning in research
and industry and focused on traffic management approaches for detection and prediction
analyses. In the last decades, a considerable number of machine-learning-based studies
have emerged in the literature, notably with a diverse use of multiple machine learning
methods to investigate a variety of challenges in SC transportation. In this section, we
discuss machine learning techniques for transportation applications in SCs. To minimize
the volume of writing, some selected transportation applications have been presented in
three critical areas—transportation and human mobility for SCs; traffic flow and density
prediction; routing, planning, and route recommendation.

6.1. Transportation and Human Mobility for SCs

Human mobility data has been used for the analysis of a city and found to be useful for
urban dynamics, planning and development. Current studies propose the extraction of the
community structures of cities from human mobility data. The authors in [138] proposed
an approach that utilizes network clustering methods using geographical cohesiveness
and regularity from extracted clusters. Figure 22 shows the proposed network clustering
for community structures. Their experimental results showed that the functional relations
between city areas gave the best predictive information about the community structures
of cities.

Figure 22. Network clustering for community structures [138].
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6.2. Traffic Flow and Density Prediction

Various approaches have been proposed for traffic parameters’ prediction. The authors
in [139] proposed an approach to predict flight delay using a machine learning (ML) model
and a convolution neural network (CNN) model on airline on-time performance (AOTP)
and quality controlled local climatological datasets. The ML model achieved the best
predictive result of 89.07% while the CNN model achieved a slightly better result, with
89.32% prediction accuracy. The authors in [140] proposed a model for short-term traffic
volume prediction in transportation systems and presented a novel hybrid model (Gaussian
process regression based on statistical learning theory and Bayesian theory) to predict the
passenger flow volume. Their approach considered factors such as temporality, origin–
destination spatiality, frequency and self-similarity, and historical probabilistic distribution
perspectives. Their experimental results showed good performance even when the time
intervals for traffic flow prediction were increased. In [141], authors proposed the online
support vector machine for regression (OL-SVMR) approach to predict short-term traffic in
typical and atypical conditions. Their experimental results showed good performance with
the proposed approach. In [142], authors applied a framework that used the Haar cascade
classifier and supervised learning (AdaBoost learning algorithms) to identify the directions
of traffic streams and to extract the traffic flow parameters. The authors in [143] used
GPS tracking systems in public transportation to analyze and predict passenger flow in
real-time, while the authors in [144] proposed a short-term traffic flow prediction approach
that utilizes wavelets and an extreme learning machine (ELM). An ERS-ELM (ensemble
real-time sequential extreme learning machine) prediction approach was proposed in [145]
for highway traffic peak and nonstationary states. The experimental results showed a high
prediction accuracy of ERS-ELM, with an optimized training time.

The authors in [146] proposed an approach for the estimation of user demand in the
public transportation network typified in the origin–destination matrix (ODM) from buses.
The authors validated their model using data from the city of Quito. The authors in [147]
proposed a hybrid forecasting model for short-term passenger flow prediction. Their
approach utilized a combination of wavelet transformation (WT) and a kernel extreme
learning machine (KELM). The authors validated their model using data from the city
of Beijing. Their experimental results showed that the WT-KELM approach could give
accurate information for the monitoring and early warning of urban rail transit. A study
on machine learning algorithms for green, context-aware transportation systems was
presented in [148]. The objective was to recommend the best transportation routes for
the different means of transportation (train, metro, and bus) to reach a destination based
on some user parameters. The authors in [149] performed a comparative analysis of
four neural networks—two machine learning models based on back propagation neural
networks (BPNN) and two deep learning models on recurrent neural networks (RNN).
Their experimental results showed that models implemented on BPNN showed high
performance when compared to those of RNN.

Besides, traditional approaches such as traffic sensors and devices, Internet data from
social networks (e.g., Twitter) have become new sources for traffic flow prediction. The
authors in [150] proposed a framework that retrieves and uses data from heterogeneous
sources, including data from social networks, to detect traffic flows or patterns. Figure 23
shows the proposed framework. Their applications utilize data from various sources,
such as entities extraction in tweets, event classifications, and classification of traffic states
from image sources. Other research works on analytics from heterogeneous sources or
multimodalities e.g., text, image, video, and speech, can be found in [151–153].

The authors in [154] proposed a neural network-based model for public transportation
prediction using the traffic density matrix (as shown in Figure 24). The objective was to offer
solutions to the bus arrival times at bus stations by considering local traffic conditions. The
traffic conditions were represented in terms of a traffic density matrix. The network training
was performed using stochastic gradient descent (SGD). In [155], authors proposed a real-
time public transportation prediction with machine learning algorithms, including optimal
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least square (OLS) linear regression and support vector regression (SVR). Their work was
validated on the SUMO (Simulation of Urban MObility) simulator [156]. Their experimental
results showed that the proposed approach could outperform other approaches and reduce
the mean absolute prediction error.

Figure 23. Framework from heterogeneous sources in intelligent transportation [150].

Figure 24. Neural network approach for public transportation prediction [154].

6.3. Routing, Planning and Route Recommendation

Machine learning can also be applied to assist users plan their travel trip and routes.
To improve the utilization efficiency of public transportation services, the authors in [157]
proposed a bus routing model that identifies and optimizes region pairs with flawed bus
routes. The authors generated the human mobility patterns among regions using taxi traces
and bus transactions. Their experimental results used real-world data collected in the city of
Beijing, which contained 19 million taxi trips and 10 million bus trips. In [158], the authors
proposed a hybrid solution for real-time travel mode detection and trip purpose prediction,
which considered the use of a single preprocessing algorithm (using location traces obtained
through smartphone sensors) for both problems. Experimental results showed accuracies
of 88% for travel mode detection and 81% for trip purpose prediction. In [159], authors
proposed a novel approach for public transport anonymous data collection.
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7. Integrated Deep Learning towards SC Transportation

Deep learning models are inspired by the multi-layered structure of the human neu-
ral system. The authors in [160] surveyed the role of deep learning models in ITS and
highlighted different types of deep learning models in the context of ITS for SC ecosys-
tems. This section presents some representative studies for utilizing deep learning for SC
transportation.

7.1. Routing and Planning

A Gaussian-prioritized approach to deploy additional routes for transportation was
proposed in [161] using neural-networked-based passenger flow inference. Their exper-
imental results recorded an improvement from 7 to 24% over the existing methods. In
terms of route-based techniques, the authors in [162–164] studied a travel time prediction
in both the forward and reverse trajectories based on deep belief networks (DBN), LSTM-
based, and deep-travel models, respectively. The authors in [163] proposed an attention
mechanism to aggregate context from local trajectory embeddings made by an LSTM (long
short-term memory) network, while authors in [166] proposed a travel time estimation
approach for the optimization of taxi–carpool systems. The authors in [167] proposed a
multimodal transport recommender system using deep learning and tree models, which
combined the weighted average ensemble method of CNN and GBDT (gradient-boosted
decision trees). In order to enhance the categorical features for travel-mode preference
prediction in deep learning, the authors in [168] proposed a deep neural network (DNN)
architecture with entity embeddings (see Figure 25). The DNN architecture consists of
four layers (embedding layer, concatenate layer, fully connected layer and output layer)
and can efficiently learn the vector representations of the categorical data. The results of
their experiments conducted on the London travel dataset showed that their approach
with the entity-embedding technique outperformed other neural network models and
tree-based models.

Figure 25. Deep neural network travel prediction framework [168].

7.2. Traffic Flow and Density Prediction

In recent years, traffic flow prediction has received extensive attention to prevent
and minimize traffic congestions in SCs. Traffic prediction entails forecasting the traffic
conditions, such as traffic volume and speed. The authors in [169] proposed a VGRAN
(variational graph recurrent attention neural networks) model, utilizing a Bayesian frame-
work for uncertainty-aware traffic forecasting, aimed to model the topology structure of
road sensor networks and the spatial correlations among sensors to predict future traffic
conditions. Figure 26 shows the architecture of the proposed VGRAN model. Their ex-
perimental work used two real-world traffic datasets: METR (dataset collected from Los
Angeles County); and PEMS (dataset collected from Bay Area in California). The results
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showed that the proposed model outperformed other known state-of-the-art traffic speed
forecasting models. The authors in [170] proposed an approach that models traffic flow
over graph-like structures using a novel diffusion convolution layer.

Figure 26. VGRAN framework for traffic forecasting [169].

The authors in [171] proposed a deep and embedding learning approach (DELA) that
can learn from fine-grained traffic information, route structure, and weather conditions.
Their proposed architecture consists of an embedding component (used to capture the
categorical feature information and identify correlated features), a CNN component (used
to learn the two-dimensional traffic flow data), and a LSTM component (used to maintain
the memory of historical data). Figure 27 shows the analytical process, which has two stages:
(1) data preprocess; (2) data analysis based on deep and embedding learning approaches.
Their experimental results showed that the proposed approach could outperform existing
methods in terms of prediction accuracy.

Figure 27. Deep learning approach for urban traffic flow prediction [171].
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The authors in [172] considered the problem of predicting the in-flow and out-flow
of traffic within a city and proposed a deep-learning-based approach, called ST-ResNet,
to collectively forecast the in-flow and out-flow of crowds in each region of a city. A city
is discretized to a two-dimensional grid and traffic flow is represented as a dense three-
dimensional grid. Their work developed deep spatio-temporal residual networks for the
prediction. The authors in [173] proposed a novel deep learning model termed as ST-3DNet
(deep spatio-temporal 3D convolutional neural network) for traffic raster data prediction.
This model uses 3D convolutions to capture the correlations of traffic data in the spatial
and temporal dimensions. It consists of two major components to describe the two kinds of
temporal properties of traffic data. ST-3DNet utilizes three-dimensional convolutions and
blocks to model the two kinds of patterns and then aggregates them together in a weighted
way for the final prediction. Their experimental results showed that ST-3DNet outperforms
the state-of-the art baselines.

In [174], authors proposed a short-term traffic flow prediction model that combined
the spatio-temporal analysis with a gated recurrent unit (GRU). A GRU is a type of recurrent
neural network (RNN) and is a variant of the LSTM network. While maintaining the effect
and making the structure simpler, it keeps the RNN prediction performance and has a
significant increase in speed. GRU is simpler and has only two gates (update gate and
the reset gate), while an LSTM network has three gate functions (input gate, forget gate,
and output gate). Figure 28 shows the overall forecasting process. Their experiments
compared the proposed model with the CNN model, and the results showed that the
proposed method outperforms both in accuracy and stability.

Figure 28. GRU framework for traffic prediction [174].

The authors in [175] proposed an ensemble model (EM) based on LSTM, DAE (deep
autoencoder), and CNN for short-term traffic prediction. Their work considered the spatial
and temporal characteristics of the traffic conditions. They evaluated their EM models
on traffic data from two cities (California and London) and compared them with some
well-known existing prediction models. Their experimental results showed that the EM
can achieve better performance in terms of prediction accuracy.

Intelligent toll gates (ITGs) connect nearby metropolitan cities through smart highways;
thus, they are also important infrastructure in SCs. Electronic toll collection (ETC) suffers
from network limitations, such as optimal route utilization, long outstanding queues of
connected smart vehicles (CSVs), fixed toll-pricing schemes for all CSVs, higher waiting
time, variable delays, traffic congestion at toll gates, and complex payment mechanisms.
The authors in [176] proposed DwaRa, which is a deep learning-based dynamic toll pricing
scheme for ITS. The DwaRa system model is shown in Figure 29. In DwaRa, future
traffic is predicted based on Markov queues to balance the congestion at different lanes
at ITGs efficiently. An approach termed as the SI-LSTM (spatially induced-long-short-
term memory) model is then used to predict current traffic and weather. For time series
prediction of traffic which are updated in real-time, LSTM is a preferred choice.
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Figure 29. Dwara deep learning framework for dynamic toll pricing [176].

7.3. Passenger Flow in Public Transportation and City

The authors in [177] proposed a two-step K-means clustering model to capture pas-
senger flow variation trends and ridership volume characteristics. They developed a
predictability assessment model to recommend a reasonable time granularity interval to
aggregate passenger flows. Then, a LSTM approach called CB-LSTM model, was pro-
posed to conduct short-term passenger flow forecasting, based on the above clustering
outcomes and the recommended time granularity interval. Figure 30 shows a framework
of their model. Their experimental results showed that the proposed approach gave good
predictive performance for short-term passenger flow on a network.

Figure 30. LSTM deep learning framework for passenger flow forecasting [177].

The authors in [178] combined deep learning (DL) and support vector machines (SVM)
and proposed a DL-SVM model for urban rail transit (URT) passenger flow prediction. The
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deep belief network (DBN) was first used to extract the features and inherent variation
of passenger flow data. Then SVM regression model was developed to predict passenger
flow. Their experimental results showed that the DL-SVM outperforms the other models
in accuracy and stability. Subway station passenger flow prediction is important for
forecasting future passenger volume. The authors in [179] proposed a recurrent neural
network RNN-based subway passenger flow rolling prediction. Their approach can help
to inform safety warnings and evacuation passenger flow. The time series of passenger
volumes was combined with weather data to create several supervised sequences, according
to different values of timestep. Two artificial features were added as input to accelerate
convergence. They used data from Shanghai traffic cards in their experiments. Their
experimental results showed that the GRU network, with a timestep of 1.5 h gave the
best performance for the long-term traffic flow rolling prediction. For short-term rolling
prediction, GRU with a timestep of 45 min gave the best result.

In the rail transit system, due to the stochastic nature of the short-term dynamic
passengers’ origin and destination demand (OD matrix), accurate prediction of the distri-
bution of passenger travel spatio-temporally is a challenge. The authors in [180] used an
origin–destination matrix as input to a CNN-based model for predicting the in-flow and
out-flow of nodes in a Beijing subway network. The authors in [181] proposed a combined
multisource data with a deep learning method to improve the prediction of dynamic origin
and destination demand (OD) matrix accuracy. The multisource data, such as smart card
data, weather data, and mobile phone data were analyzed quantitatively based on the
influencing factors; and 31 features were selected as model inputs. The authors in [182] also
proposed a method that uses an LSTM to learn mobility patterns and to predict count-based
traffic data between nodes in subway and bus networks.

8. Transportation Empowered by Artificial Intelligence (AI) and Other Techniques

AI is emerging as the driving force for new technologies and for the fast transition
of intelligent transportation from mainly functional systems to truly intelligent and smart
infrastructures. This section presents a review of the applications of AI techniques, such
as evolutionary algorithms and swarm intelligence in the transportation industry. As the
population of people in major cities continues to increase progressively, thus creating new
mobility challenges, it is necessary for the transportation system to continue to evolve to
effectively deal with the challenges. With the advent of ITS, which enables the massive
generation of highly voluminous data, various AI techniques have been incorporated by the
ITS to offer new services. These services normally require managing a notable volume of
data generated by sensor devices, AFCs, GPS devices, social media, and smart phones [183].

Different AI techniques have been applied in several areas in ITS, such as traffic
prediction and control, where systems are developed with the aim to minimize traffic
congestion, control traffic signal, predict traffic volume, etc. The authors in [184] proposed
a dynamic intelligent traffic light control system (DITLCS) based on fuzzy inference and
deep reinforcement learning. The proposed DITLCS accepts real-time traffic information
as input and makes adjustments to the traffic light duration dynamically. The proposed
system operates in three modes (fair, priority, and emergency modes) where vehicles are
categorized based on operational priority. The simulation results prove the efficiency of the
proposed system when compared to recent algorithms on several performance parameters.

The authors in [185] proposed an intelligent traffic control system for vehicle passing
at intersections using a back propagation (BP) neural network. Based on the model,
the controller area network (CAN) communication network has been improved using the
earliest deadline first (EDF) dynamic algorithm. The system was tested through simulations
and proved very effective. The authors in [186] proposed an approach termed as BRBES
(belief rule-based expert system) to control traffic signals at the intersection of roads. The
proposal used belief rule base (BRB), which serves as the knowledge representation schema,
while evidential reasoning serves as the inference engine. Their experimental results
showed the proposed approach gave better reliability when compared to existing systems.
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AI techniques have also been applied in the area of vehicle control systems to improve
autonomous driving, reduce fuel and energy consumption, improve advanced braking
systems, etc. The authors in [187] proposed an intelligent unidirectional and decentralized
control method based on FLC for vehicle platooning. The controller performance was
tuned by hybridizing the FLC using GA and proportional-integral-derivative (PID), and
by the adaptation of FLC using neural networks to form the fuzzy x-tuned controllers to
control the follower vehicles to attain their goals. Performance evaluation of each of each
controller using simulations, regarding spacing error convergence and desired velocity
tracking, revealed that all the controllers achieved their tasks amidst certain limitations.

The authors in [188] proposed a power control strategy using a genetic algorithm
(GA) with a fuzzy logic controller (FLC) to efficiently control power transmission in electric
vehicles. The simulation results exhibited that the proposed method was effective and
superior. Using GA, the authors in [189] designed a simulation framework for charging the
control system. The framework was used to simulate three scenarios and results showed
that it can maximize the profit or reduce the charging time, depending on the objective of
the various parking lots.

Urban transportation infrastructure affects immensely the quality of transport services.
Implementing an optimal infrastructure enables the increased probability of considerably
improving transport services [190]. The authors in [191] applied an evolutionary algorithm
and a genetic operator to optimise the transit network design problem (TNDP). The authors
noted that the increased use of private vehicles contributes immensely to traffic congestion,
accidents, and pollution. They argued that having a viable, efficient and low-cost public
bus network would discourage citizens from using personal vehicles. The simulation
results of their proposal showed its effectiveness in addressing SC challenges. Using an
evolving fuzzy neural network (EFNN), the authors in [192] predicted the travel speed
multiple steps ahead using 2 min travel speed data obtained from remote traffic microwave
sensors in the city of Beijing, and utilized a Takagi-Sugeno system to complement the fuzzy
inference. The predictive performance of the proposed model was evaluated and compared
against six traditional models. The EFNN produced better performance than those of the
traditional models because of its strong learning ability. The authors in [193] aimed to
improve the accuracy of traffic flow states by proposing a fusion clustering strategy for
traffic flow state identification. The authors used three indices for evaluation (flow, velocity,
and occupancy) for fusion. The optimized evaluation index weight was introduced into
the clustering algorithm (fuzzy c-means) to realize traffic flow state identification based on
multi-parameter fusion clustering. The process is shown in Figure 31.

The authors in [194] proposed and developed an innovative fuzzy logic approach to
detect and predict the delay of public transport modes. The authors utilized predictive
analytics and incorporated a knowledge variety of heterogeneous data, including transit
data and weather data. The data was categorized based on fuzzy logic and random
forest regression was applied to predict transit delays. The experimental works used
transportation data from the city of Toronto. The authors in [195] proposed a hybrid
RBF (radial basis function) neural network and fuzzy system for short-term road speed
forecasting. Their work combined the fuzzy logic system with the RBF neural network.
The authors in [196] proposed a fuzzy neural network model (FNM) to predict traffic flow
in urban street networks. The authors in [184] proposed a fuzzy inference-enabled deep
reinforcement learning-based traffic light control. The authors in [198] proposed a vehicle
routing problem model with multiple fuzzy windows for the time-varying traffic flow. The
performance of their model was confirmed through simulations and compared with the
ant colony optimization (ACO) algorithms. Passenger flow is the basis for bus operation
scheduling. The authors in [199] proposed the analysis of bus trip characteristic analysis
and demanded forecasting based on GA-NARX (genetic algorithm optimized NARX neural
network model). Their work combined the genetic algorithm with the neural network
model. The GA-NARX was developed for the prediction to provide basic data for real-time
scheduling and management of bus operations’ management.
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Figure 31. Traffic flow state identification based on multi-parameter fusion clustering [193].

There are some researchers who also worked on GA for smart transportation. The
authors in [200] proposed a platform for public transportation management involving
the optimal planning and scheduling of buses. Their approach considered the iterated
local search (ILS) and genetic algorithm (GA), which are well-known methods in planning
and scheduling. The authors in [201] proposed a traffic flow prediction model based on
a wavelet neural network and achieved good prediction results. The identification of the
characteristics of urban road traffic accidents is important. The authors in [202] proposed a
feature recognition of urban road traffic accidents based on GA-XGBoost. The model was
tested with data from traffic accidents in a sub-provincial city in China. Their experimental
results showed a good predictive performance of the model to effectively identify the
characteristics of urban road traffic accidents.

Particle swarm optimization (PSO) techniques simulate the social behaviors of nature
such as bird flocking and fish schooling. Additionally, a multi-phase PSO algorithm is
suitable to handle the combinatorial optimization problems of scheduling in railway freight
transportation. To this effect, the authors in [203,204] proposed an improved multi-objective
quantum-behaved PSO termed as IMOQPSO and IMOMPPSO (improved multi-objective
multi-phase PSO) for the railway freight transportation routing design and their practical
applications. Besides swarm intelligence, ant colony optimization (ACO) can also be used
for route optimization. The authors in [205] proposed a route optimization for last-mile
distribution of rural e-commerce logistics based on an improved ACO. Their experimental
results showed that the improved ACO was effective on test datasets.

9. Conclusions

Owing to the large volumes of real-time data being generated daily as a result of the
rapid surge in urban migration, the existing conventional data-processing tools are defi-
cient to effectively realize the key targets of an SC transportation ecosystem. Consequently,
this has brought enormous challenges for the SC transportation sector, including traffic
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congestion, fleet management/route planning problems, as well as the development of
effective and efficient strategies to utilize the available infrastructures and to minimize
traffic. To address these challenges, we have studied the state-of-the-art techniques for
SC transportation applications with a focus on the emerging technologies from several
information- and data-driven perspectives. This paper has given a comprehensive sur-
vey of the research area of smart transportation systems and emerging technologies. The
paper contains core discussions on the impacts of geo-information on SC transportation,
data-driven transportation, Big data technology, machine learning approaches for SC trans-
portation, and recent trends using integrated deep learning towards SC transportation. The
research findings in this survey paper give useful insights to researchers that demonstrate
that data-driven approaches can be utilized for smart cities and transportation architecture.
We also hope that this study will acquaint researchers with the recent trends and emerging
technologies for SC transportation applications, as well as provides useful insights into
how these technologies can be further exploited for SC transportation strategies. In essence,
we have examined several use cases that can be exploited for SC transportation strategies.

The main limitation of this study is that it lacks some practical implementation of any
of the use cases that were reviewed. Hence, our future work will present some practical
considerations and implementation of any of the use cases. For instance, we intend to
combine these approaches to implement a more efficient SC waste transport system.
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