
����������
�������

Citation: Nikou, M.; Tziachris, P.

Prediction and Uncertainty

Capabilities of Quantile Regression

Forests in Estimating Spatial

Distribution of Soil Organic Matter.

ISPRS Int. J. Geo-Inf. 2022, 11, 130.

https://doi.org/10.3390/

ijgi11020130

Academic Editor: Wolfgang Kainz

Received: 7 December 2021

Accepted: 8 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Prediction and Uncertainty Capabilities of Quantile Regression
Forests in Estimating Spatial Distribution of Soil
Organic Matter
Melpomeni Nikou 1,2 and Panagiotis Tziachris 2,*

1 Department of Meteorology-Climatology, School of Geology, Aristotle University of Thessaloniki,
541 24 Thessaloniki, Greece; nikomelp@geo.auth.gr

2 Soil and Water Resources Institute, Hellenic Agricultural Organization—Demeter, 570 01 Thessaloniki, Greece
* Correspondence: p.tziachris@swri.gr

Abstract: One of the core tasks in digital soil mapping (DSM) studies is the estimation of the spatial
distribution of different soil variables. In addition, however, assessing the uncertainty of these
estimations is equally important, something that a lot of current DSM studies lack. Machine learning
(ML) methods are increasingly used in this scientific field, the majority of which do not have intrinsic
uncertainty estimation capabilities. A solution to this is the use of specific ML methods that provide
advanced prediction capabilities, along with innate uncertainty estimation metrics, like Quantile
Regression Forests (QRF). In the current paper, the prediction and the uncertainty capabilities of
QRF, Random Forests (RF) and geostatistical methods were assessed. It was confirmed that QRF
exhibited outstanding results at predicting soil organic matter (OM) in the study area. In particular,
R2 was much higher than the geostatistical methods, signifying that more variation is explained by
the specific model. Moreover, its uncertainty capabilities as presented in the uncertainty maps, shows
that it can also provide a good estimation of the uncertainty with distinct representation of the local
variation in specific parts of the area, something that is considered a significant advantage, especially
for decision support purposes.

Keywords: quantile regression forests; random forests; geostatistics; machine learning; soil organic
matter; prediction uncertainty

1. Introduction

Digital soil mapping (DSM), also known as predictive soil mapping or pedometric
mapping, refers to the creation of digital maps that include spatial soil information, such
as soil type or soil properties. These maps are created from the combination of multiple
parameters (soil, climate, relief etc.) and usually depict the spatial distribution of soil
phenomena along with relative information (e.g., estimation uncertainty).

DSM makes extensive use of geographic information systems (GIS), global position-
ing systems (GPS), remotely sensed spectral data, topographic data derived from digital
elevation models (DEMs), predictive or inference models, and software for data analysis.
To cope with the large amount of data used in DSM, semi-automated techniques and
technologies are used to acquire, process, and visualize these data. Machine learning (ML)
and artificial intelligence (AI) are some innovative state of the art technologies that are
increasingly used in soil mapping and their uptake is transforming the way soil scientists
produce their maps [1]. ML that emerged in the 1990s as a tool for DSM [2] is defined as the
computer-assisted practice of using data-driven (and mostly non-linear) statistical models
which resorts to a large amount of input data to learn a pattern and make a prediction [1].

According to Leo Breiman [3] two statistical modeling paradigms were distinguished:
a data model and an algorithmic model. A data model is an abstract model that organizes
elements of data and standardizes how they relate to one another and to the properties
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of real-world entities, whereas an algorithmic model is a model that uses mathematical
algorithms based on the elements of data and estimates the parameters. One broadly
used algorithm for that kind of model is Random Forests (RF). The RF is an ensemble
learning method for classification, regression and other tasks that operates by constructing
a multitude of decision trees at training time and is extensively used in DSM [4]. For
example, it provided the best results in estimating soil OM [5], shortened the training time
during the soil OM modeling process and improved the model’s accuracy and its predictive
ability [6]. Finally, according to John et al. [7], RF was the best performing model among
other ML algorithms such as artificial neural network (ANN), support vector machine
(SVM), and cubist regression.

Most of the time, DSM products represent estimates of spatially distributed soil prop-
erties. These estimations comprise an element of uncertainty that is not evenly distributed
over the area covered by DSM. If we quantify the uncertainty spatially explicitly, this infor-
mation can be used to improve the quality of DSM by optimizing the sampling design [8].
Wadoux et al. [1] stated that while the (spatial) cross-validation results might show strong
agreement between predicted and measured soil property or class and therefore validate a
ML model with very high predictive abilities, an uncertainty quantification would show
unrealistic predictions characterized by a large uncertainty. However, most ML methods
RF included do not provide uncertainty estimates by default and only 30% of the recent soil
studies in their literature review quantified the uncertainty associated with the prediction.

One ML method that intrinsically addresses the lack of uncertainty estimates is Quan-
tile Regression Forests (QRF). The QRF is an extension of RF developed by Nicolai Mein-
shausen [9] that provides non-parametric estimates of the median predicted value as well
as prediction quantiles. It therefore allows spatially explicit non-parametric estimates of
model uncertainty by providing information for the full conditional distribution of the
response variable, and not only about the conditional mean [10]. As a result, QRF can po-
tentially combine the high accuracy of RF with the built-in uncertainty estimates. However,
QRF is not broadly used in soil studies, despite its advantages.

Vaysse and Lagacherie [11], for example, conducted an experiment in which they
employed QRF in a temperate Mediterranean area with a comparable soil organic carbon
(SOC) dataset in terms of areal extent, observation density, and distribution homogeneity.
They claim that QRF outperforms RK when it comes to interpreting uncertainty patterns
and is better suited than other modeling methods when spatial sampling is sparse. In
Dharumarajan’s study [12] the QRF model was used for the estimation of several important
soil qualities of Northern Karnataka according to GlobalSoilMap criteria. The QRF model
caught maximum variability for most of the soil parameters, and the predicted soil values
were dependable with minimum errors. The QRF was also used for the production of
global maps of soil properties explicitly highlighting the importance of quantitative and
qualitative evaluation and uncertainty communication [13]. Finally, in Veronesi’s study in
2019 [14], RF and QRF generated the most reliable confidence intervals for predicting SOC.
Even though this is potentially important for practical uses, the confidence intervals were
also very wide, so they suggest that these intervals should be handled carefully.

In the current study, the prediction capability along with the uncertainty assessment
capacity of the QRF is examined. The popular geostatistical methods of Ordinary Kriging
(OK) and Kriging with External Drift (KED) were compared with the ML methods of RF and
QRF, in the case of soil OM. Prediction maps of soil OM along with maps of uncertainties
were also produced and presented. The study area that was chosen is in northern Greece,
at the regional unit of Kastoria and next to the shore of Lake Orestiada. A total number
of 414 samples of soil were collected in randomly sampled unique locations in autumn
during a six-year period. GPS receivers were used to identify the sampling positions. A
high-resolution Digital Elevation Model (DEM) was used to derive topographic products
such as aspect, slope, altitude etc. along with Sentinel-2 imagery, for each year from our
study period, to produce Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Water Index (NDWI) that were used as input data. Finally, the effect of the above-
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mentioned covariates to the prediction of soil OM was assessed based on the importance
score of the applied machine learning methods.

2. Materials and Methods
2.1. Area of Study and Soil Sampling

The study area was chosen in northern Greece, near the shore of Lake Orestiada, in
the regional unit of Kastoria (Figure 1). Its coordinates in the World Geodetic System of
1984 (WGS84) include the area between 40◦28′42.41′′ N and 40◦32′35.61′′ N latitudes and
longitudes of 21◦19′4.01′′ E and 21◦23′8.18′′ E longitudes.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 3 of 19 
 

 

autumn during a six-year period. GPS receivers were used to identify the sampling posi-

tions. A high-resolution Digital Elevation Model (DEM) was used to derive topographic 

products such as aspect, slope, altitude etc. along with Sentinel-2 imagery, for each year 

from our study period, to produce Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Water Index (NDWI) that were used as input data. Finally, the 

effect of the above-mentioned covariates to the prediction of soil OM was assessed based 

on the importance score of the applied machine learning methods. 

2. Materials and Methods 

2.1. Area of Study and Soil Sampling 

The study area was chosen in northern Greece, near the shore of Lake Orestiada, in 

the regional unit of Kastoria (Figure 1). Its coordinates in the World Geodetic System of 

1984 (WGS84) include the area between 40°28’42.41” N and 40°32’35.61” N latitudes and 

longitudes of 21°19’4.01” E and 21°23’8.18” E longitudes. 

 

Figure 1. The study area on the shore of Lake Orestiada, in the regional unit of Kastoria, Greece. 

While the region of interest is flat, the mean altitude is around 640 m above sea level, 

ranging from 620 m near the lake to 700 m further north. The climate is temperate and 

often warm, with harsh winters that frequently keep the temperature below zero 

throughout the day. The average annual temperature is 11.5°C, with 636 mm of precipi-

tation. Summers are hot and dry, with a relative humidity of 50% to 55%. Apple trees and 

beans are the primary agricultural crops. 

During a six-year period, a total of 414 soil samples were collected in randomly 

sampled distinct places around the study area (2012 to 2019). A total of 30 cm of top soil 

was gathered during late fall season (around end of November). The sampling positions 

were determined using Global Positioning System (GPS) devices. The minimum distance 

between two sampling places varies between 60 and 480 m, with an average of 90 m. 

  

Figure 1. The study area on the shore of Lake Orestiada, in the regional unit of Kastoria, Greece.

While the region of interest is flat, the mean altitude is around 640 m above sea level,
ranging from 620 m near the lake to 700 m further north. The climate is temperate and often
warm, with harsh winters that frequently keep the temperature below zero throughout the
day. The average annual temperature is 11.5 ◦C, with 636 mm of precipitation. Summers
are hot and dry, with a relative humidity of 50% to 55%. Apple trees and beans are the
primary agricultural crops.

During a six-year period, a total of 414 soil samples were collected in randomly
sampled distinct places around the study area (2012 to 2019). A total of 30 cm of top soil
was gathered during late fall season (around end of November). The sampling positions
were determined using Global Positioning System (GPS) devices. The minimum distance
between two sampling places varies between 60 and 480 m, with an average of 90 m.

2.2. Soil, Environmental and Satellite Covariates

In this study, soil variables, environmental variables and satellite images were selected
(Table 1) as potential inputs in the models. Regarding soil covariates, the 414 soil sam-
ples that were collected from the area were analyzed for Clay (C) with soil hydrometer
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(Bouyoucos) method [15], Magnesium (Mg) with ammonium acetate method and Zinc
(Zn) with DTPA method [16]. Moreover, an organic matter (OM) analysis (wet oxidation
method) from the same locations was conducted, to calibrate the models and to assess the
prediction results. In more detail, during the soil sampling procedure, a composite soil
sample consisting of several sub-samples up to a depth of 30 cm was obtained from each
field parcel and the soil samples were dried and analyzed in the laboratory of the Soil and
Water Resources Institute in Thessaloniki, Greece.

Table 1. Variables used in the study.

Variables Category

1 Clay (C) soil
2 Organic Matter (OM) soil
3 Magnesium (Mg) soil
4 Zinc (Zn) soil
5 Elevation (altitude) environmental
6 Slope environmental
7 Aspect environmental
8 SAGA wetness index (TWI) environmental
9 Negative Topographic Openness (openn) environmental
10 Positive Topographic Openness (openp) environmental
11 Deviation from Mean Value (devmean) environmental
12 Multiresolution index of Valley Bottom Flatness (vbf) environmental
13 NDVI 2016 satellite
14 NDWI 2016 satellite
15 NDVI 2017 satellite
16 NDWI 2017 satellite
17 NDVI 2018 satellite
18 NDWI 2018 satellite
19 NDVI 2019 satellite
20 NDWI 2019 satellite

The environmental covariates were derived from the second version of the Ad-
vanced Spaceborne Thermal Emission Radiometer-Global Digital Elevation Model version
2 (ASTER GDEM2). The release of the ASTER GDEM2 has enriched the availability of
free-of-charge DEM sources, which are especially useful for developing countries, and
prompted users to assess its quality and accuracy [17]. The ASTER GDEM2 is consisted
of 1◦ × 1◦ tiles (30 m resolution) in the World Geodetic System 1984 (WGS84), that was
reprojected to Greek Geodetic Reference System 1987 (GGRS87) for this study [18].

Moreover, satellite indices were derived from Sentinel-2 imagery. More specifically
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index
(NDWI) from 2016 to 2019 were collected at approximately the same time period that
the soil data were collected (end of November). The well known and widely used NDVI
is a simple, but effective index for quantifying green vegetation. Red light is actively
absorbed by healthy plants, while near infrared is reflected. To determine the state of
a plant’s health, we must compare the values of red and infrared light absorption and
reflection [7,19]. The NDWI is a vegetation index sensitive to the water content of vegetation
and is complementary to the NDVI. High NDWI values indicate a high plant water content
and a high plant fraction coating. Low vegetation content and cover with low vegetation
correspond to low NDWI values. The NDWI rate will drop during times of water stress [20].

2.3. Data Preparation and Assessment

Initially, the topographic data and satellite indices along with the soil analysis data
were combined and spatially overlayed on the sampling locations. The overall dataset was
assessed for outliers and missing values. From the initial 414 points, 403 points remained
at the end that were used as inputs for the models in the study.
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From the full set of variables, only a subset was used in the study. The variables were
eliminated using Akaike Information Criteria (stepAIC) technique and Principal Component
Analysis (PCA) and were also assessed for multicollinearity. The remaining variables were
C, OM, ZN, MG, Vdepth, Altitude, NDVI_2016, NDVI_2017, and NDWI_2019 (Table 2).

Table 2. Descriptive statistics of the auxiliary variables from the 403 locations in study area.

C (%) OM (%) ZN (%) MG (%) Vdepth
(m)

Altitude
(m) NDVI_2016 NDVI_2017 NDWI_2019

mean 17.43 2.13 1.91 305.88 31.64 635.33 0.49 0.52 0.63
sd 7.07 0.76 1.43 148.04 7.06 7.39 0.13 0.14 0.10

median 16.00 2.00 1.51 275.00 31.46 634.00 0.50 0.55 0.66
trimmed 16.89 2.06 1.69 290.45 31.64 634.42 0.50 0.53 0.65

mad 5.93 0.68 1.01 127.50 7.14 5.93 0.11 0.13 0.07
min 2.00 0.64 0.12 44.00 4.67 624.00 0.10 0.12 0.24
max 48.00 5.24 10.75 905.00 46.58 680.00 0.75 0.90 0.79
skew 0.89 0.98 2.12 1.05 −0.17 2.49 −0.80 −0.57 −1.44

kurtosis 1.49 1.11 6.86 1.16 0.15 10.30 0.75 −0.05 1.96

The maps of the spatial distributions of the environmental covariates that were derived
from ASTER GDEM2 and were used in the study (Vdepth and Altitude), are presented
next (Figure 2).
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The maps of the satellite covariates that were used in the study (NDVI_2016, NDVI_2017,
and NDWI_2019) are the following (Figure 3).

Finally, the soil covariates (C, MG, ZN) were interpolated from the known point
locations of the full dataset with the use of OK and their spatial distribution for the overall
study area was estimated (Figure 4).
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Figure 4. Semivariograms and fitted model of soil covariates of the study area.

For all the soil parameters, the Matern semivariogram model with M. Stein’s parame-
terization (Ste) was applied as the fitted model using gstat’s default parameters. Regarding
C, its range was 660 m and exhibited a strong spatial dependence with a nugget to sill ratio
of 0.8% [21]. The Mg had a range of 1955 m with strong spatial dependence (nugget to sill
3.5%) whereas Zn had a range of 279 m with moderate spatial dependence with a nugget
to sill close to 65%.

The produced kriging maps from the soil covariates were used for the estimation of
soil OM in the area by the models of the current study (KED, RF, QRF) (Figure 5).
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Figure 5. Spatial distribution of soil covariates of the study area.

2.4. Ordinary Kriging (OK) and Kriging with External Drift (KED)

Ordinary Kriging is a type of kriging in which the values’ weights sum to one. It
is linear because its estimates are a linear combination of the available data. It is also
unbiased because it attempts to keep the mean residual to be zero and it tries to minimize
the residual variance [22]. The OK implicitly evaluates the mean in a moving neighborhood
with local second-order stationarity and its variance is equal to the sum of the simple
kriging variance (assuming a known mean) plus the variance due to uncertainty about the
true mean value [23].

Universal kriging (UK), Kriging with External Drift and Regression-Kriging (RK)
belong to the group of the so-called ‘hybrid’ [24], i.e., non-stationary geo-statistical meth-
ods [23]. In classical geostatistics, spatial prediction for non-stationary processes is ac-
complished by taking into account a spatial trend (also known as “drift”) that is either
modeled solely as a function of the coordinates (in UK) or defined “externally” through
some auxiliary variables (in KED) [25].

KED solves kriging weights by extending the covariance matrix with auxiliary vari-
ables so that the universality conditions are integrated into the kriging system; here, the
difficulty is obtaining satisfactory residual variogram in the presence of drift [26].

The implementations of both OK and KED in the current study was done with the
gstat package in R.

2.5. Random Forests (RF) and Quantile Regression Forests (QRF)

The idea of developing the RF method is based on the combination of the Bagging and
Random Subspace Method, utilizing their advantages and compensating their disadvan-
tages, with impressive results [3,27].

According to Breiman (2001) [3], in the case of classification, “A random forest is a
classifier consisting of a collection of tree-structured classifiers {h(x, Θk), k = 1, . . . } where
the {Θk} are independent identically distributed random vectors and each tree casts a
unit vote for the most popular class at input x”. In case of regression Breiman states that
“...random forests for regression are formed by growing trees depending on a random vector
Θ such that the tree predictor h(x, Θ) takes on numerical values as opposed to class labels.
The output values are numerical, and we assume that the training set is independently
drawn from the distribution of the random vector Y, X”.
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The RF for regression is extensively used in DSM (e.g., [28–33]) with very positive
results in the prediction of different soil parameters. More importantly though, it works
equally well with skewed and normally distributed variables, without the need of statistical
assumptions or restrictions that other methods demand. Therefore, it is easier and more
straightforward to use. It just requires special attention in optimizing the hyperparameters
to get the best results. One major drawback of some of the well-known ML methods
(RF, ANN etc.) is their lack of intrinsic uncertainty estimation capabilities. So, apart
from prediction maps, no prediction error variance can be estimated, contrary to classical
geostatistics methods. The main reason for this is that most ML methods, RF included,
provide only mean value predictions.

A possible solution to this deficiency came from Nicolai Meinshausen [9], who gen-
eralized the standard RF to provide information for the full conditional distribution of
the response variable, and not only about the conditional mean. This ML algorithm is
called Quantile Regression Forests (QRF) and gives a non-parametric and accurate way
of estimating conditional quantiles for high-dimensional predictor variables. The key
difference between QRF and RF is as follows: for each node in each tree, RF keeps only
the mean of the observations that fall into this node and neglect all other information. In
contrast, QRF keeps the values of all observations in this node, not just their mean, and
assesses the conditional distribution based on this information.

In the current study, the ranger package in R language was used to implement the ML
models. Ranger is a rapid implementation of RF or recursive partitioning that is especially
well suited for high-dimensional data.

The assessment of the optimal hyperparameters of a ML model is a crucial step for
the estimation of the best ML models for each specific use case. The ideal hyperparameter
settings have a direct impact on the model’s performance. Although there are various
automatic optimization methods, their strengths and drawbacks change when applied
to different types of situations [34]. In the current study, the random search method was
performed (a 10 k-fold with 3 repeats), in which random combinations of parameters were
employed from a range of values and used as hyperparameters. The ML model with the
set of parameters that gave the highest accuracy was considered to be the best and used for
prediction. The overall dataset (403 samples) was split in two distinct datasets: the training
dataset (70% of the data) that was used for estimating the models hyperparameters and
the testing dataset (30% of the data) that was used for assessing the different models. The
specific hyperparameters for RF that were optimized are presented in Table 3.

Table 3. RF and QRF hyperparameters.

Hyperparameters Packages Description

mtry ranger The number of random features used in each tree.
num.trees ranger The number of grown trees.

min.node.size ranger Minimal node size.
splitrule ranger A switch for linear output units.

2.6. Uncertainty

The DSM products represent estimates of spatially distributed soil properties. These
estimations comprise an element of uncertainty that is not evenly distributed over the area
covered by DSM [8]. These flaws are being addressed by combining soil data at sites with
spatially exhaustive environmental factors using quantitative models (e.g., [35–37]) DSM
products are repeatable and enable continuous data display due to their quantitative nature.
Models can also be updated for multiple reasons, and uncertainty can be measured [38,39].

Measurements, digitisation, data input, interpretation, categorization, generalisation,
and interpolation are all common sources of mistake [40]. Modeling bias, parameterization,
or even measurement mistakes connected with the input data can all cause uncertainty
in digital soil maps [41]. Nelson et al. [42] recommends doing an error budget to assess
the contribution of each error using a combination of geostatistical and Monte-Carlo
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simulations to gain a better understanding of uncertainty. The distinction between model
error and spatially explicit uncertainty must also be considered [43]. The average squared
difference between the estimated value and the actual value is known as model error, which
is frequently assessed as the mean square error (MSE) [44,45]. However, spatially explicit
uncertainty, often known as “local error”, refers to the quantification of model output
prediction intervals (e.g., [11,44,46]).

The prediction is linked to an explicit measure of the uncertainty. In many circum-
stances, such as in a decision-making process, it is just as important to quantify prediction
uncertainty as it is to make the prediction itself, thus uncertainty maps are necessary
(e.g., [47,48]). In DSM, uncertainty analysis is crucial in deciding whether the predicted soil
map is dependable enough to be applied in agricultural production systems or decision-
making. Uncertainty analysis also involves acknowledging the model’s limitations, which
is a step toward model interpretability [1]. As Heuvelink [49] states, we are very interested
in prediction intervals in soil mapping, i.e., the range that is likely to contain the value yet
to be measured. However, a very small amount of DSM studies estimate uncertainty. Ac-
cording to Wadoux [1], only around 30% of the studies presented in their paper quantified
the prediction’s uncertainty.

In the current study the uncertainty was estimated for only three out of four methods:
OK, KED, QRF. The RF does not provide uncertainty estimation capabilities per se. The
geostatistical methods of OK and KED provide by default the variance that it was used for
the uncertainty assessment. Mainly, the standard deviation was calculated and its range
was depicted in the maps. For the QRF the range was defined as one standard deviation
above and below the median value. This range was used to create the uncertainty map of
the study area

2.7. Error Assessment

Different metrics (Table 4) were employed to estimate model performance based on
the difference between the observations and the predictions at the testing data set.

Table 4. Measurements to assess model performance.

Metrics Equation

Mean absolute error (MAE) MAE =
∑n

i=1|yi − xi|
n

(1)

Root mean square error (RMSE) RMSE =

√
∑n

i=1[yi − xi]
2

n
(2)

Coefficient of determination (R2) R2 = 1− SSE
SSTO

(3)

Mean bias error (MBE) MBE =
∑n

i=1(yi − xi)

n
(4)

The root mean square error (RMSE) and the mean absolute error (MAE) were esti-
mated, based on the measured value yi and its prediction xi in yi locations of the samples
(Equations (1) and (2)). The MAE is the average of the absolute values of the differences
between the forecast and the corresponding observation over the verification sample. Since
the MAE is a linear score, all individual differences are weighted equally in the average. The
RMSE is a quadratic scoring rule that calculates the average magnitude of the error. Because
errors are squared before being averaged, the RMSE gives large errors a relatively high
weight. As a result, the RMSE is most useful when large errors are especially undesirable.
The MAE and RMSE both have a range of 0 to ∞. They’re negative scores, thus the lower the
number, the better. The coefficient of determination (R2) (Equation (3)) represents a model’s
ability to predict or explain an outcome. The R2 indicates the percentage of variance in the
predicted variable and the measured variable where SSE is the sum of squares of errors and
SSTO the total sum of squares. The coefficient of determination ranges from 0 to 1, where
in 0 (zero) no variation is explained by the model and in 1 (one) all variation is explained
by the model. A high R2 value, in general, implies that the model is a good fit for the data,
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though fit interpretations vary depending on the context of analysis. Finally, the mean bias
error (MBE) was used as a measurement of the bias estimation of the models (Equation (4)).

2.8. Software

For the statistical analysis of the current study, the R (version 4.0.3) statistical software
and the caret package were used [50]. Also, the ranger package [51] was utilized for RF and
QRF. The geostatistics were implemented with the gstat package [52]. Finally, the Saga-GIS
software (https://saga-gis.sourceforge.io/en/index.html (accessed on 18 November 2021))
was used for the environmental indices.

3. Results
3.1. Semivariograms and Fitting Parameters of OK and KED

Initially, OK and KED were implemented using the training dataset for the prediction
of the soil OM in the study area. In the case of OK, based on the empirical semivariogram,
the Matern semivariogram model with M. Stein’s parameterization (Ste) was fitted (Figure 6)
using the weighted least square fit of gstat package. The range was 207 m with a nugget at
0.35 and sill at 0.49. There was a moderate spatial dependence based on the nugget to sill
ratio (71%).
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Regarding KED, the spherical model was used for fitting with the default method of
gstat based on weighted least squares fit. The range was at 414 m, double than the OK range.
In this case there was a weak spatial dependence with a nugget to total sill ratio of 83%.

3.2. RF and QRF Hyperparameters’ Optimization Results

As it is already stated (Section 2.5), ML models need the assessment of their optimal
hyperparameters in order to provide the best prediction results. In the case of RF and QRF
as defined by the ranger library, four hyperparameters need to be estimated (Table 3). An
iterative process (trial and error) was used with the random search optimization method,
where different random values of these parameters were introduced from a range of values.
The R2 of the ML models was assessed using a 10-fold cross-validation method that was
repeated 3 times in the training data set (Figure 7). The hyperparameters that returned the
highest R2 were finally chosen (Table 5).

https://saga-gis.sourceforge.io/en/index.html
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Figure 7. Hyperparameters assessment results based on R2 in the training dataset.

For the splitrule hyperparameter, only “variance”and “extratrees” methods were used
due to unrecoverable errors from “maxstat” and “beta” values.

Table 5. Hyperparameters’ range and values used in the current study for RF and QRF.

Parameter Range Value Used

mtry 3–5 3
num.trees 500, 1000 500

min.node.size 3–5 5

splitrule “variance”, “extratrees”,
“maxstat” *, “beta” * extratrees

* “Maxstat” and “beta” resulted unrecoverable errors and they were not used.

The specific optimal hyperparameters were introduced in the RF and QRF models and
used to estimate their prediction capabilities on the testing dataset.

3.3. Feature Importance of the ML Models

The feature importance of the RF and QRF was estimated (Figure 8) with the per-
mutation technique [3], that is defined as the decrease in the model score when a single
feature value is randomly shuffled. A feature is “important” if shuffling its values increases
the model error (strong effect on the prediction) and “unimportant” if shuffling its values
leaves the model error unchanged (low or no effect on the prediction).

Regarding the importance scores, both RF and QRF concede that the soil covariates
exhibited the highest importance, something that was expected due to comparable findings
of a previous study [28] in a nearby area. In the current study specifically, Zn had the
highest score with C second and Mg third. The Altitude from the topographic indices was
next, along with the NDVI of 2016 and Vdepth. The last positions were occupied by NDVI
of 2017 and NDWI of 2019.



ISPRS Int. J. Geo-Inf. 2022, 11, 130 12 of 17

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 13 of 19 
 

 

3.3. Feature Importance of the ML Models 

The feature importance of the RF and QRF was estimated (Figure 8) with the per-

mutation technique [3], that is defined as the decrease in the model score when a single 

feature value is randomly shuffled. A feature is “important” if shuffling its values in-

creases the model error (strong effect on the prediction) and “unimportant” if shuffling 

its values leaves the model error unchanged (low or no effect on the prediction). 

 

Figure 8. Hyperparameters assessment results based on R2 in the training dataset. 

Regarding the importance scores, both RF and QRF concede that the soil covariates 

exhibited the highest importance, something that was expected due to comparable find-

ings of a previous study [28] in a nearby area. In the current study specifically, Zn had the 

highest score with C second and Mg third. The Altitude from the topographic indices 

was next, along with the NDVI of 2016 and Vdepth. The last positions were occupied by 

NDVI of 2017 and NDWI of 2019. 

3.4. Prediction Results 

The dataset was partitioned into two random but spatially balanced sets of 70% for 

training the models and 30% for testing. The difference between the observations of the 

soil OM and their predictions in the testing data set was used to assess the prediction 

accuracy of the different models and they are presented in Table 6 and Figure 9. 

Table 6. Prediction results for soil OM. 

Model RMSE R2 MAE MBE 

Ordinary Kriging (OK) 0.783 0.127 0.586 −0.002 

Kriging with external drift (KED) 0.618 0.452 0.455 −0.022 

Random Forests (RF) 0.615 0.538 0.453 −0.020 

Quantile Regression Forests (QRF) 0.635 0.532 0.459 −0.046 

As it is presented in the results (Table 6), OK was the least accurate model with very 

low R2 (0.127) and high RMSE and MAE, something that was expected due to its lack of 

capacity to incorporate auxiliary information. The OK prediction capability is based only 

Figure 8. Hyperparameters assessment results based on R2 in the training dataset.

3.4. Prediction Results

The dataset was partitioned into two random but spatially balanced sets of 70% for
training the models and 30% for testing. The difference between the observations of the soil
OM and their predictions in the testing data set was used to assess the prediction accuracy
of the different models and they are presented in Table 6 and Figure 9.

Table 6. Prediction results for soil OM.

Model RMSE R2 MAE MBE

Ordinary Kriging (OK) 0.783 0.127 0.586 −0.002
Kriging with external drift (KED) 0.618 0.452 0.455 −0.022

Random Forests (RF) 0.615 0.538 0.453 −0.020
Quantile Regression Forests (QRF) 0.635 0.532 0.459 −0.046

As it is presented in the results (Table 6), OK was the least accurate model with very
low R2 (0.127) and high RMSE and MAE, something that was expected due to its lack of
capacity to incorporate auxiliary information. The OK prediction capability is based only
on the variable’s (OM) spatial autocorrelation, hence the poor current results. It presented
the smaller bias though based on the MBE (−0.002).

The KED combines the predictive capabilities of the trend that is based on the auxiliary
variables, along with the kriging interpolation. Therefore, the results are decent, with low
RMSE (0.618) and MAE (0.455) that are very close to RF and even slightly better than QRF.
However, the coefficient of determination (0.452) is much worse than the ML methods. The
bias was also small close to zero (−0.022), however higher than the OK.

The ML models exhibited higher prediction capabilities than geostatistical models.
More specifically, the best results were achieved by the RF. Especially its R2 was the highest
(0.538) among the models with an improvement of around 20% from KED. Regarding
RMSE and MAE, RF’s results were best with the lowest values overall. The model bias was
low (−0.020) close to KED’s value.
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The QRF model also exhibited very good prediction capabilities with high R2 (0.532)
very close to RF and quite low RMSE and MAE, close to RF and KED. The MBE was
higher than the other models (−0.046), however still low and close to zero. Thus, RF
and QRF can both be used interchangeably for predicting soil OM with similar results in
the current study.

3.5. Maps of Prediction and Uncertainty

Next, two sets of maps were produced from the different models of the current study.
The first set consists of four prediction maps that present the spatial distribution of soil
OM in the area, one for each method: OK, KED, RF and QRF (Figure 10). The second set
of maps consist of three maps with OK, KED and QRF methods that depict the spatial
distribution of prediction’s uncertainty in the area (Figure 11). In this case the RF was not
used due to its lack of uncertainty capabilities.

The prediction map of OK exhibited interpolation results with prediction patterns that
are relatively uniform all over the study area. The main reason for this is that OK is based
solely on the spatial autocorrelation of OM using global model parameters that smooths the
results. The KED model produces a map that changes more abruptly due to its covariates’
effect, leading to multiple areas with higher and lower local values than the OK. Regarding
ML methods (RF, QRF) their maps had even more contrast than the OK and KED, due to
their capability of producing patterns that match data as much as possible by better fitting
to the dataset. Among them, the QRF seem to present slightly more abrupt patterns than
RF with areas with slightly lower and higher values.
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As it was already mentioned, apart from the prediction results, prediction’s uncertainty
is a crucial parameter that needs to be estimated in the different locations of the study area.
In the current study the uncertainty maps were calculated for only the 3 out of 4 methods.
The RF does not support uncertainty estimation. The OK and KED intrinsically provide the
error variance by which the standard deviation was calculated and its range was presented
in the maps. For QRF the range was defined as one standard deviation above and below
the median and it was used to create the uncertainty map of the study area (Figure 11).

Based on the uncertainty maps, it is obvious that OK has a smooth and equally dis-
tributed uncertainty range in the area with a mean value approximately at 0.8%. So, in each
location the real OM value is approximately ±0.4% above or below the predicted value.

The KED uncertainty map has an overall lower uncertainty range than the OK (around
0.6%), that is almost equally distributed in the overall study area, similarly to OK. There
are some slightly increased range values in the northern-west area along with some
small patches in between (lighter blue areas) due to the covariates minor effect on the
uncertainty results.
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In the case of QRF, the uncertainty map is more diversified than the previous ones.
There are distinct regions of very low uncertainty like the one in the north or in the center
of the area (with dark blue color) and regions of higher uncertainty like the ones in the
south or close to the lake (with yellow color). This clear depiction of the uncertainty in
a local scale and the straightforward definition of possible uncertainty zones, is a major
advantage over the geostatistical methods especially for decision support purposes.

4. Discussion

One of the core tasks in the DSM studies is the estimation and presentation of the
spatial distribution of different soil variables in the study area using different interpolation
methods. Apart from that though, estimating and presenting the uncertainty of these
interpolation methods are equally important in order to assess the overall work, something
that is lacking in some of the recent DSM studies, especially the ones that are based on ML.

The ML methods are increasingly used in DSM, based on their outstanding prediction
capabilities that outperforms the classic geostatistical methods, without the drawbacks
of statistical assumptions and the restrictions of other methods. However, most of them
do not have intrinsic uncertainty estimation capabilities. The RF is a very promising
ML method used in multiple DSM studies that nevertheless lacks built-in uncertainty
estimation capacity. An interesting alternative is QRF that seems to provide advanced
prediction capabilities similar to RF along with innate uncertainty estimation metrics.

In the current paper, it was confirmed that QRF exhibited outstanding results at pre-
dicting soil OM in the study area, very close to RF method. Especially R2 was much higher
than the geostatistical methods, something that signifies that more variation is explained
by the specific model. Moreover, its uncertainty capabilities as presented in the uncertainty
maps, shows that it can also provide a very efficient estimation of the uncertainty in the
study area. Uncertainty map with QRF exhibit stronger contrast compared to uncertainty
maps of OK, and KED, with distinct representation of the local variation of the uncertainty
such as small regions with higher or lower uncertainty. Based on this map it is very easy
for a user to define clusters of uncertainty zones and categorize its effect locally. This is
a real significant advantage, especially for decision support purposes in which users are
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interested not only in the prediction accuracy but also in the variation of the error range in
different parts of the area.
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