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Abstract: Archaeological site text is the main carrier of archaeological data at present, which contains
rich information. How to efficiently extract useful knowledge from the massive unstructured ar-
chaeological site texts is of great significance for the mining and reuse of archaeological information.
According to the site information (such as name, location, cultural type, dynasty, etc.) recorded
in the Chinese archaeological site text, this paper combines deep learning and natural language
processing techniques to study the information extraction method for automatically obtaining the
spatio-temporal information of sites. The initial construction of the corpus of Chinese archaeological
site text is completed for the first time, and the corpus is input into the Bidirectional Long Short-Term
Memory with Conditional Random Fields (BiLSTM-CRF) entity recognition model and Bidirectional
Gated Recurrent Units with Dual Attention (BiGRU-Dual Attention) relationship extraction model
for training. The F1 values of BiLSTM-CRF model and BiGRU-Dual Attention model on the test
set reach 87.87% and 88.05%, respectively. The study demonstrates that the information extraction
method proposed in this paper is feasible for the Chinese archaeological site texts, which promotes
the establishment of knowledge graphs in archaeology and provides new methods and ideas for the
development of information mining technology in archaeology.

Keywords: archaeological site; Chinese archaeological text; information extraction; deep learning

1. Introduction

Archaeological sites are the remains of ancient human activities, which contain rich
humanistic and social information and the law of civilization advancement. Archaeological
site texts refer to the texts describing the information of archaeological sites, which is a
significant carrier of site attribute information. Formally, it is often recorded discretely in
various formats, for example, archaeological excavation reports, archaeological excavation
briefings and archaeological dictionaries and encyclopedia entries in an unstructured man-
ner. As far as quantity, with the consistent advancement in archaeological work, the textual
data in archaeology are increasing, and more and more information on archaeological sites
is being accumulated. In terms of content, the degree of detail varies in different types of
archaeological site texts, but they all describe the basic information on the site (including
name, location, dynasty, cultural type and other key elements), which is an important data
hotspot for archaeological research and analysis. As a rule, the content of archaeological site
texts primarily incorporates two perspectives: time and space. As the archaeologist Sqauld-
ing said in his published book in 1960, “In short, archaeology is a science that concentrates
on the form, time and spatial distribution of ancient remains” [1]. For archaeology, time and
space are essential characteristics of coexisting with the form of remains [2]. The mutual
contents contained in various archaeological site texts mentioned above are the descriptions
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of essential spatio-temporal information about the site. In archaeological texts, time infor-
mation is a depiction of the site’s historical period, which may be described as one or more
dynasties or some cultural types to which the site belongs. Such descriptions of time are
not uniform and might be precise or vague, so determining the period of the remains from
the archaeological site text is a vital and fundamental assignment. Spatial information of
the site’s geographical location may be unequivocally described as an identified coordinate,
an administrative region name or even a vague relative location. Therefore, it also expected
to be recognized, interpreted and expressed uniformly in the information extraction. This
paper concentrates on the extraction method of the sites’ spatio-temporal information.

Archaeological site texts are the basis for archaeological site research, which contains
rich information and research value. Therefore, in order to realize the effective utilization
of archaeological site texts, it is especially critical to integrate and use the information
on archaeological sites and mine the key and valuable knowledge of archaeology. The
traditional method of manual identification to obtain site information from voluminous
documents is time-consuming and inefficient, and the results of data structuralization may
differ due to the inconsistent levels of various staff, which is inapplicable for information
extraction from massive site texts. To date, the problem has received scant attention
in the research literature, so there are few studies that have researched archaeological
site texts. Therefore, how to extract unified site information from a large number of
scattered, detailed or brief unstructured archaeological site texts is the crux of realizing
the digitization and comprehensive utilization of archaeological site texts. In recent years,
with the increasing development of artificial intelligence technology, information extraction
methods and applications for natural language have made great progress. According to
Cowie, Information Extraction can be defined as follows: ‘Information Extraction (IE) is
the name given to any process which selectively structures and combines data which is
found, explicitly stated or implied, in one or more texts’ [3]. The existing body of research
on information extraction suggests that this technology is meaningful and promising. By
analyzing the existing research on archaeological text information extraction, it is observed
that these studies are basically oriented to English corpus, while Chinese studies are
generally based on rules, which has poor portability and high implementation cost. The
research on Chinese information extraction in archaeological site texts, which is limited by
problems such as corpus annotation and Chinese word segmentation. At the same time,
there are some deficiencies in these studies, such as singular data sources, fragmented
construction processes and so on.

Under this foundation, this paper focuses on the extraction of spatio-temporal infor-
mation from archaeological site texts. The information extraction experiment is mainly
divided into two parts: entity recognition and relationship extraction. Their main goal is
to recognize entities from texts and extract semantic relationships between entities. For a
given input sentence, entity recognition involves both entity segmentation and the entity
type. Relationship extraction aims to identify the semantic relations between symmetric
entity pairs from unstructured archaeological site texts and to express them according to
the structured form of a triplet (e1, r, e2), where e1 and e2 represent the first entity and the
second entity, respectively, and r represents the relationship type between them. Finally,
the temporal and spatial information of the site will also be presented in this form. In
traditional natural language processing, entity recognition and relationship extraction are
two independent tasks. The entity recognition model in this paper, named the Bidirectional
Long Short-Term Memory with Conditional Random Fields (BiLSTM-CRF), combines the
content of the application in natural language processing [4] and performs some research
on data preprocessing and data analysis. Through the application of the BiLSTM-CRF
model, it is able to effectively remember the context information and obtain the depen-
dency relationship between adjacent tags, so as to obtain the optimal labeling results of
an archaeological entity. In the relationship extraction task, the Bidirectional Gated Re-
current Units with Dual Attention (BiGRU-Dual Attention) model taken in this study is a
mixed methodology based on previous studies [5,6]. For the task of Chinese relationship



ISPRS Int. J. Geo-Inf. 2022, 11, 175 3 of 18

extraction, Chinese words, as the most basic unit in Chinese, contain a large amount of
important semantic information. Therefore, the word-level information in Chinese training
examples is very important for Chinese relationship extraction. With good optimization
effect, the introduction of an attention mechanism can fully extract the context information
of archaeological texts, so as to strengthen the extraction effect. The word-level attention
mechanism and sentence-level attention mechanism in the model can better allocate weight,
eliminate noise and improve the recognition accuracy of entity relationship extraction. By
taking advantage of a neural network, the BiGRU-Dual Attention model can solve the
problems of low accuracy and poor stability of traditional relationship extraction models.
The main purpose is to reduce the work of manual processing and open up new directions
and ideas of archaeological analysis.

In summary, the specific objective of this study was to rapidly and automatically
identify and obtain the target information from a large amount of unstructured archaeo-
logical site texts by using new technology, thus greatly reducing the preprocessing time
of archaeological information extraction. In addition, data for this study were collected
from multiple carriers as comprehensively as possible, which provides new ideas and
methods for the spatio-temporal information study of archaeological sites. The information
extraction of archaeological site text makes an important contribution to the storage, man-
agement, utilization and sharing of archaeological knowledge and maximizes the value of
archaeological site text.

2. Related Work

As referenced above, information extraction is the key technology of automatically
extracting information from archaeological site texts. Around the early 1960s, the research
of information extraction technology arose, and this technique empowers rapidly procuring
target information from plentiful unstructured texts, bringing about a higher utilization of
information. Information extraction methods generally include rule-based, statistics-based
and deep-learning-based methods [7]. The exemplary LaSIE-II (Large Scale Information
Extraction) system depends on semantic rules to realize information extraction [8]. How-
ever, this rule-based method has its own restrictions, such as the process of making rules
manually being complex and the universality being poor. Consequently, the later research
gradually turned to a statistics-based method. In a study conducted by Chambers, it was
shown that the statistical learning algorithm can learn the rules from plain texts and per-
form the information extraction task without knowing the template structure in advance [9].
In the subsequent studies, researchers found that a method based on statistics is more viable
than the previous method, but the cost of labor and time is extremely high since it addition-
ally requires manual annotation with professional knowledge. Lately, the neural network
models based on deep learning can automatically obtain feature information from a large
number of texts, which provides direct support for the information extraction techniques.
The model based on deep learning enormously outperforms the conventional methods in
efficiency and accuracy and subsequently became applied broadly and gradually occupied
the mainstream in information extraction tasks. Several studies of deep-learning-based
information extraction have yielded fruitful outcomes. Qiu et al. proposed an Att-BiLSTM-
CRF model based on an attention mechanism to effectively extract information entities
in geoscience reports [10]. Zhang et al. implemented the structured course of geological
entity information by utilizing a deep neural network [11]. Zhao combined the attention
mechanism with the labeling and filtering layer in the Bidirectional Gated Recurrent Units
(Bi-GRU) model, which significantly affects the relationship extraction of requirement text
in the software industry [12]. From the current state of research, neural networks and
CRF methods have become the de facto standard representing some of the best options for
information extraction methods.

The application area of information extraction has gradually expanded with the de-
velopment of its technology. The early research mainly focused on the study of textual
information extraction tasks in general-purpose domains, such as the recognition of peo-
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ple’s names and organizations’ names [13,14]. On the basis of constant optimization in
the general domain over the years, it has promoted the development of information ex-
traction from texts towards more fields, which includes medicine, the military, agriculture
and so on [15–17]. Simultaneously, information extraction has also developed towards a
higher stage, such as relationship extraction, event extraction and other more complicated
tasks [18,19]. Nowadays, it is observed that information extraction technology has also
been explored and applied in history and humanities. For example, Sprugnoli proposed a
neural method with manual annotation, which was applied in the place name recognition
of English historical tourism texts [20]. What is more, Pettersson et al. put forward an online
tool named HistSearch, which could effectively extract useful information from historical
texts in a short time [21]. On the basis of the study on English archaeological reports at
the previous stage, Vlachidis et al. developed the named entity recognition system of
Dutch archaeological gray documents, which was able to achieve the semantic annotation
of archaeological reports and automatically generate metadata [22]. With reference to the
existing literature and codes, they are mostly for the English corpus and usually use word
vectors for training.

The study of Chinese text information extraction mainly paid attention to named
entity recognition at the initial stage. After that, it was gradually expanded to the tasks on
the relationship and event extraction. In the interim, the field of information extraction was
gradually expanded to a larger scope. In terms of the data mining of Chinese archaeological
texts, it started relatively late, while it has also obtained some research results. For example,
Zhang took advantage of the domain knowledge to carry out the extraction of data from
archaeological texts [23]. However, it is difficult for this pattern-based method to learn
enough text patterns, and would be mixed with a large number of meaningless word se-
quences. For the work adopting this method, it usually needs to be combined with complex
verification and filtering. Lu made the proposal of a creative design platform for Changsha
kiln cultural relics and extracted the text features of Changsha kiln cultural relic elements
by using the BiLSTM-CRF model [24]. As a result, it achieved the construction of Changsha
kiln cultural knowledge base. Based on deep learning technology, the platform realized the
redesign of cultural relics elements, which promoted the integrated development of culture
and technology. By combining Chinese word segmentation with entity recognition, Zhang
effectively realized information extraction from archaeological text data [25]. However, he
only carried out experiments on the data of Liangzhu site, which was lacking populariza-
tion and universality. Through the use of information extraction technology, Liu adopted
the BiLSTM-CRF model to identify the entities such as person name, location name and
time in the Twenty-Four Histories [26]. After that, he constructed the knowledge graph
and stored the extracted knowledge through the neo4j graph database, which realized the
semantic retrieval function. However, it still requires a lot of manual work involved in the
classification of single and complex sentences when training dependent syntactic analysis
models, which makes the model construction lack sufficient automation. Collectively, these
studies indicate that information extraction technology based on deep learning has been
studied in the field of Chinese archaeological site texts, but few studies have been able to
draw on systematic research in the whole process. Meanwhile, such studies remain narrow
in focus, dealing only with a specific object without generality. In addition, deep learning
is the mainstream method at present, and its achievements have been remarkable.

To summarize, the study of information extraction has gone through decades from
pattern recognition to machine learning to deep learning, from general field to professional
domain, from regular standard text to ordinary text, and its achievements are remark-
able. Based on the above analysis, the research on information extraction in Chinese
Archaeology represented by named entity recognition and relationship extraction has made
great progress, but it still has broad room for improvement in technology and methods.
Firstly, compared with the general field, archaeological texts are rich in resources, but the
information contained is complex. There are a large number of proprietary entities in
the archaeological field, and it is difficult to identify them, so the research of information
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extraction focuses on its effectiveness and automation. In addition, archaeological texts
put forward higher requirements for the accuracy of relationship extraction because of
their complex syntax and the dense distribution of entity pairs with abundant overlapping
relationships. Therefore, in view of the high complexity and domain specificity of Chinese
archaeological texts, this paper uses natural language processing and deep learning meth-
ods to study entity recognition and relationship extraction in Chinese archaeological site
texts. Moreover, it is hoped that this method can realize the processing of multi-source
text data, complete the establishment from corpus to knowledge graph and truly complete
the transformation from unstructured to structured data. According to the practical needs
of archaeology, the named entity recognition is accomplished by the BiLSTM-CRF model,
and the entity relationship extraction is completed by the BiGRU-Dual Attention model.
Finally, the methods and techniques applicable to the archaeological site texts were ex-
perimentally tested, and the information extraction model for archaeological site text was
constructed. The above study provides a new method for information acquisition in ar-
chaeology, which has important research value and application significance for promoting
archaeological informatization.

3. Materials and Methods
3.1. Data

Chinese archaeology has an unrivaled assortment of valuable materials. Archae-
ological site texts are the primary vehicle for the presentation of results and academic
exchange in archaeology, and its quantity has grown rapidly with the development of
Chinese archaeological career. However, there is no publicly available corpus in the field
of Chinese archaeology. Subsequently, taking the Chinese archaeological site texts as re-
search data source, this paper gathers and organizes 625 Baidu Baike entries of sites [27],
300 archaeological excavation reports from CNKI [28], and 2325 entries from the Dictionary
of Chinese Archaeology as the original data [29]. In the wake of arranging and summing
up these data, we constructed a text corpus of Chinese archaeological sites. During the
time spent researching, we observed that the text data in archaeology have their own
characteristics compared with the text data in other fields. In terms of textual form, firstly,
there will be some proper names that show up less often in other Chinese texts, such as
‘
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’ (a pitcher with three legs), ‘盉’ (round vessel with a closed spout), ‘甗’ (earthenware
vessel) etc. Secondly, due to the various excavation methods of regional archaeological
institutions, the workload and working conditions are different. Simultaneously, different
archaeological recorders have different recording styles. According to these characteristics,
we need to concentrate on appropriate information extraction methods to process them.
From the textual content, although the content of the site texts varies among various data
sources, they all contain fundamental information such as the name of the site, its location,
dynasty and cultural type, which is the data basis for archaeological information extraction
in this paper.

The temporal and spatial information is of great value for archaeological research. As
far as temporal characteristics are concerned, each archaeological site has its own period,
but the sites themselves (especially prehistoric sites) often lack clear time identification,
so the year of most sites cannot be accurately determined. In the current archaeological
chronology framework, the expressions of archaeological chronology generally include
absolute age and relative age. According to the analysis on time in the text of Chinese
archaeological sites, it tends to be observed that the chronological information is preferred
to record in the way of relative age (such as Paleolithic age, Neolithic age and Western Zhou
Dynasty, etc.). In addition, the site text likewise utilizes the archaeological culture (such as
Yangshao culture, Hongshan culture, etc.) as the time stamp to record the age of the site.
Archaeological culture refers to cultural sites belonging to the same era, distributed in the
same area, and with a gathering of characteristic cultural relics and remains. In light of
this, it has developed the basic space-time frame and a method for constructing historical
narratives from archaeology. Consequently, this study extracts the cultural type in texts
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as the chronological information of sites. In terms of spatial feature, it is the identification
of geographical location in site texts. From the depiction of spatial information, it can be
divided into two categories of precise description and fuzzy description. In the precise
description, the geographic coordinates of the site are recorded in the text, which can be
directly extracted as the spatial information of the site. In the fuzzy description, it uses
the natural language to describe the spatial location, predominantly including the names
of administrative regions. This kind of spatial information has an obvious administrative
hierarchy and subordinate relationship and is usually accurate to the village. Considering
the above analysis of the Chinese archaeological texts, this study determines the temporal
information of the site by integrating the relative age and cultural type in texts. Meanwhile,
the administrative place name is extracted as the spatial information of the archeological
site. The specific method is as follows.

3.2. Methodology

Methodologically, the information extraction technology is adopted to extract specific
information from massive archaeological text data. The unstructured texts are processed
and transformed into structured information. With respect to the information extraction
model for archaeological site text in this study, it chiefly covers the BiLSTM-CRF, named
the entity recognition model, and the BiGRU-Dual Attention relationship extraction model.
The training of the named entity recognition model requires a large amount of annotation
data. Since the experimental data cannot use the public annotation database on the Internet,
the annotation of archeological site text is completed with YEDDA [30]. After data cleaning
assignments such as removing exceptional symbols and futile URLs and retaining important
punctuation marks, the text data are annotated manually. According to the above analysis
of the archaeological texts, we first defined the archaeological entity. We pick the words
or phrases with descriptive significance about the site, such as site name, cultural type,
geographical location and historical dynasty, in the text as the archaeological entity, since
they are all contents with specific meaning in the archaeological field. The BIO strategy is
used to annotate the data. In the labeling process, character is the minimum labeling unit.
BIO represents the category and position of archaeological entity, B addresses the head of the
entity, I represents the middle position of the entity except the head, O addresses that this
character does not belong to any entity category and X refers to the entity category. According
to this strategy, each character can be marked as “B-X”, “I-X” or “O”. The relevant tags of the
four categories of entities in the archaeological site text are shown in Table 1.

Table 1. Archaeological entity tag set.

Entity Category Head Tag Middle Tag

Site name B-Site name I-Site name
Cultural type B-Cultural type I-Cultural type

Geographical location B-Geographical location I-Geographical location
Historical dynasty B-Historical dynasty I-Historical dynasty

As per the relationship between the above four archaeological entities, we have defined
four archaeological relationships, namely: Culture of the site, Location of the site, Dynasty
of the site and None. In the process of carrying out information extraction experiments,
it is primarily divided into two parts. Initially, the archaeological text is input into the
named entity recognition model sentence by sentence. The trained model can identify
archaeological entities of preset categories and output sentences containing entities. Then,
the above outcome is input into the relationship extraction model, which finally obtains the
entity relationship triplet (e1, r, e2), also known as “SPO triplet (subject, predicate, object)”.
For instance, the demonstration of information extraction on archaeological site text is
shown in Figure 1.
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Figure 1. Demonstration of information extraction on archaeological site text.

Named entity recognition is an essential assignment of extracting information. It refers
to recognizing target entities in the text and classifying them as indicated by pre-defined
criteria. In the experiment, the BiLSTM-CRF model is used for named entity recognition
in Chinese archaeological site texts, which provides a novel thought and method for
entity recognition in the field of Chinese archaeology. Entity relationship extraction means
that after recognizing the vital entities in a sentence, the semantic relationships that exist
between the entities are determined. Consequently, in light of entity recognition, this
paper constructs a BiGRU-Dual Attention model for archaeological site texts. This model
uses BiGRU to learn the contextual information of words to obtain finer-grained features.
Through the word-level attention mechanism can increase the weight of words that are
conclusive for relation classification. Simultaneously, using the sentence-level attention
mechanism, we can learn more features of sentences and diminish the weight of noisy
sentences, thereby effectively solving the problem of mislabeling and improving the effect
of the classifier. The overall method process of this paper is shown in Figure 2.

3.2.1. BiLSTM-CRF Named Entity Recognition Model

LSTM is a kind of Recurrent Neural Network (RNN) for modeling text time series
data. BiLSTM is a bidirectional LSTM, composed of a forward LSTM and a backward
LSTM. However, BiLSTM can only predict the relationship between the text sequence
and the tag and cannot predict the relationship between tags, so it requires the transition
matrix in the CRF. In opposition to LSTM, the CRF can model hidden states and learn the
characteristics of state sequences, but it needs to manually extract sequence features. Thusly,
the BiLSTM-CRF model is constructed to obtain the upsides of both referenced previously.

The BiLSTM-CRF model constructed for recognizing archaeological named entities
include four layers: input layer, embedding layer, BiLSTM layer and CRF layer. The specific
structure of the entity recognition model is shown in Figure 3.

The first layer is the input layer, which takes the Chinese archaeological site text in words
as the initial input, and a sentence containing n words is noted as W = (w1, w2, w3, . . . , wn),
comprising a dictionary, where wi is the id of the i-th word of the sentence in the dictionary,
and the dimension is the dictionary size, which is the number of words.
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Figure 2. Flow chart of information extraction.

Figure 3. Bidirectional Long Short-Term Memory with Conditional Random Fields (BiLSTM-
CRF) model.

The second layer is the embedding layer, which realizes the conversion of text data to
computer-processable vector matrices through the word2vec tool. Each word is mapped
into a word vector utilizing a random initialized matrix on this layer. For a given text
sequence of unstructured archaeological sites, the word vector X = (x1, x2, x3, . . . , xn)
is obtained.

On the BiLSTM layer, which consists of two LSTM layers, forward and backward
semantic features are extracted according to the word vector input in each time step. Due
to the difference in the sequence order of the vector processing, the two LSTM layers are
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divided into forward layer in positive order and backward layer in reverse order. The
forward hidden layer is responsible for extracting the characterization of each word in

the text and obtaining the output hidden state T1 = (
→
t1,
→
t2,
→
t3, . . . ,

→
tn ) of each word. The

backward hidden layer is responsible for the reverse feature extraction, and the output

hidden state T2 = (
←
t1,
←
t2,
←
t3, . . . ,

←
tn ) is obtained. Figure 3 shows the forward and backward

propagation process and path through the arrow direction. At the same time, the BiLSTM
network outputs the prediction scores of tags to the CRF layer, that is, P = (p1, p2, p3, . . . pn).
Each dimension pi of pi,j can be regarded as the score of classifying the word wi into the
j-th label.

The fourth layer is CRF layer, which considers the relationship between front and back
words to control the annotation output order. Assuming that the input sentence W obtains
a prediction tag sequence y = (y1, y2, . . . , yn), the score of the prediction is defined as:

s(W, y) =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=1

Pi,yi (1)

where Pi,yi is the probability that the BiLSTM output of the i-th position is yi, and Ayi ,yi+1 is
the transition probability from yi to yi+1. The score of the whole sequence is the sum of
the scores of each position. The score of each position is jointly determined by pi and the
transition matrix A of CRF. The score s(W, y) of all possible annotation sequences y of W is
obtained by the Viterbi algorithm, and afterward, all scores are normalized by the softmax
function. Finally, the probability of sequence y is obtained as follows:

p (y|W) =
es(W,y)

∑y∈YW
es(W,y)

(2)

While training the model, for the sentence input sequence X, the loss function is set
to take the logarithm of the probability of the target real marking sequence Y. In order to
maximize the probability corresponding to the real marker sequence, the strategy of taking
a negative value and then minimizing it is taken on, and the gradient descent algorithm is
introduced to solve the parameters. The maximize log likelihood function is as follows:

log(p (Y|X) ) = s(X, Y)− log( ∑
Y∈YX

es(X,Y)) = s (X|Y) − log( ∑
Y∈YX

s (X
∣∣Y) ) (3)

In the prediction process, the S scores relating to all possible y sequences are calculated
by the trained parameters, and the Viterbi algorithm is used to solve the optimal path. The
predicted result is recorded as Y∗:

Y∗ = arg
Y∈YX

max(s
(
X, Y

)
) (4)

3.2.2. BiGRU-Dual Attention Relationship Extraction Model

GRU is a variant of LSTM, which is simplified based on LSTM. Since the unidirectional
GRU ignores the association between texts, BIGRU is used to carry out these associations
in this study. In addition, this paper introduces the word-level and sentence-level dual
attention mechanism, which can better eliminate noise interference and improve accuracy
compared with the single-layer attention mechanism. The BiGRU-Dual Attention model is
divided into six parts. The structure of the model is shown in Figure 4.
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Figure 4. Bidirectional Gated Recurrent Units with Dual Attention (BiGRU-Dual Attention) model.

To start with, the input training instance N = (n1, n2, n3, . . . , nT) is transformed into
the word vector sequence E = (e1, e2, e3, . . . , eT) through the embedding layer. Then, GRU
is utilized to integrate the context information. Compared with the unidirectional GRU
network, BiGRU adds one more hidden layer, which inputs the text sequence into the model
in forward and reverse directions and connects the hidden layer states in both directions
to the output layer. At this time, the network output corresponding to the i-th Chinese
character is:

hi = [
→
hi ⊕

←
hi ] (5)

where
→
hi is the output of the forward layer of GRU network with the word vector nT as the

input,
←
hi is the output of the reverse layer and ⊕ represents addition element by element.
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For the word vector matrix H = (h1, h2, h3, . . . , hT) output by the BiGRU network, where T
is the number of Chinese characters contained in the relationship instance.

Each word vector hi is weighted by introducing the word-level attention weight AC:

V = HAT
C (6)

where V is the calculated result vector, and AC can be calculated by softmax function:

AC = so f tmax
(

UT
C M

)
(7)

M = tanh(H) (8)

where UC is the parameter used for training in the model, which is obtained in the train-
ing process.

The sentence-level attention mechanism takes the output of the word-attention mech-
anism layer as the input. By calculating the matching degree between each sentence
containing entity pairs and the predicted relationship, the sentence level weight matrix
is constructed, and finally, the vector representing the sentence is obtained. The specific
algorithm flow is as follows:

S = ∑
i

αVi Vi (9)

Vi = tanh(V) (10)

αVi =
exp(ki)

∑j exp
(
k j
) (11)

ki = Vi Ar (12)

where S is the output vector of sentence-level attention mechanism layer, and αVi is the
weight of each sentence vector Vi. The function ki represents the matching degree between
each sentence Vi and the predictive relationship r, and A is the weight diagonal matrix.

Then, the conditional probability p(r|S) of the predictive relationship is calculated
through the softmax function:

p(r|S) = so f tmax(RS + b) (13)

where R is the matrix composed of all relation vectors, and b is the offset vector. Finally, the
argmax function is used to obtain the relationship of the final prediction:

r̂ = argmaxp(r|S) (14)

Based on Tensorflow, the paper realizes the relationship extraction model in light of
dual attention mechanism, uses cross entropy as the loss function during training and
combines L2 regularization to restrict the size of parameters to alleviate the problem of
overfitting in the training process. The calculation of the loss function is as follows:

J(θ) = − 1
m

m

∑
i=1

tilog(p(ri|Si, θ)) + λ‖θ‖2
2 (15)

where θ represents all parameters in the model, m represents the number of instance sets, ti
is the real relationship label and λ is L2 regularization coefficient. Then, the loss function is
minimized by Adam algorithm to realize the training and stable updating of the parameters
in the model. In addition, in order to avoid overfitting, dropout is added to the BiGRU layer.

4. Experimental Results
4.1. Experimental Setup

As referenced in Section 3.2, this study has identified four archaeological entities,
including site name, cultural type, geographical location and historical dynasties. Next,
the named entity recognition experiment is carried out with the above manually labeled
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corpus. A total of 21,800 corpora was selected from the texts of 800 sites as the experimental
corpus of the named entity recognition experiment. Among them, 80% are used for the
training corpus, 10% for the verification corpus and 10% for the test corpus. The statistics
of entities in the datasets are shown in Table 2.

Table 2. Statistics of entities in the datasets.

Dataset
Number of Entities

Site Name Cultural Type Geographical Location Historical Dynasty Total

Training 3098 2100 6889 1766 13,853
Validation 405 236 769 210 1620

Test 416 210 828 191 1645

As far as the named entity recognition task of archaeological site text, experiments
were conducted based on the Pytorch deep learning framework, and the parameter settings
of the model in training are shown in Table 3.

Table 3. Training parameters of the BiLSTM-CRF model.

Parameter Value

batch_size 64
learning rate 0.001

epoches 30
print_step 5
emb_size 128

hidden_size 128

On the basis of entity recognition, the relationship extraction of archaeological entities
is carried out. For the entity relationship extraction in the field of archaeological texts,
8120 corpora are selected from the results of entity recognition, of which 80% are selected
as training corpora, 10% as verification corpora and 10% as test corpora. The entity
relationship involved are divided into four categories, including the Culture of the site, the
Location of the site, the Dynasty of the site and None. The statistics of the relationships in
the datasets are shown in Table 4.

Table 4. Statistics of relationships in the datasets.

Dataset
Number of Relationships

Culture of Site Location of Site Dynasty of Site None Total

Training 1768 3712 734 228 6442
Validation 216 478 92 29 815

Test 236 483 112 32 863

In this paper, the BiGRU-Dual Attention model for archaeological texts is constructed
based on the Tensorflow deep learning framework, and the parameter settings of the model
in training are shown in Table 5.

Evaluation is a necessary work in the fields of machine learning, natural language
processing, information retrieval and so on, and the evaluation metrics are usually as
follows: precision, recall and F1 value. Therefore, the information extraction model for
archaeological site texts in this study uses the precision P, recall R and F1 value as the
evaluation index. It can be calculated as follows:

precision =
true positives

true positives + f alse positives
(16)
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recall =
true positives

true positives + f alse negatives
(17)

F1 = 2 ∗ precision ∗ recall
precision + recall

(18)

where true positives represent data that are truly predicted, false positives represent data
that are incorrectly predicted and false negatives represent the data that should be correctly
predicted but have not been predicted.

Table 5. Training parameters of the BiGRU-Dual Attention model.

Parameter Value

vocab_size 166,919
num_steps 70

num_epochs 100
num_classes 4

gru_size 300
dropout 0.5
pos_size 5
pos_num 123
big_num 50

4.2. Entity Recognition Results

The BiLSTM-CRF entity recognition model was trained using the labeled archaeologi-
cal site text. In order to evaluate the effectiveness of the BiLSTM-CRF entity recognition
model in archaeological site texts, comparative experiments were conducted on a Hidden
Markov Model (HMM, an early classical statistical model), a BiLSTM model with the same
experimental data. The experimental results are shown in Table 6.

Table 6. Comparison of different entity recognition models in archaeological site text.

Model P% R% F1%

HMM 87.12 75.96 81.16
BiLSTM 93.87 80.16 86.47

BiLSTM-CRF 94.51 82.10 87.87

From the analysis of the comparative experiment, the effect of the BiLSTM-CRF model
constructed in this paper is superior to other methods, with a precision rate of 94.51%, a
recall rate of 82.10% and an F1 value of 87.87%. This indicates that it has good adaptability
in the entity recognition task of archaeological site text and can effectively carry out abstract
modeling of archaeological texts. In terms of the three metrics, the model in this paper
outperforms the HMM model, with an improvement in precision, in recall and in F1 value.
It illustrates that the performance of the model relying on a neural network is obviously
better than the early statistical model, with a significant improvement. The model in this
paper improves the precision, the recall and the F1 value compared with BiLSTM, indicating
that the addition of a CRF layer can effectively improve the recognition of relevant entities
in the texts of archaeological sites.

In the following, further analysis about the recognition result of the BiLSTM-CRF
model for various types of entities is shown in Table 7.
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Table 7. Experimental results of BiLSTM-CRF model.

Type of Entity P% R% F1%

Site name 95.31 70.86 81.29
Cultural type 98.64 90.38 94.33

Geographical location 94.52 86.80 90.50
Historical dynasty 88.17 77.12 82.28

It can be seen that this model can comparatively accurately recognize four types of
entities in the archaeological site text, of which the F1 values of the geographical location
and cultural type are above 90%. From the analysis of the experimental results, it can be
observed that the precision of cultural type entities is the highest. This may be related to
the clear identification of “culture” and “type” in Chinese archeological site texts, which is
helpful to improve the recognition capacity of the model. Conversely, the description of
historical dynasty is more complex in Chinese, so the model has difficulty finding a general
rule expression, bringing about a relatively poor recognition result.

4.3. Relationship Extraction Results

In the experiment of entity relationship extraction, the precision P, recall R and F1
value are also used to evaluate the performance of the model. In order to verify the function
of the BiGRU-Dual Attention model in precision and recall, the experimental result of
relationship extraction from archaeological text entities is analyzed and compared with the
BiLSTM-Attention model. The results are shown in Table 8.

Table 8. Comparison between BiLSTM-Attention and BiGRU-Dual Attention.

Model P% R% F1%

BiLSTM-Attention 90.77 81.49 85.76
BiGRU-Dual Attention 91.83 84.64 88.05

The experimental results demonstrate that the BiGRU-Dual Attention model achieves
better function than the BiLSTM-Attention model without increasing the complexity of
the model. The BiGRU-Dual Attention model shows some improvement in performance,
with progress in precision, in recall, and in F1 value. Meanwhile, it can be seen that the use
of dual attention mechanism has a positive impact on improving the model performance
and achieve higher precision in relationship extraction. In order to further analyze the
difference in the extraction effect of various entity relationships, the evaluation results of
different relationships are analyzed, as shown in Table 9.

Table 9. Experimental results of the BiGRU-Dual Attention model.

Type of Relationship P% R% F1%

Culture of site 86.94 84.17 85.53
Location of site 93.98 86.37 90.01
Dynasty of site 93.79 81.54 87.24

None 88.47 72.90 79.93

Combined with the entity distribution of the labeled sample data set, it can be seen
from Table 4 that the site location relationship accounts for the largest proportion in the
test set, while the None relationship accounts for the least proportion. Relatively speaking,
the relationship categories with a large amount of data has a higher recall rate during the
test. From the above analysis, it can be seen that in the task of text relationship extraction,
compared with the improvement of the model algorithm, the quality of the corpus is
additionally vital. The higher the quality of the deep learning model’s training and learning
sets, the more accurate the model recognition effect will be. In terms of effectiveness and
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feasibility, the comprehensive experimental results show that the BiGRU-Dual Attention
model has a positive impact on relationship extraction in Chinese archaeological site texts.

The purpose of the above experiment is to demonstrate the feasibility of the application
of information extraction in the field of archaeological site texts and aims to find a suitable
method. Through the reflection on the test results, it can assist with enhancing the datasets
and models in the follow-up research. Generally speaking, the BiLSTM-CRF model can
effectively identify the four types of entities which relate to the spatio-temporal information
of sites. However, it has low recall, which is caused by the changeability of sentence
patterns in Chinese archaeological site texts. Later, we will add the entity-labeled corpus
to improve the recognition ability of the model. On the basis of the entity recognition
experiment, it is found that the BiGRU-Dual Attention model performs well in the task of
archaeological site relationship extraction, which further enhances the training efficiency
of the experiment. Furthermore, the reason for incorrect entity relationship recognition is
mainly related to the lack of an annotation corpus, resulting in the lack of the relationship
extraction ability of the model. In future research, the corpus of relational annotated texts
will be expanded. We hope to improve the extraction ability of the model to provide a
reference for constructing the knowledge graph of archaeological sites.

4.4. Application Example

Under the advancement of computers and the Internet over the years, it can be seen
that knowledge graph technology has drawn extensive attention. Knowledge graphs have
natural advantages for the analysis, display and utilization of the results of information
extraction. As the structured semantic knowledge base, knowledge graphs can effectively
process, handle and integrate massive amounts of information. Information extraction
based on structured triples is an important step in the process of constructing knowledge
graphs. After the above information extraction experiment, we obtain the triples from the
archaeological site texts. By storing the triples in the relational database, we can obtain
a basic knowledge graph and complete the transformation from unstructured texts to
structured texts. In line with the knowledge graph construction process, the development
and storage of archaeological site knowledge graphs are realized based on Neo4j. The
graph contains 3318 nodes and 8120 edges in total. Figure 5 shows a partial knowledge
graph of archaeological sites. Fundamentally, this paper aims to extract structured spatio-
temporal information from various archaeological textual data and formalize them with a
unified triplet representation. They support graphical query language access, so that deep
knowledge can be obtained. The introduction of knowledge graphs is relatively new, and
few studies have explored their application in the field of archaeology. In the future, we
envisage linking archaeological site knowledge from different resources, and the utilization
of these interrelated knowledge will further strengthen the discovery of archaeological
knowledge. By constructing the archaeological site knowledge graph, it not only enriches
archaeological site knowledge but also popularizes archaeology for the public. Meanwhile,
it can establish the foundation for subsequent applications such as the semantic search for
archaeological knowledge and intellectual question and answering.
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Figure 5. Instance of archaeological site knowledge graph (part).

5. Discussion and Conclusions

The archaeological site text is chosen as the research object in this study. Considering
the issue of rich information with scattered knowledge in the field of Chinese archaeological
site texts, its features and its application requirements are taken as the starting point.
We utilize the information extraction method to extract the spatio-temporal information
from the archaeological site text. The results show that it is suitable for relevant tasks.
Compared with other existing studies, we explore the text of more data sources and
naturally integrate them together. This study has obtained multi-source data, such as
archaeological books, excavation reports and online texts. It has the benefit of obtaining
higher-quality information and good coverage of archaeological site fields, which is vital
for knowledge discovery and acquisition. We prove that information extraction technology
is suitable for the field of Chinese archaeology, rather than only discussing a single text
object. Compared with Zhang [25], under the same evaluation metrics, the P, R and F1 of
our information extraction experiment are marginally lower, essentially in light of the fact
that the input data in his study are semi-structured, while our input data are structured
and come from various sources. The performance of the named entity recognition model is
similar to that of Liu [26] but with higher precision and low recall. With the continuous
emergence of new entities, to guarantee the quality of named entity recognition, we need to
maintain dictionaries. When dictionaries are not detailed or domain rules are not complete,
there are often the characteristics of high precision and low recall. Simultaneously, it
is also observed that there is an unbalanced distribution of entity relations in the text
of archaeological sites. In a text, there are often more descriptions of location and less
descriptions of culture or dynasty. Therefore, in the case of model algorithm adaptation,
effective data augmentation is expected to make the distribution of entity relations balanced,



ISPRS Int. J. Geo-Inf. 2022, 11, 175 17 of 18

so as to improve the overall effect of information extraction. Nowadays, various information
sharing media provide useful knowledge, so it is difficult to establish a final and complete
knowledge base. However, different knowledge sources can complement each other.
Compared with the method of description flow used by Zhang [23], triplets can connect
knowledge from different sources and publish them in a unified way. At the same time, we
introduced knowledge graphs and conducted a preliminary exploration. It allows users
to make complex queries in the knowledge graph to promote knowledge connection and
sharing. On this basis, it is able to provide data support for relevant scholars and provide
new ideas for traditional information retrieval.

The study of the spatio-temporal information extraction method and its effectiveness
verification of Chinese archaeological site texts is conducted in this paper. By fully using
the multi-source and heterogeneous archaeological site text data on the Internet, this study
conducts data annotation, which preliminarily completes the construction of the Chinese
archaeological site corpus. Since there is no public annotation dataset or corpus in the
field of Chinese archaeology, through the analysis of Chinese archaeological site texts, this
study makes an appropriate definition of entity relationship hierarchy about site spatial-
temporal information. Based on this, it establishes the data foundation for knowledge
extraction of archaeological sites. By relying on the deep learning method that does not need
manual feature extraction, the BiLSTM-CRF, named the entity recognition model, and the
BiGRU-Dual Attention relationship extraction model are constructed to extract the spatial-
temporal information on the site. After that, this study conducted comparative experiments,
which obtained relatively good experimental results. These results show the possibility of
applying this information extraction method to archaeological site texts. To further verify
the extraction results of entity relationship triples of archaeological sites, an example of a
knowledge graph was completed. Therefore, a new method is provided for the storage and
display of traditional archaeological site knowledge. According to the results of the study,
it can promote the relevant research of spatio-temporal information mining on sites and
provide the basis for the construction of knowledge graphs in archaeology. Moreover, it is
of great reference value for promoting the innovation of archaeological research methods
and the exploration of archaeological problems in the information age. In the follow-up
work, it is intended to annotate more archaeological site entities (including excavated
artifacts, site area and so on) to expand the corpus, which tries to perfect the construction
of knowledge graphs in the Chinese archaeological field and enrich the connotation of
knowledge. In the meantime, we will continue to develop and research semantic search,
intelligent Q&A and other upper-level applications based on the Chinese archaeological
site knowledge graph.
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