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Abstract: Ensuring that commuting distance remains within a certain range has important effect of
residents’ quality of life. Although many studies have investigated the relationship between the built
environment and residents’ commuting distance, limited evidence has been provided of the impact
of job location. As such, in this study, we used data from the Wuhan Metropolitan Development
Area in China and applied Bayesian linear regression (BLR) models to examine the impact of the
built environment at both residential and job locations on commuting distances for residents. Our
findings showed that, for residential locations, the residential density, land use mix, number of
intersections, parking service level, and number of companies have a significant negative effect
on commuting distance, whereas the plot ratio, distance to sub-employment centers, number of
metro stations, and number of bus stops have a significant positive effect on commuting distance.
For employment locations, land use mix, parking service level, and number of companies have a
significant negative effect on commuting distance, whereas job density, number of intersections,
distance to sub-employment centers, number of metro stations, and number of bus stops have a
significant positive effect on commuting distance. By describing the influence of the built environment
at both residential and job locations on commuting distance, our findings are conducive to the
optimization of land use and the formulation of related policies to reduce commuting distance,
which has a positive effect on improving residents’ quality of life and reducing energy emissions and
air pollution.

Keywords: job-housing; built environment; commute distance; cellular signaling data; Bayesian
linear regression (BLR); Wuhan

1. Introduction

Over the past half-century, urban sprawl, as an urbanization phenomenon, has become
globally widespread. The rapid growth in population and employment in large cities,
accompanied by urban sprawl, has triggered urban problems, such as traffic congestion,
long commute distances, green-house gas emissions, and air pollution [1]. These issues
have resulted in an increasing attention being paid to the relationship between the built
environment and travel behavior [2,3]. Understanding the impact of the built environment
on travel behavior can help decision makers promote lower-cost traffic conditions, which
in turn can reduce green-house gas emissions, mitigate traffic pollution, and improve the
well-being of residents. As the most basic and important travel mode for urban residents,
the commuting trip is one of the major sources of traffic congestion and air pollution
globally [4]. Relative to commuting time, commuting mode and vehicle miles traveled,
commuting distance has gained less attention [4,5].

Many studies have shown that the built environment can significantly impact the daily
travel behavior of urban residents, especially their commuting behavior [2,6–9]. Existing
studies have established a number of key built environment variables that impact residents´
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commuting behavior, but most of the literature focuses on the impact of the residential
environment [10]. Understanding which factors of the built environment at both residential
and employment locations significantly impact commuting distance would help decision
makers in urban planning and land use policy formulation at the micro-scale, to help reduce
commuting distance and traffic congestion. However, existing studies mostly focused on
the impact of residential built environment on commuting distance, and evidence is lacking
on the link between the employment built environment and commuting distance.

Traditional linear regression, such as Ordinary least squares and Geographically
weighted regression, are commonly used research methods in the study of the built en-
vironment and commuting behavior [1,11,12]. However, when there are too few training
samples and extreme values or when there are too many sample features and some features
are irrelevant to the conclusion, overfitting easily occurs, leading to discrepancies in the
model results. Bayesian linear regression (BLR) can effectively prevent the occurrence of
overfitting by introducing the Gaussian prior to achieve a penalty parameter (L2 norm)
for the parameter w (vectors) [13]. Although previous studies emphasized the need to pay
attention to the overfitting problem in linear regression [14], it was not been fully applied in
existing studies of the built environment and commuting behavior, which may be related to
the complex estimation of Bayesian models relative to traditional simple linear regression.

As such, in this study, we attempted to fill these two gaps. Using cellular signaling
data from the Wuhan urban development zone in China, we used BLR to explore how the
residential and employment built environment affects residents’ commuting distance. This
study’s findings enrich the existing literature by providing an examination of the impact
of the employment built environment on residents’ commuting distance in addition to
residential built environment and spatial analysis using BLR to prevent overfitting to a
certain extent.

The remainder of this paper is structured as follows. First, we review the literature on
the relationship between the built environment and commute distance in Section 2. Second,
we describe the study area, methodology, and data in Section 3. The proposed model is
then applied and the results of the empirical model are discussed in Section 4. Finally, we
summarize the policy implications of our findings and propose future research directions
in Section 5.

2. Literature Review

Researchers have explored the impact of the built environment on commuting dis-
tance, and identified key built environment impact variables: density, diversity, design,
destination and distance (5D) [2,15]. We discuss the impact of these variables on commuting
distances in more detail below.

Density is a key factor that influences residents’ commuting behavior [16,17]. Studies
showed that density significantly negatively affects residents’ commuting distance and
commuting time. The higher the spatial density, the shorter the potential commuting
distance, which is conducive to encouraging residents to commute by walking, cycling,
and public transportation [18–20].

Diversity is reflected in the land use mix, which is used to describe the richness and
complexity of land use types, and the mix reflects the number of land use types and the
proportion of each type [2,21]. Higher levels of land use mix tend to reduce residents’
commuting distances [22–24]. A higher land use mix implies a higher job-housing balance
at the regional scale, and thus a shorter commuting distance for residents, which is more
conducive to the use of nonmotorized modes of commuting. However, some have found
that the effect of land use mixes on residents’ commuting behavior is not significant. This
may be due to problems such as traffic congestion caused by over-mixing of land use,
which has negative effects on residents’ commuting behaviors [17].

The design of continuous and safe sidewalks, grid-like street patterns, and higher
network connectivity usually means shorter distances to destinations. A study based
on Washington showed that the average block scale has a negative effect on commuting
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distance [4]. Zhang [25] and Sun [26] also reported that intersection density is negatively
correlated with commuting distance.

In terms of destination, the accessibility of a destination is an important factor influ-
encing residents’ travel behavior [27]. When the distance from public service facilities or
the CBD is farther, that is, destination accessibility is lower, the travel distance and travel
time of residents are relatively higher, and the proportion of private car trips is larger [28].
Some studies showed that commuting distance decreases when urban sub-centers are far
from the main center, so shaping and strengthening the polycentric spatial structure helps
reduce commuting costs [29]. Conversely, some studies reported that polycentric urban
spatial structures increase commuting time and distance [30].

For distance, the shorter the distance and the higher the accessibility to a public trans-
portation stop, the more beneficial it is for residents to use that stop for commuting, which
reduces the use of cars [31–34]. However, as increased public transport availability expands
the range of residential and employment options for people, influenced by high housing
prices in employment centers, employees often choose to live along public transportation
routes with lower housing prices away from employment centers, which may increase the
commuting distance for residents [35].

The literature has some gaps, which motivated us to conduct this research:

(1) In addition to the impacts of the built environment in residential locations on residents’
commuting behavior, the built environment’s characteristics at job locations also have
a significant impact on residents’ commuting behavior. However, few studies have
attempted to explore the impact of the built environment at job locations. Under-
standing the impact of the built environment in both residential and job locations on
commuting distances can better guide the optimization of the built environment and
the formulation of related policies at the micro level.

(2) Although studies have focused on the interaction between the built environment and
travel behavior, little is known about the relevant relationship in polycentric cities.
In addition, the findings of studies on the impact of monocentric versus polycentric
cities on commuting are not in agreement. Compared to other cities, Wuhan has
a unique polycentric pattern of two rivers (the Yangtze and Hanshui Rivers) and
three towns (Wuchang, Hankou, and Hanyang) due to the natural landscape pattern.
Separated by these two rivers, Wuhan has a unique cross-river commuting behavior
and commuters travel a relatively long distance.

3. Research Design
3.1. Study Area

We selected Wuhan, the largest city in central China, as the research object. The
research scope covered the Wuhan urban development zone, as a typical polycentric city as
it is divided by the Yangtze and Hanshui Rivers and contains three administrative districts,
Wuchang, Hankou and Hanyang. The urban development zone is the agglomeration and
expansion area of Wuhan’s urban functions, having a total area of 3261 km2. According to
Wuhan Territorial Spatial Planning (2021–2035), the urban spatial structure of the region
is divided into one main urban area and six new town groups. As can be seen from
Figure 1, the main urban area is the core agglomeration area of Wuhan, which contains
the main employment locations and residential population of Wuhan. The six new town
groups are the main expansion areas of Wuhan that have experienced the fastest growth
in population and economic development in the recent years. Similar to other large cities,
the rapid growth in population and employment along with the rapid expansion of urban
areas has reshaped the travel demand of residents and caused urban issues such as traffic
congestion and long commuting distances. Therefore, using Wuhan as the research object
can better reflect the relationship between the built environment and commuting distance
in polycentric cities, and the findings can provide policy implications for similar regions.
In this study, we used the traffic analysis zone (TAZ) as the basic research unit, based on
the geographical information of residences and workplaces.
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Figure 1. Research area.

3.2. Method

In response to the least squares method commonly used in past studies of the built
environment and commuting distance, overfitting occurs when the data sample is small
or values are missing. BLR can effectively prevent the occurrence of overfitting by intro-
ducing the Gaussian prior to achieve a penalty parameter (L2 norm) for the parameter w
(vectors). Therefore, to more accurately analyze the impact of the TAZ built environment
at both residential and job locations on commuting distances, we used the BLR model for
analysis. From a Bayesian perspective, we constructed linear regressions using probability
distributions rather than point estimates. The response variable y is not a single value
being estimated but is assumed to be drawn from a normal distribution. The BLR model is
as follows:

y ∼ N
(

βTX, σ2 I
)

(1)

where y is generated from a normal (Gaussian) distribution inscribed by both the mean
and variance, and the variance is the square of the standard deviation σ.

Since the purpose of BLR is not to find a single best value for the model parameters,
but to determine the posterior distribution of the model parameters, both the response
variables and the model parameters are generated from a probability distribution. The
posterior distributions of the model parameters are conditioned on the inputs and outputs
of the training. Assuming the overall parameter y to be estimated, we randomly draw
some data β from this population. The posterior probability is [13]:

P(β|y, X) =
P(β|y, X) ∗ P(β|X)

P(β|X)
(2)

where P (β|y, X) is the posterior probability distribution of the model parameters given the
inputs and outputs; it is equal to the likelihood function P (y|β, X) of the output multiplied
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by the prior probability P (β|x) of the parameter β given the input, and divided by the
normalized constant.

3.3. Data Sources and Description

The data used in this study included the Unicom cellular signaling data of Wuhan in
June 2019; road, metro station and other vector data in Wuhan in 2019; POI data in Wuhan
in 2019; and vector data of land use in Wuhan from 2016.

Among them, we obtained cellular signaling data from China Unicom, which records
the encrypted unique user identification number, basic attributes of individual users,
location latitude and longitude, and location point type and other information. The user
location point types are catalogued as residence, employment and visiting by the duration
and frequency of stay of the user at different time periods of the month. In this study, we
selected the permanent users in Wuhan urban development zone to obtain the latitude and
longitude coordinates of their residential and job locations as well as relevant individual
attributes, and the users’ commuting distance was calculated through their residential and
job location points. In order to eliminate the interference of outliers, the age of employed
people was limited to 18–65 years old. In addition, cellular signaling data can be used
to identify residential population density and employment population density. Vector
data such as roads and metro stations, and the POI data of Wuhan were obtained through
AMAP. AMAP’s POI covers various spatial geographic information (longitude and latitude,
detailed address), as well as attribute information such as specific facility names and main
categories, presented in the form of spatial points. The POI data of Wuhan were obtained
from the API interface of AMAP, mainly including companies, metro stations, bus stops,
and other public facilities related to residents’ job and housing. The land use data were
obtained from Wuhan Planning and Design Institute. The land use data used in this study
differed from other data by a certain number of years, but considering that their main
use was for calculating the land use mix, that urban construction requires some time, and
that most regions in Wuhan urban development zone are built-up areas, the impact of
using these older data could be ignored. In addition, the use of official vector data can
guarantee the accuracy of the results to a greater extent compared to the use of land use
data converted from POI data, remote sensing data, etc.

In this study, the dependent variable was commuting distance (distance from residence
to workplace), which was obtained from cellular signaling data. Distribution of commuting
distance of residents in Wuhan urban development zone is shown in Figure 2. The average
commuting distance of residents in Wuhan urban development zone was 7.52 km, which
is lower than the average commuting distance of 8.2 km in Wuhan. The reason for this
difference may be that the commuting distance measured in this study was the Euclidean
distance from the residence to the workplace, whereas the average commuting distance
in Wuhan is determined based on the shortest distance of the road network. In addition,
even if the calculation is based on the Euclidean distance, the proportion of commuting
distance within 5 km was still less than 50%. From the perspective of major cities in China,
the average commuting distance in Wuhan is relatively long, ranking in the top ten among
the major cities in China [34]. The main reason for this phenomenon is the natural pattern
of Wuhan. As can be seen from Figures 3 and 4, the employment centers in Wuhan are
divided by the Yangtze and Hanshui Rivers, causing dislocation between job and housing
locations, which results in a large number of cross-river commuters within Wuhan’s urban
development zone. Among them, the proportion of cross-river commuters in the main city
is the highest of all types, reaching 60%.
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Figure 2. Distribution of commuting distance of residents in the Wuhan urban development zone.

Figure 3. Spatial distribution of cross-district commuters.
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Figure 4. Spatial distribution of commuters in the same district.

The independent variables were analyzed according to the residential and job locations
identified for commuters, using TAZ as the basic unit and selecting 11 independent vari-
ables involving residents’ commuting behavior in the 5D elements of the built environment.
The descriptive statistics of built environment within the research scope are provided in
Table 1.

Table 1. Descriptive statistics of built environment factors.

Variable Description Average SD

Residential Built Environment Factors at the TAZ Level

Density

Residential
density

Ratio of resident population
obtained through cellular

signaling data to TAZ
(persons/km2).

6056.04 4921.28

Employment
density

Ratio of employed population
obtained through cellular

signaling data to TAZ
(persons/ km2)

2150.34 2281.77

Plot ratio
Plot ratio of each TAZ

calculated through the building
vector data of Wuhan.

0.46 1.87

Diversity Land use mix

S =
−∑k

i=1 pi ln pi
ln k

where S is the land use mix; k is
the classification data of land
use types; pi is the proportion

of land area in category I,
∑k

i=1 pi = 1

0.55 0.15
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Table 1. Cont.

Variable Description Average SD

Residential Built Environment Factors at the TAZ Level

Design

Number of
intersections

Number of intersections in
each TAZ 24.00 30.10

Parking
service level

Number of parking lots in
each TAZ 17.95 19.25

Destination Number of
companies

Number of corporate POIs in
each TAZ 55.89 78.18

Distance

Distance to sub
employment

centers

Calculate the straight-line
distance of individual residence
from five employment centers

in Wuhan (As shown in
Figure 3, Jianghan Road,

Wangjiawan, Xudong,
Zhongnan-Hanjie, Optics

Valley), and choose the smallest
distance (km)

7162.21 5628.51

Number of
metro stations

Number of metro stations in
each TAZ 0.21 0.48

Number of
bus stops

Number of bus stops in
each TAZ 4.38 5.79

Workplace built environment factors at the TAZ level

Density

Residential
density

Ratio of population obtained
through cellular signaling data

to TAZ
(persons/km2).

6020.68 5094.84

Employment
density

Ratio of employed population
obtained through cellular

signaling data to TAZ
(persons/ km2)

3236.79 3582.7

Plot ratio
Plot ratio of each TAZ

calculated through the building
vector data of Wuhan.

0.44 1.31

Diversity Land use mix

S =
−∑k

i=1 pi ln pi
ln k

where S is the land use mix; k is
the classification data of land
use types; pi is the proportion

of land area in category I,
k
∑

i=1
pi = 1

0.55 0.16

Design

Number of
intersections

Number of intersections in
each TAZ 23.83 30.18

Parking
service level

Number of parking lots in
each TAZ 20.10 22.80

Destination Number of
companies

Number of corporate POIs in
each TAZ 74.49 98.75

Distance

Distance to sub
employment

centers

Calculate the straight-line
distance of individual residence
from five employment centers

in Wuhan (As shown in
Figure 3, Jianghan Road,

Wangjiawan, Xudong,
Zhongnan-Hanjie, Optics

Valley), and choose the smallest
distance (km)

6987.51 5904.79

Number of
metro stations

Number of metro stations in
each TAZ 0.22 0.48

Number of
bus stops

Number of bus stops in
each TAZ 4.02 6.01
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4. Results and Discussion

We used the rstanarm package in the R programing language to estimate the BLR
models, which led to the results presented in Table 2. Since the objective of this study was
to explore the effect of the built environment at residential and job locations on commuting
distance, the analysis was conducted separately from the residential and the employment
side according to Table 2.

Table 2. Bayesian model results for commuting distance.

Parameter Median 95%CI pd ROPE ROPE_CI Rhat ESS

Residential Built Environment Factors at the TAZ Level
Residential density −0.01 [−0.02, −0.01] 100% [−718.15, 718.15] 100% 1.00 2370

Employment density −0.00 [−0.01, 0.01] 81.03% [−718.15, 718.15] 100% 1.00 2453
Plot ratio 24.34 [16.85, 31.73] 100% [−718.15, 718.15] 100% 1.00 10,833

Land use mix −196.47 [−288.60, −107.42] 100% [−718.15, 718.15] 100% 1.00 7292
Number of intersections −7.02 [−7.54, −6.48] 100% [−718.15, 718.15] 100% 1.00 5757

Parking service level −4.28 [−5.23, −3.34] 100% [−718.15, 718.15] 100% 1.00 4069
Number of companies −1.18 [−1.39, −0.96] 100% [−718.15, 718.15] 100% 1.00 4575

Distance to sub
employment centers 0.07 [0.07, 0.08] 100% [−718.15, 718.15] 100% 1.00 3218

number of
metro stations 169.47 [141.91, 197.76] 100% [−718.15, 718.15] 100% 1.00 7330

number of bus stops 20.91 [17.57, 24.01] 100% [−718.15, 718.15] 100% 1.00 3877
Workplace built environment factors at the TAZ level

Residential density 0.00 [−0.00, 0.01] 96.33% [−718.15, 718.15] 100% 1.00 3105
Employment density 0.10 [0.09, 0.10] 100% [−718.15, 718.15] 100% 1.00 3555

Plot ratio 4.40 [−6.53, 14.84] 78.22% [−718.15, 718.15] 100% 1.00 9154
Land use mix −825.29 [−913.29, −734.31] 100% [−718.15, 718.15] 0% 1.00 8841

Number of intersections 5.18 [4.65, 5.71] 100% [−718.15, 718.15] 100% 1.00 5345
Parking service level −17.68 [−18.53, −16.88] 100% [−718.15, 718.15] 100% 1.00 4267

Number of companies −0.82 [−0.99, −0.65] 100% [−718.15, 718.15] 100% 1.00 4176
Distance to sub

employment centers 0.21 [0.20, 0.21] 100% [−718.15, 718.15] 100% 1.00 2930

number of
metro stations 84.77 [54.35, 114.28] 100% [−718.15, 718.15] 100% 1.00 8576

number of bus stops 27.25 [24.54, 30.22] 100% [−718.15, 718.15] 100% 1.00 5344

* A coefficient estimate for a variable represents the posterior mean of its parameter, and S.E. is its standard error.
A credible interval for the estimate is bounded by l–95%CI and u-95%CI. If the 95%CI does not include zero, this
variable is statistically significant at the 5% level.

In terms of built environment characteristics at residential locations, Table 2 shows
that, similar to the results of existing studies [5,36], the built environment’s characteristics
at residential location had a significant impact on commuting distance of residents. In
general, factors, such as residential density, plot ratio, land use mix, number of intersections,
number of companies, and distance to sub-employment centers, had a significant impact
on commuting distance, which further confirmed that living in a compact and public-
transport oriented built environment is conducive to reducing the commuting distance
of residents. Specifically, residential density was negatively correlated with commuting
distance, which is consistent with findings in Washington [10]. In addition, commuting
distance and land use mix also showed significant negative effects, which is consistent
with the findings of Sun et al. [26] and Antipova et al. [37]. This is because a more diverse
land use mix allows residents to complete their daily life activities in a small geographical
unit. According to a Shanghai-based study by Sun et al. [26], intersection density was
positively correlated with private car commuting and negatively correlated with public
transport commuting, whereas Zhang’s [25] Boston and Hong Kong-based study found
that intersection density helps reduce the likelihood of commuting by car. In our study,
we found that overall intersection density contributed to shorter commuting distances.
This may be because the higher the intersection density, the higher the road density, which
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can provide more flexible and convenient commuting routes, thus contributing to the
reduction in commuting distance. We also found that distance to sub-employment centers
was positively correlated with commuting distance, which is due to most employment
opportunities being concentrated in sub-employment centers in cities with a polycentric
layout. To some extent, residing far away from sub-employment centers means being far
away from the workplace. Our findings support the idea that the polycentric urban spatial
structure development pattern is conducive to lower commuting distances. In addition,
we found that the numbers of bus stops and metro stations were positively correlated
with commuting distance, which may be due to public transportation providing more
options for residential and job locations, which, to some extent, exacerbates the regional
job–housing imbalance and thus increases the commuting distance for residents. In contrast
to the findings of other studies [17,21], commuting distance and plot ratio showed positive
effects. The reason for this finding may be that the plot ratio of Wuhan is gradually
decreasing from the main city to the edge, showing an obvious core edge structure. In
the descriptive analysis, we stated that a large number of cross-river commuters exist in
the main city of Wuhan due to the influence of the natural geographical pattern, resulting
in a relatively long commuting distance. However, in the six new town groups, the plot
ratio was relatively low, and under the polycentric urban spatial structure of Wuhan, a
large number of people worked in the nearest sub-employment center, so their commuting
distance was relatively short.

In terms of built environment characteristics at job locations, the number of intersec-
tions, distance to sub employment centers, number of metro stations, and the number of bus
stops had a significant positive effect on commuting distance, while land use mix, parking
service level and number of companies had a significant negative effect. A comparison
with residential locations revealed that the impact of land use mix at job locations was
significantly higher than at residential locations, so the land use mix at job locations appears
to play a dominant role in influencing commuting distance. The impact of parking service
level at job locations was also higher than at residential location, suggesting that increasing
the number of parking spaces at the workplace is more conducive to residents using private
cars for commuting and increases commuting distance. In addition, the numbers of metro
stations and bus stops showed heterogeneity in residential and job locations, with the
number of metro stations having a more significant impact in residential areas, and while
the number of bus stops having a stronger impact in employment areas. The reason for this
finding is that the metro construction in Wuhan is still in the early and middle stages, the
metro network already covers all employment centers, but the coverage of the residential
locations is somewhat insufficient. Ground public transportation, in comparison, is a more
mature service and has basically achieved full coverage of the main city. Therefore, the
impact of the metro is stronger at residential locations, and that of public transport at job
location is more obvious. Notably, the number of intersections had a negative effect on
commuting distance at residential locations, but a positive effect at job locations. This is
similar to the findings of Sun et al. [26], where road network density at job locations was
found to encourage private car commuting, but the spatial concentration of workspaces
had the potential to increase traffic congestion and increase commuting distance.

5. Conclusions

In recent years, the negative effects of increased commuting distances, traffic conges-
tion, and the resulting air pollution caused by global urban sprawl have driven research
on the built environment and commuting behavior. Understanding the impact of the built
environment on commuting distance can help planning decision makers reduce commuting
distance and cost at the micro level, which in turn reduces energy consumption, traffic
emissions, and air pollution. We based our study on BLR to explore the impact of the built
environment at both residential and job locations on commuting distance: we considered
job location to examine the impact of the built environment on commuting distance, which
is different from most of the previous studies, and we used BLR to address the problem of
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overfitting experienced with traditional linear regression. In addition, individual commut-
ing distance measures based on cellular signaling data provided an objective and indicator
of residents’ commuting distance. Our study shows that differences exist in the impacts of
built environment at residential and job locations on commuting distance, which provides
new findings on the effects of built environments on commuting distance at the TAZ level.
The findings provide a more detailed and scientific reference for the optimization of built
environments at the micro level.

Taking the Wuhan urban development zone in China as the research object, we found
that, at the TAZ level, the built environment at both residential and job locations had a
significant impact on residents’ commuting distance. Specifically, for residential locations,
five factors (residential density, land use mix, number of intersections, parking service level,
and number of companies) had a significant negative effect on commuting distance, while
four factors (plot ratio, distance to sub employment centers, number of metro stations,
and number of bus stops) had a significant positive effect on commuting distance. For
employment locations, three factors (land use mix, parking service level, and number of
companies) had a significant negative effect on commuting distance, while five factors (job
density, number of intersections, distance to sub-employment centers, number of metro
stations, and number of bus stops) had a significant positive effect on commuting distance.
Our study further confirms that living in a city that is compact and functionally complex
in land-use is conducive to reducing residents’ commuting distance. However, land use
mix appears to have a significantly stronger impact on reducing commuting distance in
job locations than in residential locations, and metro and bus stops have a greater impact
at residential and job locations, respectively. In addition, distance to sub-employment
centers showed a significant positive effect on commuting distance at both residential
and job locations, and our findings support the idea that polycentric urban development
is beneficial to reducing residents’ commuting distance. However, as pointed out by
Hu et al. [1], polycentric development in large cities needs to provide suitable housing and
public services for new employment centers to avoid the increase in commuting distance
caused by job and housing imbalances.

However, this study has certain limitations that warrant further research. First, the
commuting distance of residents measured in this study based on cellular signaling data is
the Euclidean distance, which is not the real commuting distance, so this may have had
some influence on the research results. With the increasing popularity of big data, we
encourage the measurement of commuting distance based on residents’ real commuting
trajectories in the future to obtain more accurate results. In addition, due to data limitations,
we did not consider different travel modes. However, as found by Sun et al. [26] and others,
differences may exist in the effects of changes in the built environment on different travel
modes. As our goal is to shorten commuting distance and encourage the use of public
transportation, increasing the research on different travel modes can be considered in future
research, which would, in turn, lead to suggestions of more targeted built environment
optimization measures. In addition, residents’ socioeconomic attribute characteristics
and travel preferences can also impact residents’ commuting distance, and future studies
need to add individual data to address the impact of the built environment and residents’
self-selection on commuting distance [26,38]. Furthermore, although we identified the
factors of the built environment at both residential and job locations influencing commuting
distances, knowing the thresholds of built environment variables will be more beneficial
to planning practice and the formulation of related policies [39,40], and we suggest the
introduction of machine learning (such as Gradient Boosting Decision Tree) and other
methods to solve the problem in the future.
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