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Abstract: Benefiting from the rapid development of geospatial big data-related technologies, intel-

ligent transportation systems (ITS) have become a part of people's daily life. Traffic volume fore-

casting is one of the indispensable tasks in ITS. The spatiotemporal graph neural network has at-

tracted attention from academic and business domains for its powerful spatiotemporal pattern cap-

turing capability. However, the existing work focused on the overall traffic network instead of traffic 

nodes, and the latter can be useful in learning different patterns among nodes. Moreover, there are 

few works that captured fine-grained node-specific spatiotemporal feature extraction at multiple 

scales at the same time. To unfold the node pattern, a node embedding parameter was designed to 

adaptively learn nodes patterns in adjacency matrix and graph convolution layer. To address this 

multi-scale problem, we adopted the idea of Res2Net and designed a hierarchical temporal attention 

layer and hierarchical adaptive graph convolution layer. Based on the above methods, a novel 

model, called Temporal Residual II Graph Convolutional Network (Tres2GCN), was proposed to 

capture not only multi-scale spatiotemporal but also fine-grained features. Tres2GCN was validated 

by comparing it with 10 baseline methods using two public traffic volume datasets. The results show 

that our model performs good accuracy, outperforming existing methods by up to 9.4%. 

Keywords: traffic volume forecasting; fine-grained spatiotemporal feature; multiple-scale feature; 

spatiotemporal graph neural network 

 

1. Introduction 

Geo-information-based Internet of Things (IoT) devices have become the infrastruc-

ture of the intelligent transportation system, which has advanced the rapid development 

of the intelligent transportation system. High accuracy short-term traffic forecasting, as 

the key mission to intelligent transportation systems (ITS), can effectively help road man-

agement, congestion relief, travel planning and many other applications. However, the 

nonlinearity and complexity of traffic flow make the spatiotemporal patterns of traffic 

flow dynamic, variable and difficult to understand. The temporal pattern refers to the 

dynamically changing traffic pattern, which shows periodicity and tendency; the spatial 

pattern refers to the interaction between nodes in a transportation network, which shows 

the traffic state at a point influenced by the upstream traffic condition of the connected 

road. Due to its great practical value, people have been working on more accurate fore-

casting models from the perspective of spatiotemporal patterns. 

Existing traffic forecasting models can be divided into two types: statistical models 

and machine learning models. In the early traffic forecasting research, the traditional sta-

tistical traffic prediction models focus on temporal patterns. Among them, the representa-

tive models include AutoRegressive Integrated Moving Average (ARIMA) [1], Vector 

Auto-Regression (VAR) [2] and so on. These methods assume linearity of the data based 

on time series. However, the complexity and nonlinearity of traffic flow were unable to 
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meet the ideal assumptions. The machine learning models, such as Support Vector Re-

gression (SVR) [3] and K-Nearest Neighbor (KNN) [4], are based on well-trained sample 

data to predict nonlinearity of the traffic flow, which means huge workload. Many traffic 

prediction models based on deep learning have been developed [5]. For example, convo-

lutional neural networks (CNN) [6], recurrent neural networks (RNN) [7] (especially long 

short-term memory networks (LSTM) [8] and gated recurrent unit networks (GRU) [9]) 

were engaged to predict traffic flow or speed. However, it is not sufficient to extract tem-

poral features alone because there is also spatial dependence in the traffic data. In recent 

years, many studies have constructed road networks as graph structures and based on 

graph neural networks (GNN) [10] for spatial feature extraction. After that, they combine 

CNN or RNN approaches with them to construct model, i.e., Spatiotemporal Graph Neu-

ral Networks (STGNNs) [11,12], to capture spatiotemporal features. Among them, CNN-

based models [11,12] are represented by STGCN, MSTGCN, ASTGCN, Graph WaveNet, 

etc., while RNN-based models [11,12] are represented by GCRNN, DCRNN, T-GCN, 

AGCRN, etc. Compared with the traditional deep learning methods, they take more spa-

tial features into consideration, which improve the prediction accuracy, and also become 

the mainstream methods for traffic forecasting at present. 

In recent years, the existing STGNNs has been gradually developed, but neverthe-

less, they can also be optimized again in terms of feature extraction. The specific questions 

are as follows: (1) Fine grain. Due to the GNN construction, they intend to obtain the 

shared patterns of nodes in traffic sequences and ignore the pattern differences between 

nodes, resulting in the inability to obtain fine-grained spatiotemporal features between 

nodes. (2) Multi-scale. STGNNs are mostly used for feature extraction at a single scale. 

However, the spatiotemporal patterns at a single scale have some limitations, and they 

make the receptive field fixed in the spatial range. The spatiotemporal information ex-

tracted at different spatiotemporal scales is different but interconnected, which affects the 

prediction results. (3) Connection method. The way the spatiotemporal features are con-

nected also affects the transmission of information, which eventually affects the results. 

In order not to let the information be lost in the transmission, we need to strengthen the 

feature transmission process and widen the width of features as much as possible. At pre-

sent, there is hardly a method that considers all of these problems, which also limits the 

performance of its models. 

To address the aforementioned problems, we proposed a novel spatiotemporal graph 

neural network framework—Temporal Residual II Graph Convolution Network 

(TRes2GCN)—to optimize the extraction of capturing spatiotemporal features, ultimately 

improving the prediction accuracy. The contributions of the proposed TRes2GCN are as 

follows: 

 To optimize the extraction of a feature, a novel spatiotemporal graph neural network 

model was proposed that simultaneously considers temporal periodicity, spatiotem-

poral multi-scale features, connection method, and node pattern embedding. 

 Based on Res2Net, we design hierarchical temporal attention layers and hierarchical 

adaptive graph convolution, so as to learn multi-scale spatiotemporal features. To 

the best of our knowledge, this paper is the first study to apply the idea of Res2Net 

in the field of spatiotemporal graph neural networks for traffic forecasting. 

 Systematic experiments were conducted to compare our approach with existing 

state-of-the-art methods using two publicly available real-world traffic volume da-

tasets. The results show that our model performs good accuracy, outperforming ex-

isting methods by up to 9.4%. 

The remainder of this paper is organized as follows: Section 2 reviews the literature 

related to traffic flow forecasting using the STGNNs method. In Section 3, we present re-

lated knowledge used in the following sections as a basis, firstly. Then, we give the design 

and detail of our proposed model. Section 4 details the experiment, baseline models in 
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this work and results. Section 5 discusses and further analyzes the new model and results. 

Section 6 summarizes our work. 

2. Related Work 

2.1. Short-Term Traffic Volume Forecasting Models 

Short-term traffic forecasting research produced many methods and can be generally 

divided into two categories, statistical methods and machine learning methods. Many of 

the statistical methods are linear models focusing on interpretability and requiring a more 

solid hypothesis. The representative works include HA [13], ARIMA [1], VAR [2], partial 

least squares (PLS) [14], etc. However, these models do not perform well in practical sce-

nario applications because they do not consider the dynamic and nonlinear characteristics 

of traffic data and have difficulty satisfying their stationary linear assumptions. Machine 

learning, on the other hand, can learn more complex and effective spatiotemporal corre-

lations from the data itself, thus providing better prediction results. Some of the repre-

sentative works are SVR [3], KNN [4] and neural networks [15]. Although the features 

they extract contain nonlinear information, they are more time-consuming and uncertain 

because their features are mostly extracted manually by humans. 

With the development of deep learning, they are able to automatically model more 

complex dependencies, which has drawn great attention to modeling complex spatiotem-

poral data [5]. Many classical deep learning models have been used for traffic prediction 

due to their natural sequence processing capabilities, e.g., RNN [7], LSTM [8] and GRU 

[9]. Subsequently, others have been used to model traffic time series by CNN, learning 

temporal information with convolutional kernels and verifying their superiority over 

other recurrent neural networks [6]. However, these methods tend to focus only on the 

temporal patterns of traffic data and ignore the spatial patterns. To fully learn the spatial 

patterns, scholars divide the traffic scenes into image-model scenes for learning. CLTFP 

[16] tries to capture the spatial features using CNN and build a spatiotemporal prediction 

network using LSTM to solve the short-term temporal prediction problem. Convolutional 

LSTM (Conv-LSTM) [17] also use CNN and LSTM networks to capture spatial and tem-

poral features, respectively. However, the difference is that instead of simply stacking a 

CNN and an LSTM network, the Conv-LSTM network places the CNN in the gating of 

the LSTM network and merges them intrinsically. ST-ResNet [18] uses deep residual CNN 

to manage the intensity on a spatial grid to predict citywide crowd flows at different time 

spans. They also input spatiotemporal features for different time periods and add external 

factors to improve the accuracy of the predictions. All the above methods are processed 

for grid data, while traffic flow is essentially a graphical data. It needs to be converted into 

a format that is not convenient enough. In addition, they focus only on the neighborhood 

information of the grid data, ignoring certain topological information implied by the in-

terconnected road segments. 

2.2. Spatiotemporal Graph Neural Network for Traffic Forecasting 

Compared with convolutional neural networks in Euclidean space, graph neural net-

works (GNN) can sample and aggregate under disordered and irregular spaces and are 

more suitable for processing graph structured data. With the increasing popularity of 

GNN, several approaches to GNN have emerged in recent years, such as graph convolu-

tional networks (GCN) [19], Chebyshev networks (ChebNet) [20], graph attention net-

works (GAT) [21], diffusion convolutional neural networks (DCNN) [22], etc. Especially, 

GCN are particularly popular. They are widely used in graph structure classification, rec-

ommendation systems, etc. Since the spatial characteristics of traffic data match well with 

the graph structure, they have also become key to obtaining the intrinsic spatial features 

of the data. In recent years, their continuous development has made STGNNs the main-

stream model in traffic prediction models. 
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Although there are many variants of STGNN, overall, they can be divided into two 

kinds: one is the RNN-based model and the other is the CNN-based model. 

One of the RNN-based STGNN models is used to capture temporal features with a 

recurrent neural network and replace (or directly add) the linear layer of the RNN with a 

graph convolution to capture spatial features. For example, regarding the most repre-

sentative T-GCN [23] or GCRNN [24], both of them use GRU to capture temporal features 

and GCN to capture spatial features, thus allowing them to capture the complete spatio-

temporal features. Due to the drawback of convolutional kernel sharing and sharing of 

GCN, other GNN are considered for learning. Li proposed the classical model DCRNN 

[24], which captures spatial features by random wandering of DCNN on the graph and 

captures temporal features using Seq2Seq, making the model more flexible and efficient. 

However, traffic flow is dynamic and changing data, and it needs to be considered that 

the prediction may vary at each step. Therefore, Cui proposed TGC-LSTM [25], which 

integrates GCN and LSTM and optimizes the workflow of graph convolution by adding 

a free-flow reachability matrix. Guo developed OGCRNN [26], which optimizes on the 

basis of GCRNN. It uses the data variation itself to optimize the Laplace matrix during 

graph convolution, thus enabling the model to obtain dynamic spatiotemporal features. 

Both of these works improve the fixed spatiotemporal correlations, thus enabling dynamic 

changes in spatiotemporal correlations. Bai proposed A3T-GCN [27], which adds atten-

tion to T-GCN and considers the dynamic changes of data in the feature acquisition phase. 

However, RNN has limitations, since it shares the same parameters at each time step, 

which denotes a weak ability to describe the complex dynamics of temporal correlations. 

Many STGNN models based on CNN were developed. These methods often capture 

temporal feature with CNN and spatial feature with GNN. The most representative one 

is STGCN [28], which captures temporal features with CNN with GLU gating and spatial 

features with GCN. It is the same as T-GCN to obtain the complete spatiotemporal fea-

tures. However, due to the very small range of the convolution kernel of CNN, it has a 

relatively small perceptual field, which also leads to its reduced long-term prediction abil-

ity. To solve this problem, Graph WaveNet [29], proposed by Wu, want to improve the 

accuracy of long sequence prediction by using dilation convolution. It also creates an au-

tonomous learning adjacency matrix to help learn the unknown adjacency matrix, which 

is further adaptive on a dynamic basis. This is the first study on adaptive adjacency matrix 

in the field of traffic prediction. In addition, there are other models that consider the at-

tention mechanism to compensate the problem of a small perceptual field. Guo proposed 

ASTGCN [30] to integrate the attention mechanism and GCN to delineate the dynamic 

spatiotemporal correlation. It not only expands the receptive field through attention, but 

also cleverly uses temporal and spatial attention mechanisms to achieve the ability to ob-

tain dynamic spatiotemporal information entirely from the data itself. They also propose 

the MSTGCN [30] without dynamic attention for comparison and demonstrate that his 

ASTGCN can capture dynamic spatiotemporal features. Zheng proposed GMAN [31], 

which also focuses on the dynamic changes in the process. Compared with ASTGCN, 

GMAN completely replaces CNN and GCN with attention and is more concerned with 

the interaction between temporal and spatial information. GMAN is designed based on 

autoencoder structure and attention mechanism to calculate the effect of spatial and tem-

poral factors on traffic conditions. Later, some models based on ASTGCN and GMAN 

were developed and operated with some improvements, such as DGCN [32] and MAST-

GCN [33]. Due to their powerful performance, such models are also used for trajectory 

prediction [11] and traffic data imputation [11,12,34]. 

There are also studies that want to add other data (weather conditions, points of in-

terest (POI), etc.) to the above studies to aid in making predictions. Bai proposes a cas-

caded graph convolutional recurrent neural network [35] to model and predict historical 

vehicle demand data in the city. It embeds meteorological data and temporal elements in 

an encoded manner and forecasts them by means of an LSTM-based Auto-encoder. Zhu 

proposes a prediction model, called AST-GCN [36], that considers both POI and weather 
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effects on traffic flow. It fuses the three kinds of data and puts them into T-GCN for train-

ing, which is simple and effective. Although the above methods are very effective, not all 

data are fully accessible due to data confidentiality and privacy issues, which limit the 

work of their models. 

All the above models basically perform feature extraction at the same spatiotemporal 

scale. However, there are some differences in the spatiotemporal patterns being learned 

due to the different spatiotemporal scales. Therefore, some scholars have studied local 

spatiotemporal features or multi-scale features. Yu proposed ST-UNet [37], which can ob-

tain multi-scale spatial information. ST-UNet is based on the model framework of U-Net 

structure, and jointly uses ST-pooling and ST-unpooling to accomplish the extraction of 

spatial information at different scales. In addition, it uses expanded RNN to obtain longer 

temporal features. Song proposed STSGCN [38], which considers feature extraction of lo-

cal graphs and proves the significance of local graph features. Based on GCN, it constructs 

spatiotemporal blocks that can perform both temporal and spatial information extraction, 

which also considers the heterogeneity of traffic flow prediction. Guo proposed HGCN 

[39], which hierarchically processes the graph structure based on spectral clustering to 

accomplish traffic prediction on both micro and macro graph structures. This superposi-

tion of microscopic and macroscopic features also achieves multi-scale spatiotemporal 

feature capture. However, the scale size of the proposed multi-scale models needs to be 

adjusted artificially. Due to the error of manual adjustment, it limits the potential capabil-

ity of the model on the one hand; on the other hand, it requires more manual operations, 

which is very laborious and troublesome. 

The current studies, however, have studied the problems in graph structure at the 

granularity of graphs or local graphs, and there is a lack of node-specific fine-grained 

studies. Bai proposed AGCRN [40] to study the prediction in detail with node granularity. 

It uses a GCN with node parameters to generate adaptive adjacency matrix and embeds 

the parameters with GRU to learn traffic patterns dynamically. It solves part of the prob-

lems of RNN with GCN and improves the ability of some models to describe the complex 

dynamics of fine-grained temporal and spatial correlation. However, it still has some 

shortcomings, ignoring that there will be some differences in the patterns of nodes at dif-

ferent scales. On the other hand, even the parameter sharing problem of RNN is alleviated 

with node embedding. However, certain training is stopped, the node embedding infor-

mation is fixed and the parameter features of the RNN, though much richer than the orig-

inal, are still fixed. Therefore, when it is swapped to another part of the data for testing, 

its model performance will still be limited. 

3. Methodology 

3.1. Preliminary 

Based on the concept of the graph construction, the traffic network can be defined as 

�(�, �, �), where � ∈ �� denotes a set of vertices or nodes and � ∈ ��×� represents a set 

of edges. The traffic network � represents the relationship between the vertices in the 

spatial dimension and remains constant over time. The adjacency matrix is represented 

by � ∈ ��×�. The graph signal matrix is denoted as ��
� ∈ ��×� , where � represents the 

features of each node at time �. In terms of the traffic flow forecasting, each time � has a 

feature matrix �� , the historical data �  can be denoted as �� = {������, ������, … , ��}, 

and the predicted data � can be denoted as �� = {����, ����, … , ����}. 

3.2. Design of TRes2GCN 

In this section, Figure 1a shows the proposed TRes2GCN framework. The model is 

composed by three components, each of which contains the same Temporal Residual II 

Graph Convolutional Submodule (TRes2GC-Submodule) part (Figure 1b). Three Sub-

modules, respectively, focus on three different time periods, and the weighted fusion of 

each time period is performed by a set of fusion parameters. Each TRes2GC-Submodule 
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contains four spatiotemporal blocks (ST Blocks), which are connected in Dense connection 

[41]. 

In summary, our model has several design implications, as follows: 

1. Through a multi-component approach, our model learns and fuses spatiotemporal 

features of different time periods and explores the travel patterns of vehicles. 

2. TRes2GC-Submodule connects spatiotemporal blocks in the way of DenseNet, which 

increases the width of features by fusing spatiotemporal features of different levels 

and effectively mitigates the problem of network degradation and oversmoothing. 

 

Figure 1. The framework of (a) TRes2GCN and (b) TRes2GC-Submodule. 

3.3. Multiple Temporal Periods 

Although traffic data are characterized by real-time dynamic changes, studies have 

shown that traffic data have different degrees of similar patterns in proximity, daily and 

weekly periods [17]. Considering this periodic variation of traffic flow can effectively im-

prove the accuracy of prediction. In this study, we used ASTGCN [30] to sample the time 

period. 

Assume that the current time is T0, the forecast window size is Tp and the number of 

samples per day is �. We intercept three time series Th, Td and Tw, respectively, on the 

time axis as the time component inputs for the recent periods, daily periods and weekly 

periods, where Th, Td and Tw are of the same quantity as Tp. We have demonstrated the 

different time periods for the input. The details of these three periods are described as 

follows: 

(1) Recent period: Recent period refers to the historical data in the nearby of the forecast 

value, denoted as �� = (��������, ��������, … , ���
) ∈ ��×�×��. Since sudden changes 

in traffic flow are precursory, the near moment fragment is particularly important for 

the forecast fragment. The specific slice is shown in Figure 1a, and the green color 

relative to the black color is its recent period. 

(2) Daily period: A daily period refers to the historical data of one day ago at the same 

time as the forecast segment, denoted as �� = (�������, �������, … , ��������
) ∈
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��×�×��. It is a fragment of the same time interval as the forecast period in the past 

day. The traffic data are likely to show a part of the same pattern over some time, for 

example, there are morning peak and evening peak for each day of a weekday. There-

fore, we choose this segment as part of the common forecast, thus capturing the sim-

ilar characteristics of the daily period. The specific slice is shown in Figure 1a, and 

the orange color relative to the black color is its daily period. 

(3) Weekly period: A weekly period refers to the historical data of a week ago at the 

same time as the forecast segment, denoted as �� =

(�����∗���, �����∗���, … , �����∗����
) ∈ ��×�×��. It is a fragment of the same time inter-

val as the forecast period in the past week. The reason is the same as the daily period. 

For example, the flow change of this Friday is very similar to next Friday, but there 

are some differences with the flow change of the weekend. Thus, we use it to capture 

the similar characteristics of the weekly period. The specific slice is shown in Figure 

1a, and the blue color relative to the black color is its weekly period. 

3.4. Spatiotemporal Feature Capture Method 

Each spatiotemporal block (Figure 2a) contains a hierarchical temporal attention 

layer (Figure 2b) and a hierarchical adaptive graph convolution layer (Figure 2c). They are 

not in the usual vertical arrangement, but are deployed horizontally. They interact with 

each other under a gating influence to make the spatiotemporal features more closely re-

lated. As for the hierarchical attention layer and the hierarchical adaptive graph convolu-

tion layer, they implement the capture of multi-scale temporal and multi-scale spatial in-

formation on a layer-by-layer basis, respectively. This is combined with the block-based 

multi-scale information capture mentioned above, thus enabling our framework to ac-

complish multi-scale spatiotemporal information capture at fine granularity. The problem 

of single spatiotemporal feature in non-Euclidean data prediction problem is fundamen-

tally solved. 

 

Figure 2. The (a) ST Block of TRes2GCN. The framework of (b) hierarchical temporal attention layer 

and (c) hierarchical adaptive graph convolution layer. 

(1). Hierarchical Temporal Attention Layer 

Temporal Attention Layer (TAL). For the traffic flow, it is dynamic and relevant in 

the time dimension, and such dynamic features cannot be learned by ordinary CNN or 

RNN. Therefore, this paper uses the attention mechanism in the NLP domain [42], thus 

focusing on the importance of information at different time nodes in a complete period of 

time and assigning greater weights to valid time points [30]. It not only adds dynamic and 
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adaptive temporal relevance to our model, but also expands the feeling field to solve 

longer time prediction problems. Its mathematical formula is shown as follows: 

� = �� ∙ �(((��)���)��(����) + ��), (1)

��,�
� = �������(��,�) =

��� (��,�)

∑���
� ��� (��,�)

, (2)

���(��) = ���� = (��, ��, … , ��) ∙ �′, (3)

where ��, �� ∈ ��×� , �� ∈ �� , �� ∈ ��×� , and �� ∈ ��  are learnable parameters, �� =

(��, ��, … , ��) ∈ ��×�×�  represents the output of the previous spatiotemporal block, E 

denotes the attention weight of each moment relative to other moments, and it will vary 

depending on the input data and the value of ��,� indicates the correlation between time 

i and time j after normalization (the ������� activation function is used for normaliza-

tion). 

Hierarchical temporal attention layer (Res2TAL). Res2Net [43] has proven its ability 

in the field of computer vision (Euclidean convolution) to divide a single convolution into 

multiple convolutions that are interrelated, allowing us to extract multi-scale feature in-

formation from a fine-grained perspective. We built on the temporal attention layer by 

deploying the framework part of Res2Net with the residual structure removed, thus pro-

posing a hierarchical temporal attention layer, as shown in Figure 2b. The hierarchical 

temporal attention layer not only focuses on the importance of each moment, but also 

learns the similarity of temporal trends over a period of time. This allows us to learn both 

the temporal value weight changes and temporal trend changes over a period of time, 

thus learning temporal features in a more fine-grained perspective. Res2Net, on the other 

hand, can be used without increasing the number of parameters with more training time 

under specific settings. Therefore, Res2TAL can enable us to extract temporal feature in-

formation at different scales without increasing parameters. Its mathematical formula is 

shown as follows: 

[���
, ���

, … , ���
] = �� = �ℎ���������(��), (4)

���
 =  �

��,                                        � = 1;
����(���

+ �����
),       2 ≪ � ≪ �., (5)

���2���(��) = �ℎ���������([���
, ���

, … , ���
]), (6)

where � is the parameter of scale in Res2Net and also represents the number of our time 

scales. Both �ℎ��������� and �ℎ��������� are convolutional neural networks with a 

convolutional kernel of 1, used to deflate the number of channels of the features. 

It is worth mentioning that we removed its squeeze and excitation block (SE-Block), 

which originally existed [44] to replace the blending between single layers, and we 

blended multi-scale temporal and multi-scale spatial in the form of spatiotemporal blocks. 

Instead of extracting shared features, we want to retain the inter-scale difference. This 

facilitates the interactions between multi-scale information in spatiotemporal block gat-

ing, while the small improvement of its performance is verified later. 

(2). Hierarchical Adaptive Graph Convolutional Layer 

Adaptive adjacency matrix generation. In the spatial dimension, there are differ-

ences in traffic patterns at each node, which can have a huge impact on traffic prediction. 

The current way of graph construction mostly starts from individual attributes (e.g., road 

network, point of interest (POI), traffic similarity, etc.), which are highly interpretable but 

do not contain the complete spatial dependency information. In addition, most graph 

structures require predefined graphs in advance, and their models cannot work when 

they are missing. In order to solve the above appeared problems, we applied a node em-

bedding approach to the adaptive adjacency matrix construction [29,40]. The formula is 

shown as follows: 
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���� = �������(����(� ∙ ��)), (7)

where � ∈ ��×� denotes the node embedding parameter in � dimension, which can be 

learned adaptively and used to learn the variability among nodes, �� ∈ ��×� represents 

the unit matrix of � dimensions, which is used to add self-loops to the graph structure, 

the ���� activation function is used to eliminate negative connections between nodes 

and the SoftMax activation function is used to normalize the adjacency matrix. 

Adaptive Graph Convolution Layer (AGCN). Since the convolution kernel of GCN 

is shared, although it can capture the most important traffic patterns in the whole traffic 

graph, it is actually difficult for us to learn the variability among nodes and learn the traf-

fic patterns of different nodes in a fine-grained manner. AGCN [40] enables us to accom-

plish fine-grained feature capture of nodes without the need of known node attribute data. 

It adds one more node embedding parameter in the above adjacency matrix to the GCN. 

This parameter can help us train the adaptive adjacency matrix while influencing the 

learning parameters during graph convolution and giving a different deflation of the fea-

tures of each node. Therefore, it helps us to consider the node pattern differences so as to 

obtain dynamic adaptive spatial features at fine-granularity. Its equation is shown as fol-

lows: 

����(�) = ������� + ��, (8)

where � ∈ ��×�×�� and � ∈ ��×�� are learnable parameters. Different from GCN, it uti-

lizes the idea of matrix decomposition to solve part of the overfitting and oversmoothing 

problems of GCN. However, it also has a problem in that it has a fixed range of perceptual 

fields. This limits the multi-scale spatial features captured by the model. 

Hierarchical Adaptive Graph Convolution Layer (Res2GCN). Res2Net [43] has 

been verified to have a better ability in extracting features at multiple scales in Euclidean 

space. We refer to this idea and deploy the construction idea of Res2Net to AGCN to pro-

pose a hierarchical adaptive graph convolution layer. Similarly, it is able to capture multi-

scale spatial features in traffic flow (non-Euclidean space) at a finer granularity level, and 

the internal operation is shown in Figure 2c. The multi-scale features of Res2GCN not only 

increase the perceptual field of convolution, but also alleviate the performance limitations 

caused by the GCN kernel fixation as well as sharing problems to a certain extent, because 

the AGCN within each scale are not sharing parameters. On the other hand, since the same 

embedding vector is used by AGCN at different scales in the parameter back propagation 

process, this allows our adjacency matrix’s to also fuse to learn node patterns at multiple 

scales. In a later section, we also verify that different adjacency matrices with node em-

bedding parameter approaches have different effects on Res2GCN. The equation is de-

scribed as follows: 

[��, ��, … , ��] = � = �ℎ���������(�), (9)

��  =  �
��,                                        � = 1;

�����(�� + ����),       2 ≪ � ≪ �.
, (10)

���2����(�) = �ℎ���������([��, ��, … , ��]), (11)

���2����(��) = [���2����(��), ���2����(��), … , ���2����(��)], (12)

where � is the parameter of scale in Res2Net and also represents the number of our spa-

tial scales and �ℎ��������� and �ℎ��������� are a convolutional neural network with 

a convolutional kernel of 1, playing the same role as in Res2TAL. 

(3). Dynamic Gated Fusion 

This section is used to explain how the temporal and spatial features within the ST 

Block are integrated. The traffic flow forecasting of any road section needs to focus on 

both the historical flow of that road section and the historical flow of other related road 
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sections in the past. Therefore, we need to dynamically fuse the extracted hierarchical 

temporal features with the hierarchical spatial features here. In the past studies, most of 

the models operate sequentially in a longitudinal direction, which will make the correla-

tion between temporal and spatial features not strong enough. Therefore, we use a gating 

technique to fuse temporal and spatial features horizontally and dynamically, thus en-

hancing the correlation between temporal and spatial features. The intrinsic operation 

process is shown in Figure 2a, as well as the mathematical equation shown below: 

���� = �(�������(���2���(�)) + �������(���2���(�))), (13)

�� �����(�) = ���� ⊙ ���2���(�) + (1 − ����) ⊙ ���2���(�), (14)

where �������, ������� is the linear transform layer, which can change dynamically and 

adaptively with the data itself and influence the magnitude of the action of ����, ⊙ is 

the Hadamard product and � is the sigmoid activation function, which can be used in 

normalizing the feature values and, thus, avoiding gradient explosion during the fusion 

process. 

3.5. Dense Connection 

Most of the past studies, such as STGCN [28], ASTGCN [30] etc., have used residual 

connections for feature integration, and the continuous use of the same function in resid-

ual connections still hinders feature transfer. Since the TRes2GC-Submodule contains 

multiple ST blocks, the continued use of the ResNet structure [45] can cause problems 

such as gradient disappearance and network degradation. To solve these problems, we 

use DenseNet [41] for connecting our ST blocks. It enhances the propagation of features, 

encourages feature reuse and reduces the number of parameters. On the other hand, 

DenseNet can further alleviate the oversmoothing problem caused by multiple uses of 

GCN. 

Fortunately, traffic flow data are not as complex as image data, which require a large 

number of layers to deepen the learning. It needs a reasonable and limited number of 

blocks, but not an extraordinary large number of blocks, to complete the learning of fea-

tures. Therefore, it is worth emphasizing that our primary reason for using DenseNet is 

to widen the number of channels of spatiotemporal features, and the secondary reason is 

to perform network deepening. In the later ablation experiments, we also verify the dif-

ferences brought by the different connection methods (and the differences between Res-

Net and DenseNet) and the effects brought by model widening and deepening on the 

prediction. The intrinsic operation is shown in Figure 1b, as well as the following equa-

tion: 

����� = �� ������([��, ��, … , ����]), (15)

where �� ������  represents the ST block of the  block of the stack and [��, ��, … , ����] 

refers to the connection of the feature mapping generated after the passage of the (0, … , � −

1) blocks. 

3.6. Multi-Component Fusion 

This section describes how to fuse multiple TRes2GC-Submodules. Since a multi-

component format was used to our model in different time periods and different locations, 

we needed a way to fuse the features in the different components. For example, the Sun-

day model has little effect on the flow forecast of the Monday model, but the Monday 

model has a large effect on the Tuesday model. Therefore, we defined three weight pa-

rameters to self-adaptively deflate the importance of each component and summed them. 

Their formulas are shown below: 

�� = �� ⊙ ��� + �� ⊙ ��� + �� ⊙ ���, (16)
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where ⊙ is the Hadamard product and ��, �� , and �� ∈ ��×� are the parameters to 

be learned and also the weight parameters for different cycles, respectively. 

4. Experiment and Result 

4.1. Datasets 

Two public real-world traffic volume datasets were selected: PeMS04 and PeMS08, 

which were collected by the Caltrans Performance Measurement System in major urban 

areas of California [46]. All data are collected from over 39,000 sensors deployed on Cali-

fornia freeways at 30 s intervals. 

The raw data need to be preprocessed before it can be put into the model for training. 

We use the same preprocessing approach as STSGCN [38] and AGCRN [40] for some 

missing values in the dataset, we fill in these missing values by linear interpolation. In 

addition, we normalized the dataset with all the data values between [0, 1] and the mean 

value of the dataset is 0. We divided the dataset chronologically and divided it into train-

ing, validation and test sets in the ratio of 6:2:2. The data were eventually aggregated into 

5-min intervals, resulting in a total of 288 data points per day. The metadata information 

is shown in Table 1. Where the data average represents the mean of every five minutes 

(per time period) of data, and the data range represents the upper and lower limits of data 

variation every five minutes. 

Table 1. Details of the datasets. 

Dataset 
Nodes 

(Sensors) 
Edges Time Steps Time Range 

Data Range 

(Per Time Period) 

Average 

(Per Time Period) 

PeMS04 307 341 16,992 1/1/2018–2/28/2018 0–919 91.74 

PeMS08 170 295 17,856 7/1/2016–8/31/2016 0–1147 98.17 

4.2. Baseline Methods 

We choose the following 10 traffic flow forecasting methods as baseline models to 

compare with our model. Additionally, to demonstrate the novelty and validity of our 

model, seven of the baselines are state-of-the-art traffic flow forecasting methods. The de-

tails are as follows: 

 VAR: Vector Auto-Regression is a forecasting model that captures the spatiotem-

poral feature between traffic data. 

 SVR: Support Vector Regression utilizes a support vector machine to perform linear 

regression. 

 LSTM: The long short-term memory network is a variant model of RNN that can 

better handle time-series tasks. 

 DCRNN: The diffusion convolution recurrent neural network is an auto-encoder 

framework. It uses diffusion map convolution to obtain spatial features and Seq2Seq 

to encode temporal information. 

 STGCN: The spatiotemporal graph convolutional network uses ChebNet to obtain 

spatial correlation and CNN with a gating mechanism to obtain temporal correlation. 

 MSTGCN: The multi-component spatiotemporal graph convolution network ex-

tracts and fuses spatiotemporal information in different time periods by modeling 

different temporal patterns. It obtains temporal features by CNN and spatial features 

by ChebNet. 

 ASTGCN: The attention-based spatiotemporal graph convolutional network adds 

on temporal attention and spatial attention to MSTGCN to extract dynamic spatio-

temporal information. 

 Graph WaveNet: Graph WaveNet combines GCN and dilated convolution network 

to obtain spatial correlation and temporal correlation separately. It also utilizes node 

embedding to adaptively learn adjacency matrix from the data. 
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 STSGCN: The spatiotemporal synchronous graph convolutional networks employ 

GCN to construct spatiotemporal synchronous convolutional blocks to synchro-

nously obtain temporal and spatial correlations by stacking spatiotemporal synchro-

nous convolutional modules. 

 AGCRN: The adaptive graph convolutional recurrent network proposed a novel 

adaptive graph convolutional network so as to capture fine-grained spatial feature. 

In addition, it employs amplified GRU to capture the temporal feature. 

4.3. Experiment Settings 

TRes2GCN is implemented based on the PyTorch framework, and its training is per-

formed on an NVIDIA RTX 2080TI graphics card. In our model, the 4-scale 26-width is 

taken for Res2GCN deployment and the 3-scale 26-width for Res2TAL. In addition to this, 

each other layer has 64 features. The batchsize of this model is 32, and the Adam optimizer 

is used for 40 epochs of model training with a learning rate of 0.001. In the training process, 

we decay the learning rate by cosine annealing and set the lowest point of learning rate 

decay to 0.0001, which facilitates us to get better training results. In the loss function se-

lection, we use SmoothL1Loss (i.e., HuberLoss [47]) instead of L2Loss, so as to increase 

the anti-disturbance of the model and reduce the error caused by noise. The mathematical 

formula is as follows: 

�����ℎ����, ��� = �
     0.5(� − ��)²,                       �� − ��� ≤ �;

 ��� − ��� − 0.5�²,                ��ℎ������.
, (17)

where � denotes the true value of traffic flow, ��  denotes the value of traffic flow pre-

dicted by the model, and � is a threshold parameter that controls the loss range of the 

squared error. 

The experiment also deploys three widely used evaluation metrics to measure model 

performance, namely mean absolute error (MAE), root mean square error (RMSE), and 

mean absolute percentage error (MAPE), same as AGCRN [40]. We use these three metrics 

to measure the predictive effectiveness of our model compared to the baseline model. 

4.4. Results Comparison 

Table 2 gives a comparison of the average performance of the different frameworks 

over all time horizons. Overall, in both datasets, our model outperforms the other ten 

baseline methods in all three metrics. To describe clearly the predictive power of the pro-

posed model, we analyze it in detail from two aspects. 

Table 2. Performance comparison of different traffic flow forecasting methods. 

Baseline Methods 

VAR SVR LSTM DCRNN STGCN MSTGCN ASTGCN 
Graph 

WaveNet 
STSGCN AGCRN 

TRes2GCN 

(ours) Datasets 
Evaluation 

Metrics 

PeMS04 

RMSE 36.66 44.59 40.74 37.12 37.07 35.48 34.50 39.70 33.83 32.26 31.98 

MAE 23.75 28.66 26.81 23.65 24.43 22.65 21.97 25.45 21.08 19.83 19.62 

MAPE (%) 18.09 19.15 22.33 16.05 18.34 16.32 15.47 17.29 13.88 12.97 12.96 

PeMS08 

RMSE 33.83 36.15 33.59 28.29 30.11 28.27 26.91 31.05 26.83 25.22 24.52 

MAE 22.32 23.25 22.19 18.22 19.95 18.54 17.37 19.13 17.10 15.95 14.45 

MAPE (%) 14.47 14.71 18.74 11.56 14.27 13.04 12.28 12.68 10.90 10.09 9.50 

(1) Overall forecasting ability 

In Table 2, we can see that the SVR and LSTM methods are less accurate compared 

to other networks because they do not take into account spatial correlation in the traffic 

data. VAR has better performance compared with SVR because some spatial information 

is considered. However, these methods have room for improvement in handling spatial 
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information compared to spatiotemporal graph neural network methods, which is the rea-

son why VAR performs mostly inferior to them. 

STGCN, DCRNN, MSTGCN, ASTGCN, Graph WaveNet, STSGCN and AGCRN all 

consider complete global spatial correlation and have better performance compared to the 

above models. However, due to the different design and construction of each model, these 

models still show disparity in results. STGCN, DCRNN and Graph WaveNet all target 

only single-period feature capture from a design perspective, ignoring the importance of 

temporal cycles, and thus, will have slightly inferior performance. For MSTGCN and 

ASTGCN, they consider different time periods and will tap more time period information 

than STGCN and DCRNN like this. However, the above models lack multi-scale temporal 

information compared to the proposed TRes2GCN, thus limiting their performance. For 

STSGCN, local graph features are also considered, thus providing another partial im-

provement compared to STGCN, DCRNN or Graph WaveNet. However, it has a single 

extraction method, so the extracted spatiotemporal features are not rich enough. In con-

trast, our model incorporates spatiotemporal features of different levels and scales 

through the DenseNet and Res2Net structures, which are richer in spatiotemporal fea-

tures and have better prediction results. For AGCRN, it cracks the learning parameters in 

GCN into two small parameters for learning, which is improved from a fine-grained per-

spective. However, it only considers the fine-grained spatial and temporal features at a 

single scale, and it is not able to consider the travel patterns at different time periods. Our 

proposed model, on the other hand, deploys AGCN and TAL through the idea of Res2Net 

based on the cleavage of GCN, and completes the capture of finer-grained multi-scale 

spatiotemporal information. On top of this, we also achieve feature capture at different 

time periods through a multi-component model to accomplish higher accuracy prediction. 

(2) Multi-step prediction capability 

To explore the performance of our model versus the baseline model over different 

time spans, we visualize the results of the metrics at different time steps (Figure 3). It is 

clear that for all models, the prediction errors show an increasing trend as the prediction 

time increases. Among them, SVR with LSTM has very good short-term prediction, but 

its error has the fastest upward trend among all models, because it fails to consider the 

change of spatial characteristics. Compared with VAR, its short-term prediction ability is 

not very good. However, because it takes into account some spatial features, the rising 

trend of its error has slowed down more with time. This also proves that the consideration 

of spatial features can effectively improve the prediction ability of the model in the me-

dium and long term. As for the spatiotemporal graph neural networks, in most cases, their 

medium- and long-term predictions are better than VAR, SVR and LSTM. This also 

demonstrates the effectiveness of GCN in capturing spatial features in traffic prediction. 

It is worth mentioning that AGCRN and our TRes2GCN, which consider fine-grained spa-

tial features, are significantly due to other baseline models in the medium- and long-term 

prediction task. This also highlights the effectiveness of AGCN compared to the normal 

GCN. TRes2GCN has a large improvement over AGCRN, especially for short- and me-

dium-term forecasting. This is due to the advantage of considering different time periods, 

which allows our model to be known to have more characteristics of the changes in this 

time period, thus fitting our prediction results more closely. 
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Figure 3. Model comparison under different time spans: (a) PeMS04-RMSE, (b) PeMS04-MAE, (c) PeMS08-MAPE, (d) 

PeMS08-RMSE, (e) PeMS04-MAE and (f) PeMS08-MAPE. 

5. Discussion 

5.1. Influence of Connection Method and Multi-Scale Feature 

In this section, to further investigate the influence of the connection method and 

multi-scale change of our model, we designed seven variants of TRes2GCN and per-

formed ablation experiments. 

These were designed based on the number of spatiotemporal blocks stacked, how 

they were stacked and the influence of the hierarchical structure (Res2Net structure). We 

then compared these seven variants together with TRes2GCN on the PeMS08 dataset. 

During the comparison, all variant models were trained and tested with the same hy-

perparameters, thus ensuring fairness and scientific validity. The differences between the 

variant models are summarized in eight points and described below: 

(1) Two Blocks-ResNet: This model is the basis of our study. It consists of two spatio-

temporal blocks and is stacked in the currently most commonly used ResNet struc-

ture. Each spatiotemporal block does not contain a hierarchical structure, i.e., it con-

tains only one TAL layer and one AGCN layer. 

(2) Two Blocks-DenseNet: This model is based on the first variant with the ResNet struc-

ture replaced by the DenseNet structure. 

(3) Three Blocks-ResNet: This model is based on the first variant with one more spatio-

temporal block stacked and the rest unchanged. 

(4) Three Blocks-DenseNet: This model is based on the third variant by replacing the 

ResNet structure with the DenseNet structure. 

(5) Four Blocks-ResNet: This model is based on the third variant with one more spatio-

temporal block stacked and the rest unchanged. 

(6) Four Blocks-DenseNet: This model is based on the fifth variant by replacing the Res-

Net structure with the DenseNet structure. 

(7) Four Blocks-DenseNet + Res2GCN: This model is based on the sixth variant with the 

addition of hierarchical adaptive graph convolution (Res2GCN). 
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(8) TRes2GCN: This is the full version of TRes2GCN. It adds hierarchical temporal at-

tention layer on top of the seventh variant. 

In the comparison of the first six variants, the enhancement of the model by the way 

and number of spatiotemporal blocks are explored in detail. As shown in Figure 4, we 

compare variants 1, 3 and 5, and we can clearly see that the effect of the way ResNet is 

connected is not satisfactory. When the stack is three blocks, the effect will be slightly 

better than two blocks; however, when the number of stacks is the fourth block, there is a 

significant rebound in the metrics evaluated by the model, especially the MAPE rebound 

is the largest. Thus, the effective number of stacked blocks for ResNet is 3, and at the fourth 

block, the model shows a very serious network degradation phenomenon. The occurrence 

of this phenomenon is most likely related to the oversmoothing of GCN [48]. It has been 

verified that GCNs with a stack of three or four layers will lead to a homogeneous trend 

of features due to the oversmoothing phenomenon, thus making the model fail. This con-

clusion is very similar to our experimental results. Comparing models 2, 4 and 6, we found 

that DenseNet has better results than ResNet in terms of connectivity. The model metrics 

improve as the number of spatiotemporal blocks becomes larger, and there is no network 

degradation. This is attributed to its high degree of feature utilization, which enriches the 

features while moderating the problem of oversmoothing to a certain extent. It is also very 

effective, as it does not increase the memory and number of parameters for the training 

process. However, we do not find it significantly shorter during the change of error bars. 

This proves that the connection method acts on the overall accuracy and does not specifi-

cally improve the accuracy at a certain time span. 

It is worth mentioning that ResNet is currently used in most spatiotemporal graph 

neural networks; especially variant 1 (with a stacking number of 2) is very similar to the 

current mainstream CNN-based networks (STGCN, MSTGCN, ASTGCN, etc.). This also 

proves that most of the models are constructed by ignoring the influence of network deep-

ening and connection methods on the models, and there is room for further improvement. 

On the other hand, we investigated the magnitude of the improvement of our hier-

archy on the model in variants 6, 7 and 8. After adding Res2GCN and Res2TAL, respec-

tively, we find that the mean values of all three metrics gradually improve, and Res2GCN 

especially improves. This proves that the capture of multi-scale spatiotemporal infor-

mation can, indeed, bring positive benefits to the model; the multi-scale spatial scales, 

especially, are more important to be considered in traffic prediction. Moreover, we also 

found that the error bars of variants 7 and 8 are significantly narrower compared to vari-

ant 6. This shows that we need to consider more spatial and temporal information at dif-

ferent scales if we want to get more accurate medium- and long-term prediction results. 
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Figure 4. Visualization of the impact of components on the prediction error (PeMS08 as an example), 

(a) RMSE, (b) MAE and (c) MAPE; the error bars represent the floating changes of the predicted 

metrics in 60 min; the red line represents the outcome metrics predicted in 5 min; the blue line rep-

resents the outcome metrics predicted in 30 min; the purple line represents the outcome metrics 

predicted in 60 min. 

Then, we further investigated the influence of the change of the Res2Net structure on 

the accuracy, as shown in Table 3. At the very beginning, we just applied the Res2Net 

optimum to our model structure, i.e., 4-scale 26 features. However, comparing the results 

without deploying Res2Net, the effect was improved, but only MAPE was improved 

more. After that, we guessed whether there were too many scales for TAL. Thus, we tried 
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to reduce the number of scales of Res2TAL, and the effect was indeed improved. This is 

because TAL itself obtains the importance of each moment, and the perceptual field itself 

is large. The second TAL (i.e., scale equal to 3) was performed to learn the moment-to-

moment association between the importance levels. Performing further TAL (i.e., scale 

equal to 4), on the other hand, has no practical meaning, and the results are, indeed, infe-

rior to the case where the scale is 3. On the other hand, we also tried to reduce the number 

of scales of Res2GCN and found that the results did not improve, but rather had down 

will. Therefore, we finally chose a scale of 4 for Res2GCN and a scale of 3 for Res2TAL, 

both with a width of 26. This also demonstrates that the Res2Net structure can be effec-

tively used not only in Euclidean convolution, but also in attention mechanism and non-

Euclidean convolution, proving again the effectiveness and generality of its framework. 

Table 3. Influence of changes of the Res2Net structure on the model (with PeMS08 as an example). 

Parameters of Res2GCN Parameters of Res2TAL With SE-

Block 

Average 

RMSE 

Average 

MAE 

Average 

MAPE (%) Scale Width Scale Width 

4 26 4 26 No 24.88 14.63 9.56 

4 26 3 26 No 24.52 14.45 9.50 

3 26 3 26 No 24.68 14.57 9.64 

4 26 3 26 Yes 25.52 15.13 10.82 

In addition, we also validate the usefulness of the SE-Block, and we find that the SE-

Block causes a larger impact on the model. The main reason is that SE-Block extracts the 

patterns shared between scales and blurs the differences between scales. Comparing the 

second row with the fourth row, the results show that the Res2Net without SE-Block is 

more suitable for deployment in the prediction of spatiotemporal graph neural networks. 

It is worth noting that since we have to cumulatively compute the results of three 

components (12 spatiotemporal blocks in total), and the increase in parameters per layer 

causes a sudden increase in the length and memory for model training. Therefore, here, 

we only explore the Res2Net case (4 scales of 26 widths) with no increase in computational 

parameters. Other settings, although they make the results better, also cause the training 

memory and training time of our model to plummet, so we do not take them into account. 

5.2. Influence of Node Embedding Vector and Adaptive Adjacency Matrix 

The node embedding vector and adaptive adjacency matrix directly affect the fine-

grained spatiotemporal feature extraction, so we investigate the influence of the changes 

of node embedding vector and adaptive adjacency matrix in this section. 

As the adaptive adjacency matrix has received attention, their methods have prolif-

erated [29,40,49]. Inspired by these, we investigate the effect of different adjacency matrix 

constructions with different graph convolution embedding vectors on the prediction. 

However, Graph WaveNet [29] and MTGNN [49] only considered the adaptive adjacency 

matrix, without node embedding vector. Therefore, we adapt the composition vectors of 

those adaptive adjacency matrices that were not considered as vectors of node embedding 

and verify their suitability, as shown in Table 4. 

It is worth mentioning that all these methods have been verified to simulate the ad-

jacency matrix better, but there is no verification of the suitability of the embedding vector. 

Therefore, the goodness of the results of this experiment can only represent the suitability 

of their vectors for constructing adjacency matrices as embedding vectors for graph con-

volution. 
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Table 4. Influence of the adaptive adjacency matrix construction method on prediction (with 

PeMS08 as an example). 

Method of Generating Self-Adaptive Adjacency 

Matrix  
Node Embedding Vector 

Average 

RMSE 

Average 

MAE 

Average MAPE 

(%) 

Without Self-Adaptive Adjacency Matrix Without Embedding 26.97 15.91 11.82 

ReLU(EET) Without Embedding 26.91 15.86 11.80 

ReLU(EET) E∈RN×D 24.52 14.45 9.50 

ReLU(E1E2) MLP(E1 + E2)∈RN×D 25.43 14.84 10.62 

ReLU(tanh(α(tanh(αMLP(E))·tanh(αMLP(E))T))) tanh(αMLP(E))∈RN×D 26.09 15.23 11.00 

ReLU(tanh(α(tanh(αMLP(E1))·tanh(αMLP(E2))T-

α(tanh(αMLP(E2))·tanh(αMLP(E1))T))) 

MLP(tanh(αMLP(E1)) + 

tanh(αMLP(E2)))∈RN×D 
26.42 15.61 11.18 

Comparing the first two rows with the other rows, the adaptive adjacency matrix 

without adding node embedding will have similar results to the original adjacency matrix, 

but again, neither can obtain fine-grained node pattern variability. Moreover, no matter 

what embedding method is used, it will perform better than the graph convolution with-

out embedding. This also verifies that fine-grained spatiotemporal features with node pat-

terns are, indeed, better than ordinary spatiotemporal features. 

Surprisingly, we find that the node embedding approach of AGCRN (third row) is 

simpler, but has better results than the other methods. In contrast, the two adaptive adja-

cency matrix construction methods mentioned in MTGNN are more complex (fifth and 

sixth rows), although it was verified in the original paper that there are better results than 

Graph WaveNet (fourth row without Graph Embedding) without adding node embed-

ding. However, the results are less satisfactory when node embedding is added. This is 

most likely due to the overuse of fully connected layers in the building blocks, which leads 

to overfitting of the learned graph convolution vectors. On the other hand, comparing the 

third and fifth rows (undirected graphs) with the fourth and sixth rows (directed graphs) 

shows that the adjacency matrix learned using two vectors is generally not as good as the 

adjacency matrix learned using one vector. This also proves that the adaptive undirected 

graph is better for prediction than the adaptive directed graph when considering node 

embedding. 

5.3. Forecasting Capability Over Different Spans 

To visualize the prediction differences between our model and the baseline model, 

we randomly selected one sensor in the PeMS08 dataset to compare the prediction fit and 

prediction error, as shown in Figure 5. 

To make the comparison more specific and clearer, we visualized the prediction re-

sults under different time spans within a day. In this case, the test is performed in four 

time points, i.e., 15 min, 30 min, 45 min and 60 min. In each subplot, the upper plot shows 

the prediction volume and Ground Truth of our model with some of the baseline models, 

while the lower plot indicates the prediction error between the models at a distance from 

the Ground Truth. 

The results show that the fitted curves of all three baseline models are very close for 

a prediction span of 15 min. And as the prediction time span increases, the error of STGCN 

increases significantly. In contrast, MSTGCN and ASTGCN are significantly closer to the 

true values than STGCN under the prediction span of 45 and 60 min. This is their effective 

enhancement of long-term prediction due to the consideration of multiple time periods. 

Among all the models, TRes2GCN is better at predicting future traffic changes and 

its predicted values are closer to Ground Truth, especially in the peak part, where the 

advantage of our model is more prominent. We can clearly see that our model achieves 



ISPRS Int. J. Geo-Inf. 2022, 11, 102 19 of 23 
 

 

better results for the part in the orange box (i.e., the peaks for all time spans). This is be-

cause the Res2Net and DenseNet structures in our model are rich in spatiotemporal fea-

tures, which alleviate some of the oversmoothing problems that exist in GCN. Therefore, 

compared with other models, our model can not only predict the future trend of the traffic, 

but also predict the peak size of the traffic more accurately. 

 

Figure 5. Visualization of prediction results and errors ranging 0–60-min span of sensor #149 

5.4. Temporal Periodic Analysis 

In order to evaluate the effectiveness of fusing multiple periodic traffic features, we 

investigated the influence of different time periods on traffic forecasting. 

By comparing rows 1, 2 and 3 in Table 5, we can see that the two models that consider 

daily and weekly periods respectively get different boosts compared to the model that 

considers only recent periods. This is because the commute usually cycles through a week. 

For example, the Monday pattern of the previous week will be very close to the Monday 

pattern of the next week. Therefore, the weekly period will be a little more elevated. 

On the other hand, comparing the third row with the fourth row in Table 5, we find 

that even though the improvement of the day period is small, its impact must be consid-

ered if we want to further improve the prediction accuracy. This is because the daily pe-

riod can be partly useful for pattern learning between weekdays (or legal holidays) during 

the same week. For example, traffic patterns for Monday (Saturday) can provide some 

contribution to the forecasting for Tuesday (Sunday). 
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In addition, we also explored the influence of the Res2Net structure on periodicity. 

Under the same conditions, we find that Res2Net improves more for models that consider 

only recent components. In contrast, the boost for all periods considered is smaller in com-

parison. This is likely due to the different sharing patterns of different period, which 

brings some boost but also weakens the specificity of the recent period. 

Table 5. Influence of different time periods on prediction (with PeMS08 as an example). 

Time Period 
With Res2Net 

Structure 

Average 

RMSE 

Average 

MAE 

Average 

MAPE (%) 
Recent 

Period 
Daily Period 

Weekly 

Period 

Yes No No No 29.35 18.83 12.35 

Yes Yes No No 27.52 17.58 11.44 

Yes No Yes No 26.40 15.23 10.96 

Yes Yes Yes No 25.01 14.78 10.50 

Yes No No Yes 26.04 16.48 10.33 

Yes Yes Yes Yes 24.52 14.45 9.50 

5.5. Spatial Correlation Analysis 

To specifically demonstrate the practical effect of the multi-scale self-adaptive adja-

cency matrix, we selected 15 sensors of the PeMS08 dataset for analysis. We visualized 

their predefined adjacency matrix, the self-adaptive adjacency matrix at a single scale and 

the self-adaptive adjacency matrix in the form of heat maps, as shown in Figure 6. More-

over, each row represents the degree of connection between sensors, where the more cor-

related nodes are the darker the color. Comparing Figure 6a with Figure 6b, Figure 6c, we 

see that the predefined graph is much simpler than the other two adaptive graphs. This is 

because the predefined graph only focuses on how the road network is connected and 

ignores the changes in node patterns. To validate our idea, we visualized the traffic vari-

ation of these 15 nodes on any given day and represented it as the average traffic per hour 

(Figure 6d–f). For example, we see that the two points that are not associated in the pre-

defined graph, but strongly related in the traffic pattern (flow volume or variation trend) 

from the blue box and green box (Figure 6e,f). In the single-scale adaptive adjacency ma-

trix, it is learned partially, but incompletely. In contrast, in the multi-scale adaptive adja-

cency matrix, their relationship is learned completely. This also demonstrates the need for 

multi-scale to be considered in the field of traffic prediction, especially the learning of the 

adaptive adjacency matrix. 
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Figure 6. Part of the adjacency matrix at different scales and hourly average traffic flow variation 

(with PeMS08 as an example). (a) Predefined adjacency matrix. (b) Self-adaptive adjacency matrix 

at a single scale. (c) Self-adaptive adjacency matrix at multiple scales. (d) Hourly flow variation for 

the first fifteen nodes. (e) Hourly traffic variation of node 3 and node 4. (f) Hourly traffic variation 

of node 10 and node 11. 

6. Conclusions 

In this study, we propose a new STGNN model that not only considers multi-scale 

spatiotemporal information, but also performs adaptive learning from a fine-grained per-

spective. Our model is the first to use the idea of Res2Net for spatiotemporal graph neural 

network prediction, verifying its applicability to attention and graph convolution. We val-

idate this model on two publicly available real-world datasets, and the results show that 

our model outperforms the existing state-of-the-art models. In addition, we visualized the 

prediction results for different traffic regions and compared them with the baseline model, 

clearly demonstrating the effectiveness of our proposed TRes2GCN. Unfortunately, alt-

hough our model considers many characteristics of spatiotemporal data, we do not take 

into account the effect of temporal data distribution. In the future, we consider the above 

issues while applying our method to more realistic prediction tasks. 

Author Contributions: Conceptualization, Changfeng Jing; Methodology, Yi Wang; Supervision, 

Changfeng Jing; Writing – original draft, Yi Wang; Writing – review & editing, Changfeng Jing. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Beijing Natural Science Foundation (8222009), the Na-

tional Natural Science Foundation of China (Grant # 41771412) and the Pyramid Talent Training 

Project of BUCEA (Grant # JDJQ20200306). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing is not applicable to this article. 

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable 

comments. 

Conflicts of Interest: The authors declare no conflict of interest. 



ISPRS Int. J. Geo-Inf. 2022, 11, 102 22 of 23 
 

 

 

References 

1. Ahmed, M.S.; Cook, A.R. Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques. Transp. Res. Rec. 1979, 

722, 1–9 

2. Chen, P.; Ding, C.; Lu, G.; Wang, Y. Short-term traffic states forecasting considering spatial–temporal impact on an urban ex-

pressway. Transp. Res. Rec. 2016, 2594, 61–72. 

3. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. 

4. Li, H.; Liu, J.; Liu, R.W.; Xiong, N.; Wu, K.; Kim, T.-H. A dimensionality reduction-based multi-step clustering method for robust 

vessel trajectory analysis. Sensors 2017, 17, 1792. 

5. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter traffic prediction using big data, in-

memory computing, deep learning and GPUs. Sensors 2019, 19, 2206. 

6. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. 

arXiv Prepr. 2018, arXiv:1803.01271. 

7. Van Lint, J.; Hoogendoorn, S.; van Zuylen, H.J. Freeway travel time prediction with state-space neural networks: Modeling 

state-space dynamics with recurrent neural networks. Transp. Res. Rec. 2002, 1811, 30–39. 

8. Tian, Y.; Pan, L. Predicting short-term traffic flow by long short-term memory recurrent neural network. In Proceedings of the 

2015 IEEE international conference on smart city/SocialCom/SustainCom (SmartCity), Chengdu, China, 21 December 2015; pp. 

153–158. 

9. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In 

Proceedings of the NIPS 2014 Workshop on Deep Learning, Montréal, Canada, 13, December 2014. 

10. Sato, R. A survey on the expressive power of graph neural networks. arXiv Prepr. 2020, arXiv:2003.04078. 

11. Ye, J.; Zhao, J.; Ye, K.; Xu, C. How to build a graph-based deep learning architecture in traffic domain: A survey. IEEE Trans. 

Intell. Transp. Syst. 2020, 1–21. 

12. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. arXiv Prepr. 2021, arXiv:2101.11174. 

13. Liu, J.; Guan, W. A summary of traffic flow forecasting methods. J. Highw. Transp. Res. Dev. 2004, 3, 82–85. 

14. Li, W.; Wang, J.; Fan, R.; Zhang, Y.; Guo, Q.; Siddique, C.; Ban, X.J. Short-term traffic state prediction from latent structures: 

Accuracy vs. efficiency. Transp. Res. Part C Emerg. Technol. 2020, 111, 72–90. 

15. Kumar, K.; Parida, M.; Katiyar, V. Short term traffic flow prediction for a non urban highway using artificial neural network. 

Procedia-Soc. Behav. Sci. 2013, 104, 755–764. 

16. Wu, Y.; Tan, H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv 

Prepr. 2016, arXiv:1612.01022. 

17. Liu, Y.; Zheng, H.; Feng, X.; Chen, Z. Short-term traffic flow prediction with Conv-LSTM. In Proceedings of the 2017 9th Inter-

national Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–

6. 

18. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; Li, T. Predicting citywide crowd flows using deep spatio-temporal residual networks. 

Artif. Intell. 2018, 259, 147–166. 

19. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv Prepr. 2016, arXiv:1609.02907. 

20. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. 

Adv. Neural Inf. Processing Syst. 2016, 29, 3844–3852. 

21. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv Prepr.2017, 

arXiv:1710.10903. 

22. Atwood, J.; Towsley, D. Diffusion-convolutional neural networks. In Proceedings of the Advances in Neural Information Pro-

cessing Systems, Barcelona, Spain, 4-9 December, 2016; pp. 1993–2001. 

23. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for 

traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. 

24. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Pro-

ceedings of the International Conference on Learning Representations, Vancouver Canada, 1-3 May 2018. 

25. Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic graph convolutional recurrent neural network: A deep learning framework for 

network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4883–4894. 

26. Guo, K.; Hu, Y.; Qian, Z.; Liu, H.; Zhang, K.; Sun, Y.; Gao, J.; Yin, B. Optimized graph convolution recurrent neural network for 

traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1138–1149. 

27. Bai, J.; Zhu, J.; Song, Y.; Zhao, L.; Hou, Z.; Du, R.; Li, H. A3T-GCN: Attention temporal graph convolutional network for traffic 

forecasting. ISPRS Int. J. Geo-Inf. 2021, 10, 485. 

28. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In 

Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3634–

3640. 

29. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of 

the 28th International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019. 



ISPRS Int. J. Geo-Inf. 2022, 11, 102 23 of 23 
 

 

30. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow 

forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January 2019; pp. 922–929. 

31. Zheng, C.; Fan, X.; Wang, C.; Qi, J. Gman: A graph multi-attention network for traffic prediction. In Proceedings of the AAAI 

Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 1234–1241. 

32. Guo, K.; Hu, Y.; Qian, Z.; Sun, Y.; Gao, J.; Yin, B. Dynamic graph convolution network for traffic forecasting based on latent 

network of laplace matrix estimation. IEEE Trans. Intell. Transp. Syst. 2020, 1–10. 

33. Hu, J.; Chen, L. Multi-Attention Based Spatial-Temporal Graph Convolution Networks for Traffic Flow Forecasting. In Proceed-

ings of the 2021 International Joint Conference on Neural Networks (IJCNN), Online, 18–22, July 2021; pp. 1–7. 

34. Liang, Y.; Zhao, Z.; Sun, L. Dynamic spatiotemporal graph convolutional neural networks for traffic data imputation with com-

plex missing patterns. arXiv Prepr. 2021, arXiv:2109.08357. 

35. Bai, L.; Yao, L.; Wang, X.; Li, C.; Zhang, X. Deep spatial–temporal sequence modeling for multi-step passenger demand predic-

tion. Future Gener. Comput. Syst. 2021, 121, 25–34. 

36. Zhu, J.; Wang, Q.; Tao, C.; Deng, H.; Zhao, L.; Li, H. AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional 

Network for Traffic Forecasting. IEEE Access 2021, 9, 35973–35983. 

37. Yu, B.; Yin, H.; Zhu, Z. St-unet: A spatio-temporal u-network for graph-structured time series modeling. arXiv Prepr.2019, 

arXiv:1903.05631. 

38. Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-

temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7-

12 February 2020; pp. 914–921. 

39. Guo, K.; Hu, Y.; Sun, Y.; Qian, S.; Gao, J.; Yin, B. Hierarchical Graph Convolution Networks for Traffic Forecasting. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2–9 February 2021; pp. 151–159. 

40. Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. arXiv 

Prepr. 2020, arXiv:2007.02842. 

41. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. 

42. Feng, X.; Guo, J.; Qin, B.; Liu, T.; Liu, Y. Effective deep memory networks for distant supervised relation extraction. In Proceed-

ings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia,19–25 August 2017; pp. 4002–

4008. 

43. Gao, S.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P.H. Res2net: A new multi-scale backbone architecture. IEEE 

Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. 

44. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. 

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. 

46. Chen, C.; Petty, K.; Skabardonis, A.; Varaiya, P.; Jia, Z. Freeway performance measurement system: Mining loop detector data. 

Transp. Res. Rec. 2001, 1748, 96–102. 

47. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; 

pp. 492–518. 

48. Li, Q.; Han, Z.; Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of 

the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. 

49. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the dots: Multivariate time series forecasting with graph 

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 

Virtual Event, CA, USA, 6–10 July 2020; pp. 753–763. 

 


