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Abstract: Rocky desertification is one of the most critical ecological and environmental problems
in areas underlain by carbonate rocks globally. Land cover and land use in the region affects large-
scale ecosystem processes on a global scale, and many Earth system models rely on accurate land
cover information. Therefore, it is important to evaluate current global land cover products and to
understand the differences between them, and the findings of these studies can provide guidance to
different researchers when using or making land cover products. Whereas there are many studies on
the assessment of coarser resolution land cover products, there are few studies on the assessment of
higher resolution land cover products (10 m). In order to provide guidance for users of 10 m data, this
paper uses the rock deserted southwest region of China as the experimental area. We analyzed the
consistency and accuracy of the FROM-GLC, ESA WorldCover 10 and ESRI products using spatial
pattern consistency, absolute accuracy assessment of three validation samples, and analyzed their
intrinsic relationships among classification systems, classification methods, and validation samples.
The results show that (1) the overall accuracy of the FROM-GLC product is the highest, ranging
from 49.47 to 62.42%; followed by the overall accuracy of the ESA product, ranging from 45.13 to
64.50%; and the overall accuracy of the ESRI product is the lowest, between 39.03 and 61.94%. (2) The
consistency between FROM-GLC and ESA is higher than the consistency between other products,
with an area correlation coefficient of 0.94. Analysis of the spatial consistency of the three products
shows that the proportion of perfectly consistent areas is low at 44.89%, mainly in areas with low
surface heterogeneity and more homogeneous cover types. (3) Across the study area, the main land
cover types such as forest and water bodies were the most consistent across the three product species,
while the grassland, shrubland, and bareland were lower. All products showed high accuracy in
homogeneous areas, with local accuracy varied in other areas, especially at high altitudes in the
central and western regions. Therefore, land cover users cannot use these products directly when
conducting relevant studies in rocky desertification areas, as their use may introduce serious errors.

Keywords: rocky desertification; land cover products; 10 m resolution; spatial consistency; accuracy
evaluation; southwest China

1. Introduction

Land cover products are the fundamental geospatial data products needed by ana-
lysts and decision makers in governments, society, industry, and the financial sector to
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monitor global environmental change and measure risks to sustainable livelihoods and
development [1–5]. Currently, large regional land cover products are being developed by
major agencies around the world, including the USGS IGBP DISCOVER product [6], 1km
UMD land cover products at the University of Maryland, USA [7], GLC2000 products from
the EU Joint Research Centre [8], MODIS land cover products from Boston University [9],
GLOBCOVER products produced by the European Space Agency [10], China National
Basic Geographic Information Centre global 30 m land cover product in 2014 [11], Coperni-
cus Global Land Services Annual 100 m Global Land Cover Product [12], and the NLCD
land cover products produced by the USGS [13]. While these coarser resolution land cover
products have provided valuable information for many studies [14–16], some studies have
shown that they have low classification accuracy in transition zones with heterogeneous
landscapes, where finer resolution land cover products are needed [17,18].

In recent decades, with the development of satellite remote sensing technology, freely
available high-resolution remote sensing imagery has facilitated the development and
publication of land cover products [19,20]. In particular, with the first launch of the Sentinel
satellite in 2014, fine-grained measurements of land cover products are possible relay on
its high spatial, spectral, and temporal resolution [1]. Recently, a number of land cover
products with a resolution of up to 10 m have been produced. These include the global-scale
FROM-GLC land cover product produced by Tsinghua University, which is based on a
random forest approach using training samples for classification [21]. The other two are
the ESA WorldCover 2020 landcover products led by the European Space Agency, and the
global ESRI 2020 Landcover product produced by the Environmental Systems Research
Institute. Both products are global-scale land cover products produced using deep learning
methods. These high-resolution land cover products provide potential users with a wealth
of spatial detail.

However, they are extracted from multi-source remote sensing images using different
classification systems and methods. Well-known accuracy values [22], such as kappa or
overall accuracy, give the concept of the overall accuracy of land cover products, but do
not convey information about spatial differences in map quality [23–25]. Spatial accuracy
consistency assessments inform the user of the level of uncertainty in the mapping of land
cover across the space, and from the a user’s perspective. These spatially clear accuracy
values help to compare different land cover products in order to select the best product
for the area of interest [26]. Therefore, quantitative and independent consistency analysis
and accuracy assessment is essential for users to select the best product for their specific
application [27,28].

At present, some scholars have conducted comparative evaluation and analysis of
different land cover products currently published [29–32]. For example, Gao et al. [27]
used the LUCAS dataset for consistency analysis and accuracy assessment of three global
30 m land cover products in the EU, and the results showed that inconsistencies between
the three products occurred mainly in heterogeneous areas. Kang et al. [33] conducted
a consistency study of 30 m multi-source land cover products through area consistency,
spatial consistency, and accuracy evaluation using Indonesia as an example, and the results
showed low accuracy for grassland, shrub, bare ground, and wetland types. An evaluation
by Liang et al. [34] of the accuracy of four global land cover products in the Arctic region
showed that the classification accuracy of shrub types was low. Herold et al. [35] compared
four global-scale land cover products with a resolution of 1 km and the experimental results
showed a high degree of accuracy and consistency for evergreen broadleaf forest, bare
ground, and snow and ice cover types. Tchuente et al. [18] studied four land cover products
at the Africa continent scale, aiming to highlight the consistency and difference between the
four land cover product classification systems, and the results showed that the consistency
of the four land cover products was between 56 and 69%.

However, existing evaluation and analysis studies of different products are mainly
focused on medium- and low-resolution products (30–1000 m). A literature search showed
that there are few consistent analyses of land cover products with 10 m resolution in current
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global comparative land cover product studies. Located in eastern Asia and on the west
coast of the Pacific Ocean, China has about 3.44 million km2 of karst areas, about 36% of
its total land area and 15.6% of all the 22 million km2 of karst areas in the world [36]. The
destruction of ecologically fragile carbonate areas as a result of extensive human activity
has led to rock desertification disasters [37]. Among them, the ecological disaster of rocky
desertification is particularly serious in southwest China, which has seriously hampered
the economic growth of the region and directly affected the livelihood of 1.7 million people
in the region [38]. Rocky desertification is used to characterize the processes that transform
a karst area covered by vegetation and soil into a rocky landscape almost devoid of soil
and vegetation [39]. It has occurred largely in the European Mediterranean basin [40],
the Dinaric Karst [41], and in southwest China [39] due to extensive human activities on
ecologically fragile carbonate rock formations. Cao et al. [42] showed that the rocky deserti-
fication area expanded drastically by 3.76 times from 1970 to 2005 in Guizhou province.
There have been numerous studies showing that rocky desertification has a dramatic im-
pact on hydrological, soil, and ecological conditions at different scales, resulting in more
geological hazards such as droughts, floods, landslides, and ground subsidence [43,44].
For example, Jiang et al. [45] studied the effects of land use change on groundwater quality
in a typical karst watershed in the southwest, concluding that the conversion of forested
and unused land to cropland resulted in diffuse groundwater contamination from fertilizer
application and building development on newly cultivated land. Liu et al. [46] studied
the environmental changes caused by land use changes in the southwest karst region and
concluded that changes in forests and grasslands are the main causes of ecological changes
and that further deterioration is likely to continue in the coming decades. On a larger
scale, it even affects the carbon balance and regional climate conditions [47]. For example,
Kalnay et al. [48] used the difference between observed surface temperature trends and the
corresponding trends in surface temperatures determined by re-analysis of global weather
over the past 50 years to estimate the impact of land use change on surface warming. The
results showed that half of the observed daily temperature decrease was due to urban and
other land use changes. Song et al. [49] develop datasets for improved modelling of land
use change, biogeochemical cycling and vegetation-climate interactions to contribute to our
understanding of global environmental change. Further, various environmental issues such
as greenhouse gas emissions [50], heat island effect [51], habitat loss [52], and ecosystem
degradation [53] due to land cover and land use change have become a global research
and concern. Therefore, the spatial structure and change of land cover in the region are of
great significance for global ecological change research as well as for sustainable regional
economic and social development.

In order to provide guidance to users and producers of high-resolution land cover
products, and to provide a reference for ecosystem conservationists studying the impacts of
global rocky desertification hazards when selecting base data for land cover products. This
paper takes the rocky desertification region of southwest China as the experimental area,
using the composition similarity assessment, consistency of spatial pattern distribution and
absolute accuracy assessment methods, and the consistency and accuracy of high-resolution
land cover products FROM-GLC, ESA WorldCover 2020, and ESRI 2020 Landcover are
analyzed in depth. Additionally, the factors that influence the results of its classification are
explored. The results of the study can provide guidance for future improvements in the
quality of land cover mapping and for different researchers to select the best land cover
products for their applications. Further, the results of the study could provide the necessary
information for the ecological management of the region, as well as advancing research and
engineering practices to combat rocky desertification and assist in sustainable development.

2. Materials and Methods
2.1. Study Area

China is located in east Asia, on the west coast of the Pacific Ocean, with a relatively
complex topography, with the terrain being high in the west and low in the east. The
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study area belongs to the southwest of the seven major geographical divisions of China
(Figure 1), located between longitudes 97◦21′–110◦11′ E and latitudes 21◦08′–33◦41′ N, with
a total area of 2,340,600 square kilometers. Geographically, it includes the southeastern
part of the Qinghai-Xizang Plateau, the Sichuan Basin, and most of the Yunnan-Guizhou
Plateau, which includes a total of five provinces: Chongqing, Sichuan, Guizhou, Yunnan,
and Xizang. It is bordered by Bhutan, Pakistan, Nepal, India, Laos, and Myanmar. The
southwest region is located in the subtropics and the terrain is predominantly mountainous,
so the subtropical mountain climate with lots of rain and clouds, high humidity and low
sunlight is notable. The average annual temperature in the southwest reaches 24 degrees
Celsius in the east, while the average annual temperature in the west can be as low as
below 0 degrees Celsius [54]. The overall distribution of annual precipitation is “more in
the east and less in the west”. Southwest China has about 0.51 million km2 of exposed
carbonate rock areas, accounting for 5.8% of the total land area, and up to 82% of the rock
desertification areas are located in Yunnan, Guizhou, Chongqing, and Sichuan [36].

Figure 1. Geographical location of the study area.

2.2. Data and Preprocessing

In this paper, three 10 m resolution land cover products were selected from a wide
range of current global and regional land cover products for consistency evaluation analysis.
The three selected data are the global-scale FROM-GLC land cover data produced by
Tsinghua University [21] (http://data.ess.tsinghua.edu.cn/, accessed on 2 October 2021),
European Space Agency-led production of ESA WorldCover 2020 land cover data with
global coverage (https://doi.org/10.5281/zenodo.5571936, accessed on 8 January 2022)
and the global ESRI 2020 Landcover data produced by the Environmental Systems Research
Institute [1] (https://www.arcgis.com/index.html, accessed on 12 January 2022). The data
selected are all current cover products of relatively high resolution, and although the year
of production for the FROM-GLC data differs from the other two by 3 years. as natural
ecosystems typically do not change significantly for 10 years or more [55]. The ecological
condition of the study area was relatively stable during this period, as verified by Google’s
high-resolution image data. Therefore, the data selected can better support the research of
this paper. Information on the main parameters of the three data types is shown in Table 1.

http://data.ess.tsinghua.edu.cn/
https://doi.org/10.5281/zenodo.5571936
https://www.arcgis.com/index.html


ISPRS Int. J. Geo-Inf. 2022, 11, 202 5 of 25

Table 1. Main parameters of different products.

Name Resolution (m) Number of
Categories Time Method Overall

Accuracy (%)
Production
Institution Satellite Scale

FROM-GLC 10 10 2017 Random forest 72.76 Tsinghua
University Sentinel-2 Global

ESA WorldCover
2020 10 11 2020 Deep

learning model 74.40 European
Space Agency Sentinel-1/2 Global

ESRI 2020
Landcover 10 10 2020 Deep

learning model 86
Impact

Observatory
for Esri

Sentinel-2 Global

The first task before data consistency analysis is data pre-processing, which mainly
includes data cropping, projection transformation, and harmonization of classification
systems between different products. Using ArcGIS (v. 10.3), land cover datasets of the
study area were cropped with vector boundaries. In order to carry out the area comparison
analysis, it was secondly necessary to unify the WGS-84 coordinate system into a UTM
projection. In addition, various land cover classification systems have been proposed by
different scholars in combination with the ability of remote sensing to acquire the char-
acteristics of surface features. These classification systems are well suited for different
application needs, but need to be grouped under the same classification benchmark when
performing data consistency analysis between multiple products. If there are no common
category correspondence rules, direct comparison analysis will produce a series of prob-
lems, such as errors. The classification system of the original classification is reflected in
Table 2. In recent years, the international community has done a great deal of work on the
normalization of multi-source data classification systems, ultimately concluding that the
Land Cover Classification System (LCCS) classification system can be used as a reference
and conversion standard for future land cover classifications. The system is strictly a
classifier that provides a common conversion language that enables conversion between
existing classification systems [56]. Therefore, the paper refers to the LCCS classification
description language to aggregate the land cover categories of the three data species into
nine broad categories (Table 3), and the LCCS category criteria and common classification
thresholds are strictly used in the aggregation process. In addition, the number of images
of clouds in ESRI products is a negligibly small proportion of the total number of images in
the study area. Figure 2 shows the spatial pattern distribution of cover types for the three
data products after pre-processing. For ease of presentation, the ESA WorldCover 2020 and
ESRI 2020 Landcover product names are hereafter referred to as ESA and ESRI.

Table 2. Original classification systems and codes for different land cover products.

Code FROM_GLC Code ESA Code ESRI

10 Cropland 10 Tree cover 1 Water
20 Forest 20 Shrubland 2 Trees
30 Grassland 30 Grassland 3 Grass

40 Shrubland 40 Cropland 4 Flooded
vegetation

50 Wetland 50 Built-up 5 Crops
60 Water 60 Bare/sparse vegetation 6 Scrub/shrub
70 Tundra 70 Snow and Ice 7 Built Area

80 Impervious surface 80 Permanent
water bodies 8 Bare ground

90 Bareland 90 Herbaceous wetland 9 Snow/Ice
100 Snow/Ice 95 Mangroves 10 Clouds

100 Moss and Lichen
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Table 3. Merged classification system and its correspondence with the original classification system.

Type FROM_GLC ESA ESRI

10 Cropland 10 40 5
20 Forest 20 10 2

30 Grassland 30 30 3
40 Shrubland 40, 70 20, 100 6
50 Wetland 50 90, 95 4

60 Water 60 80 1
80 Built up 80 50 7
90 Bareland 90 60 8

100 Snow/Ice 100 70 9

2.3. Composition Similarity Assessment

For each land cover product, the area of each land type is aggregated and Pearson
correlations are calculated for the corresponding land type area series between the different
datasets, thus assessing the similarity of the land composition of each type between the
products [33]. The calculation formula is as follows:

Ri =
∑9

k=1
(
Xk − X

)(
Yk −Y

)√
∑9

k=1 (Xk − X)
2
(Yk −Y)2

(1)

where Ri is the correlation coefficient of area; i denotes the i-th land cover product mix;
k denotes the land cover type; Xk denotes the area of type K in dataset X (km2); Yk denotes
the area of type K in dataset Y (km2); X bar denotes the average of the area of all nine types
of land in dataset X (km2); Y bar denotes the average of the area of all nine types of land in
dataset Y (km2).

2.4. Evaluation of the Distribution of Spatial Patterns

In order to visually represent the spatially consistent distribution characteristics of the
three land cover data products, this paper overlays the three data types spatially based
on ArcGIS (v. 10.3) software. First, using the spatial resolution size of 10 × 10 m pixels
as the smallest unit. Then, the three land cover products are calculated pixel by pixel in a
raster calculator to obtain the spatial correspondence between the different land types of
cover data pixels. Finally, the number of different land cover data matching cover types is
determined on a pixel-by-pixel basis, and the degree of consistency is divided into three
levels, from highest to lowest, as follows: (1) high consistency, where the three data show
exactly the same land cover classes in the corresponding image element; (2) moderate
consistency, where the three data show only two land cover classes in the corresponding
image element; and (3) low consistency, where the three data show completely different
land cover classes in the corresponding image element [33]. A schematic diagram of the
spatial overlay for the cropland type is shown in Figure 3.

2.5. Sample Accuracy Evaluation

The error matrix is one of the most common methods used to evaluate the accuracy
of land cover products [57,58]. The method is based on comparing the type consistency
between the reference data and the data to be verified at a specific location, and then
establishing an error matrix between the two, from which the producer accuracy (PA), user
accuracy (UA), overall accuracy (OA), and Kappa coefficients are calculated to express the
accuracy of the product to be verified. The formulae for calculating each indicator are as
follows [59]:

OA =
∑r

i=1 xii

n2 × 100% (2)

PA =
xii
x+i
× 100% (3)
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UA =
xii
xi+
× 100% (4)

Kappa =
N·∑r

i=1 xii −∑r
i=1(xi+·x+i)

N2 −∑r
i=1(xi+·x+i)

(5)

where xii is the correctly classified pixel number of type i; n is the total pixel number in
the study area; xi+ is the total pixel number of type i in the data to be verified; x+i is the
total pixel number of type i in the reference data; r represents the number of rows in the
confusion matrix; N is the total number of sample points.

Figure 2. Spatial distributions of the three land cover products in southwest China: (a) FROM-GLC,
(b) ESA, and (c) ESRI.
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Figure 3. Spatial overlay map of different products (cropland as an example).

For global land cover products, validation sample data is difficult to obtain through
fieldwork, which requires a strong workforce and a sufficient amount of time. However, an
accurate and sufficient validation sample is important to evaluate the results. A common
global validation dataset, and in particular an adequate, well-described, compatible, and
real-time updated dataset, would therefore greatly facilitate better accuracy assessment and
comparison (Figure 4). In order to compare the accuracy of the three land cover data, three
independent validation sample sets were used: (1) The Geo-Wiki Global Validation Sample
Set (2011–2012) are obtained through the Geo-Wiki (http://geo-wiki.org/, accessed on
11 September 2021) crowdsourcing platform from four separate campaigns, which includes
10 surface cover types [60]. The Geo-Wiki global validation sample was processed to obtain
3113 validation samples covering the study area (Figure 4a). (2) The Global Land Cover
Validation Sample Set (GLCVSS, 2009–2011) global validation sample data, which followed
a random sampling strategy to ensure that all samples were evenly distributed across the
globe [61]. It is based on interpreting Landsat TM and ETM+ images and the MODIS
enhanced vegetation index (EVI) time series data and other high-resolution imagery on
Google Earth was supplemented. The GLCVSS global sample was processed to obtain
488 validation samples covering the study area (Figure 4b). (3) Validation samples based
on Google Earth imagery, Sentinel imagery, and visually collected samples from third-party
sample sets. Google Earth is one of the main data sources for accuracy evaluation due
to its accurate positioning, rich temporal phase, high resolution, easy access, and wide
overlay [57,61,62]. In order to reduce the negative impact of positioning and interpretation
errors on sample quality, the following principles should be followed when selecting and
interpreting samples. 1© To reduce the effect of positioning error, the sample points were
chosen as the center of a homogeneous area of the size of the error range area. 2© In
order to reduce the interpretation errors caused by the temporal phase of the data, remote
sensing images from 2017 to 2020, which are consistent with the temporal phase of the
data to be evaluated, were mainly used, and multi-temporal data from other years were
referenced. 3© For some of the more difficult samples to interpret, the interpretation is
assisted by combining references to other information. For example, combining other map
information to distinguish between bare ground and artificial ground, using the voluntary
geo-information platform Geo-wiki [63] to assist in the interpretation, etc. 4© Multiple
independent interpretations were used, and the sample was discarded when the interpreta-
tion results could not be agreed upon after negotiation. Based on the above principles, a
final sample of 4606 validation samples covering the study area was obtained by visual
interpretation (Figure 4c). Based on the fact that, within the study area, the decadal total
land cover change is less than 8%, even in a rapidly changing part of the world [64], this
means that the error in the validation sample is only roughly between 0.32 and 3.2%, even
if the sample data varies in time by more than 10 years, so the global sample data selected
for this paper is perfectly acceptable. The percentage of each type at different sample points
is shown in Figure 5.

http://geo-wiki.org/
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Figure 4. The spatial distribution of validation samples. (a) Geo-Wiki, (b) GLCVSS, and (c) Vis-
ual interpretation.
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Figure 5. Statistical distribution of the number of different types of samples in the three independent
validation sample sets.

3. Results
3.1. Comparative Analysis of Land Cover Composition

Figure 6 shows the land cover type area composition of the three products in southwest
China and Table 4 reflects the type area correlation coefficients between the three products.

Figure 6. Area comparisons of different products.

Table 4. The area composition Pearson correlation coefficients between different products.

Product FROM-GLC ESA ESRI

FROM-GLC 1.00 0.94 0.37
ESA 0.94 1.00 0.40
ESRI 0.37 0.40 1.00
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In general, the FROM-GLC and ESA land cover products describe essentially the same
characteristics of land composition in the southwest region, i.e., the southwest region is
dominated by forest, bareland, and grassland. ESRI products show a difference, that is, the
southwest region is dominated by shrubland and forest, accounting for more than 67% of
the total areas, followed by bareland.

The FROM-GLC product has bareland (34.46%) and forest (32.25%) as the most dom-
inant land type in the region, with grassland (19.13%), cropland (9.19%), water (1.89%),
snow/ice (1.40%), built-up (1.08%), shrubland (0.54%), and wetlands (0.06%) decreasing
in order of size; the ESA product are clearly dominant by forest (32.30%) and grassland
(28.08%), with decreasing areas of bareland (25.35%), cropland (5.68%), shrubland (4.65%),
water (1.97%), snow/ice (1.20%), built-up land (0.70%), and wetlands (0.07%) in that order;
the ESRI products have decreasing areas of shrubland (37.15%), forest (30.04%) accounted
for a heavier area, with decreasing areas of bareland (16.92%), built-up (4.58%), cropland
(4.37%), grassland (3.12%), water (2.15%), snow/ice (1.55%), and wetlands (0.12%) in
that order.

For each land cover type, there is a high level of agreement between the three products
regarding the area of forest cover, yielding 30 to 33% of the total area of forest in the study
area. For snow and water types, there is a high degree of consistency in the determination
of the area covered by the three products, i.e., the proportion of snow and water area in
the southwest is around 1 and 2% respectively. There is a high degree of consistency in
the determination of wetland cover area with the FROM-GLC and ESA products, both of
which yield a proportion of wetland area in the study area of approximately 0.06 to 0.07%.
For the land cover types of cropland, grassland, shrubland, built-up land, and bareland,
the estimates of the percentage of area covered vary considerably between products, with
FROM-GLC yielding a larger area covered by cropland and bareland in the southwest,
ESA yielding a larger area covered by grassland (28.08%), and ESRI yielding a larger area
covered by shrubland and built-up in the southwest; while ESRI yielding smaller area
covered by cropland, bareland, and grassland in southwest China, FROM-GLC yielded a
smaller area covered by shrubland in southwest China (0.54%), and ESA yielded a smaller
area covered by built-up land in southwest China (0.70%).

The correlation coefficient between the same satellite remote sensing land cover prod-
ucts for each type of land area has a high correlation between FROM-GLC and ESA (0.94)
and a low correlation with ESRI products at 0.37.

3.2. Differences in Spatial Patterns
3.2.1. Consistency of Spatial Distribution

A consistent distribution of the three land cover products was obtained based on the
spatial overlay method (Figure 7). The results show that the areas where the three products
are in high consistency and are mainly located in the eastern part of the study area. The
reason for this is that the surface cover type in the eastern area is mainly forest. The areas
where the three products are in moderate consistency are mainly located in the central
and north-western part of the study area, where the single surface cover type is mainly
grassland and bareland. The areas where the three products are in low consistency are
mainly located in the south-western part of the study area, the reason for the low agreement
in this area is that it is difficult to distinguish between grassland and shrubland types in
this area.
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Figure 7. Spatial consistency distribution map of all land cover types in the study area.

Further statistical analysis showed (Figure 8) that the areas where the three remotely
sensed land cover product indication types were highly consistent and accounted for 44.89%
of the total area. The areas where they were moderately consistent accounted for 39.53%
of the total area, and the areas where they had low consistency accounted for 15.57% of
the total area of the study area. This means that if we consider a 65% confidence level
(i.e., three product types with more than two products of the same indication type at the
same time), the current international mainstream satellite remote sensing products have
a high degree of consistency over 84% of the land area in southwest China, and another
16% of the land area, where there is still much room for improvement in the consistency
between different remote sensing land cover products.

3.2.2. Comparative Analysis with Google Earth Imagery

Based on Google Earth high-resolution imagery, different surface landscape types
were selected in each of the five provinces covered by the study area to verify the accuracy
of the three land cover products and to compare the spatial pattern consistency of several
products (Figure 9).

Figure 9a shows the overlap pattern in the product when in areas of bareland, grass-
land, and shrubland. The FROM-GLC divides these areas into a combination of bareland
and grassland, with the ESA product greatly overestimating the area of grassland and the
ESRI product identifying most of the area as shrubland. Figure 9b shows the confusion of
the three products for built-up land, bareland, and water, which may have been misclassi-
fied due to the more similar spectral and textural information in the region. Figure 9c shows
that in areas where forest, grassland, and shrubland are interspersed, the classification of
forest, shrubland, and grassland is more similar for the FROM-GLC and ESA products,
while the ESRI product shows a disproportionate classification of shrubland as built-up.
Figure 9d shows that the three products diverge in their classification of the vegetation
within the built-up area, with the FROM-GLC classifying the vegetation within the built-
up area as grassland, while the ESA product classifies the vegetation within this area as
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bareland and shrubland, and the ESRI product classifies it more crudely, classifying some
of the vegetation almost entirely as built-up. The classification of cropland type is shown
in Figure 9e, where both FROM-GLC and ESA are able to identify individual agricultural
plots, while the ESRI products are classified with a coarser representation of detail.

Figure 8. Consistency area percentage of all land cover types in the study area.

Figure 9. Cont.



ISPRS Int. J. Geo-Inf. 2022, 11, 202 14 of 25

Figure 9. Comparison of three land cover products with Google Earth image: (a) XiZang, (b) SiChuan,
(c) YunNan, (d) ChongQing, and (e) GuiZhou.

In summary, the comparative analysis of the three products shows that the incon-
sistency of the classification results is higher for areas with similar spectral and textural
characteristics such as shrubland, grassland, and bareland in terms of the type of classi-
fication. In terms of the detailed presentation of the classification, the FROM-GLC and
ESA products are better able to describe the details of the land cover features and the ESRI
products describe them in less detail.

3.3. Absolute Accuracy Evaluation

The absolute accuracy of the three land cover products was evaluated using the two
existing published freely available sample points. The experimental results show that for
the Geo-Wiki sample point data (Table 5), the overall accuracy and Kappa coefficient of
FROM-GLC are the highest, at 49.47% and 0.35, respectively, followed by the ESA product
with overall accuracy and Kappa coefficient of 45.13% and 0.314, while the overall accuracy
and Kappa coefficient of the ESRI product are the lowest, 39.03% and 0.27, respectively.
For the GLCVSS sample point data (Table 6), the FROM-GLC product had the highest
overall accuracy and Kappa coefficient of 56.56% and 0.42, respectively, followed by the
ESA product with an overall accuracy and Kappa coefficient of 54.92% and 0.42, while the
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ESRI product had the lowest overall accuracy and Kappa coefficient of 41.19% and 0.30.
Overall, even though different sample point data were used, the results of the calculations
all indicate a high level of accuracy for the FROM-GLC product.

Table 5. Accuracy evaluation results based on Geo-Wiki samples.

Geo-Wiki

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-
GLC

PA (%) 32.68 75.44 42.07 2.67 0.00 50.00 65.22 58.52 8.89
49.47 0.35UA (%) 53.55 51.45 24.61 35.30 0.00 60.00 40.00 67.59 72.73

ESA
PA (%) 32.68 76.56 51.44 5.33 0.00 52.38 65.22 38.21 6.67

45.13 0.314UA (%) 65.37 54.53 20.90 10.17 0.00 48.89 73.17 68.09 85.71

ESRI
PA (%) 20.56 78.06 12.98 45.78 0.00 52.38 93.48 27.73 10.00

39.03 0.27UA (%) 62.91 58.67 30.68 9.85 0.00 46.81 18.07 69.40 81.82

Note: 1: Cropland; 2: Forest; 3: Grassland; 4: Shrubland; 5: Wetland; 6: Water; 7: Build up; 8: Bareland; 9:
Snow/Ice.

Table 6. Accuracy evaluation results based on GLCVSS samples.

GLCVSS

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-
GLC

PA (%) 38.33 86.21 34.29 0.00 0.00 100.00 50.00 70.18 11.77
56.56 0.42UA (%) 54.76 64.10 28.24 0.00 0.00 42.86 28.57 64.17 100.00

ESA
PA (%) 33.33 83.62 61.43 0.00 0.00 100.00 50.00 57.90 11.77

54.92 0.42UA (%) 64.52 66.90 32.09 0.00 0.00 42.86 50.00 72.26 100.00

ESRI
PA (%) 23.33 84.48 2.86 48.28 100.00 100.00 100.00 35.09 14.71

41.19 0.30UA (%) 63.64 70.00 14.29 7.29 50.00 50.00 17.39 73.17 71.43

Note: 1: Cropland; 2: Forest; 3: Grassland; 4: Shrubland; 5: Wetland; 6: Water; 7: Build up; 8: Bareland; 9:
Snow/Ice.

For each type of accuracy, the Geo-Wiki sample point data shows a high mapping
accuracy of over 75% for all three different land cover products for the forest type and a
low mapping accuracy for the wetland type. The GLCVSS sample point data show a high
mapping accuracy of over 80% for the three different land cover products for the water
body and forest types. It is worth noting that the ESRI product also has a high mapping
accuracy of 100% for the wetland and built-up land types.

The absolute accuracy of the three land cover products was evaluated using sample
points obtained by manual visual interpretation, and the experimental results (Table 7)
showed that the ESA product had the highest overall accuracy and kappa coefficient of
64.50% and 0.58, respectively, followed by the FROM-GLC product with overall accuracy
and Kappa coefficient of 62.42% and 0.56, while the ESRI product had the lowest overall
accuracy and kappa coefficient of 61.94 and 0.56%, respectively. For each type of accuracy,
the FROM-GLC product has a high mapping accuracy of over 75% for the water body and
forest types and a low mapping accuracy of less than 2% for the shrubland and wetland
types. For ESA products, the mapping accuracy is higher for the water, grassland, and
forest types with an accuracy of 75% or more, and lower for the shrubland and wetland
types with an accuracy of less than 4%. For ESRI products, the mapping accuracy is higher
for the forest, water, and built-up land types, with an accuracy of over 70%, and lower for
the wetland types, with an accuracy of 7.4%.

Table 7. Accuracy evaluation results based on visual interpretation samples.

Visual Interpretation

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-
GLC

PA (%) 65.73 78.37 66.57 1.69 0.00 83.93 61.65 69.66 54.05
62.42 0.56UA (%) 84.49 53.09 23.26 12.50 0.00 97.66 84.93 41.41 99.01

ESA
PA (%) 66.09 75.90 87.98 0.00 3.92 90.53 74.49 41.04 50.81

64.50 0.58UA (%) 92.28 57.97 27.52 0.00 92.31 97.98 94.57 29.96 100.00

ESRI
PA (%) 59.48 73.81 29.03 24.72 7.4 91.82 98.89 29.19 55.14

61.94 0.56UA (%) 95.94 63.15 55.62 3.96 92.31 97.56 73.59 49.75 99.03

Note: 1: Cropland; 2: Forest; 3: Grassland; 4: Shrubland; 5: Wetland; 6: Water; 7: Build up; 8: Bareland; 9:
Snow/Ice.
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In summary, the evaluation of the accuracy of the three products using different
sample data shows that the overall accuracy of the FROM-GLC and ESA is higher than
that of the ESRI product. For each of the nine cover types, all three products show a high
level of accuracy for forest types and a low level of accuracy for shrubland, grassland, and
wetland types.

4. Discussion
4.1. Analysis of the Impact of Typical Land Class Difference on the Study of Rocky
Desertification Area

Rocky desertification is caused by the low soil formation rate and high permeability of
carbonate strata in this region, which creates a fragile ecological environment and is easily
disturbed by human activities. Finally, karst areas covered with vegetation and soil are
transformed into rocky landscapes [36]. Therefore, the basic data of built-up, vegetation,
bare land, and other land cover types in this region is an important supporting data for
monitoring the change of rocky desertification in this region.

Built-up land is an important track of human activities, and its utilization of natu-
ral resources will directly or indirectly affect the rocky desertification of undeveloped
areas [65]. Therefore, the distribution and development and utilization of construction
land in southwest China are of great significance to the monitoring of regional ecosystem.
In this study, it was found that the spatial consistency of the construction land types of
the three land cover products was relatively low, and the PA of ESRI products was 93.48,
100, and 98.89%, respectively, higher than the other two products. The ESRI has a higher
proportion of area than the FROM_GLC and ESA products, and the ESA product has the
lowest proportion of area. Therefore, ecological researchers targeting rocky desertification
areas may underestimate the impact of rocky desertification area ecosystems if they select
the FROM_GLC and ESA product built-up type for their research when selecting land
cover products. In terms of details, FROM-GLC and ESA products have a more detailed
delineation of built-up types, while ESRI data lacks in detail delineation of construction
land types (Figure 10). Therefore, suitable data can be selected as supporting data in the
study of built-up types in rocky desertification areas.

Figure 10. Visual comparison of built-up type with Google Earth image (red is built-up): (a) Google
Earth, (b) FROM-GLC, (c) ESA, (d) ESRI.

Vegetation is an important land cover type that contributes to ecosystem change [44].
The vegetation cover types selected for the land cover products in this paper contain forest,
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grassland, and shrubland. The consistency of all three products regarding forest types is
high, with the PA above 70%. For the grassland type, the results of the evaluation of the
three products using different sample points showed that the PA of the ESA product was
51.44, 61.43, and 87.98% respectively, all higher than the other two products (Figure 11).
ESRI’s grassland type area ratio of 3.12% is much lower than the area ratio of the other
two products. This is noteworthy because once the grassland type of ESRI products is
used as an ecological study of rocky desertification areas, the conclusions drawn will
contradict those from the use of other land cover products. For the shrubland type, the
results of the evaluation of the three products using different sample points show that
the ESRI products have a PA of 45.78, 48.28, and 24.72% respectively, which are higher
than the other two products. However, by comparing with Google Earth, it is found that
these three products all have different degrees of omission and multiplicity in shrubland
classification (Figure 12). The 48.28% mapping accuracy for the shrubland type of land cover
products may not be sufficient for regional rocky desertification studies, so it is preferable
to select additional land cover products with high accuracy of shrubland classification
when studying ecosystems in rocky desertification areas. The percentage of area in the
FROM_GLC on the shrubland type is only 0.54%, while the percentage of area in the ESRI
product on the shrubland type is 37.15%. Such a large difference is of particular attention to
ecological researchers when selecting subsequent land cover products. Therefore, in order
to provide remote sensing data support to researchers of vegetation change on regional
rocky desertification, regional desertification, and other ecosystem conservation, suitable
remote sensing support data can be selected for studies with different needs. Ecosystem
restoration requires the development or adoption of new technologies in addition to
revegetation, the development of more forest reserves, the exploitation of water resources,
and the reduction of natural hazards. The use of remote sensing technology for dynamic
monitoring of large areas, for example, can identify areas of ecological damage and reduce
the formation of rock desertification in a timely manner.

Figure 11. Visual comparison of grassland type with Google Earth image (yellow is grassland):
(a) Google Earth, (b) FROM-GLC, (c) ESA, (d) ESRI.

Figure 12. Visual comparison of shrubsland type with Google Earth image (orange is shrubsland):
(a) Google Earth, (b) FROM-GLC, (c) ESA, (d) ESRI.
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It has been shown that severe rocky desertification is located in areas of bare ground
cover types [66]. The ecological protection of stone desertification areas is mostly carried
out by reducing the land use of bare land, developing ecological protection forests, or im-
proving grassland, which ultimately contributes to the goal of gradual ecological landscape
restoration and continuous improvement of land use efficiency. It was found that the results
of the evaluation of the three products using different sample points showed that the PA
of the FROM-GLC product was 58.52, 70.18, and 69.66% respectively, all higher than the
other two products (Figure 13). Therefore, the FROM-GLC data can be used as supporting
data when conducting research on the use of bare ground types in rocky deserts. Given the
importance of bareland types for the conservation and restoration of rocky desertification,
we expect land cover mappers to improve the accuracy of bareland types in future mapping
in order to increase the reliability of data for rocky desertification studies.

Figure 13. Visual comparison of bareland type with Google Earth image (Grey is bareland): (a) Google
Earth, (b) FROM-GLC, (c) ESA, (d) ESRI.

Global climate change has slowed the recovery process due to the frequency of
droughts and the increase in extreme droughts caused by global climate change, and
even expanded lithification in some areas could lead to secondary desertification if not
managed effectively [36]. It is hoped that the consistent study of multi-source land cover
products in this paper will help developing countries to achieve sustainable development
and that the results of the study can be adapted to other areas where restoration efforts
are needed.

4.2. Discussion of Inconsistent Factors

A statistical analysis of the consistency of the three 10 m land cover products revealed
that there were differences between the three land cover products due to their classification
systems, classification methods, and differences between the sample data [58,67]. This
difference makes rigorous comparison between maps and the synergistic use of different
maps a huge challenge [68,69].

(1) Differences in classification systems are one of the main factors leading to incon-
sistent classification results [69]. Among them, the spatial distribution consistency and
correlation coefficients are higher for FROM-GLC and ESA products, and in terms of the
classification system (https://esa-worldcover.org/en/data-access, accessed on 13 January
2022), the type definitions of FROM-GLC and ESA products are more similar, and the
reason for this is that the classification maps for these two products are based on the UN

https://esa-worldcover.org/en/data-access
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Land Cover classification system. The main difference is the shrubland type in FROM-
GLC, which is a mixture of shrubland, grassland, and lichen types in the ESA product
species. Similarly, greenhouse agriculture is included in the cropland type according to
the definition of land cover type, while areas of this type are included in the built-up type
in the ESA product (https://esa-worldcover.org/en/data-access, accessed on 18 January
2022). Compared to the validation dataset, globally, accuracy was rated higher for the forest
and slightly lower for the shrubland and grassland types, mainly because differences in
vegetation canopy thresholds for shrubland and grassland are difficult to define in 10 m
satellite imagery. As for the confusion between grassland and built-up land, this is mainly
a matter of contradiction between land use and land cover, reflected in the fact that built-up
areas contain functions such as grassland and parks, and although the land cover of the area
may be grassland, functionally they are part of the built-up land [1]. Therefore, in order to
reduce inconsistencies between different land cover products, definitions for shrubland,
grassland, and built-up land types need to be considered in a combination of factors.

There are also differences between the ESRI product and the ESA product in terms
of type descriptions. The most notable difference is that the ESRI submerged vegetation
type includes rice and irrigated/submerged agriculture, which is included in the cropland
types in the FROM-GLC and ESA products. This corroborates the fact that ESRI’s share of
cropland is relatively low in the results in Section 4.1. Despite the differences between the
ESRI product and the FROM-GLC and ESA product classification systems, the ESRI product
has a resolution of 10 m, similar in time to the ESA product and identical in resolution to
the FROM-GLC product. As a result, the ESRI products were compared for consistency
with the FROM-GLC and ESA products. In summary, the accuracy of the classification of
land cover products can be significantly improved by improved type definitions.

(2) The different classification methods and the singularity of the data sources also
affect the consistency between the different products. Specifically, the FROM-GLC product
uses a random forest approach that is optimal in terms of computational efficiency and
performance [70], while the ESA and ESRI products use a deep learning approach, where
the deep learning algorithms have excellent matching performance with the rich spectral
and contextual information [71]. All three products use sentinel data, and the addition of
auxiliary data as additional predictors can improve classification accuracy, although FROM-
GLC uses space shuttle radar terrain elevation data auxiliary data in its classification, but
the data are still relatively homogeneous. Due to the similarity between natural vegetation
classes and in order to better differentiate vegetation, taking into account the relationship
between climate and vegetation, Sullamenashe et al. [72] used MODIS data to classify the
northern Eurasian region and succeeded in increasing the classification accuracy to 73%.
Abdi [73] and Zha [74] et al. also agree that agricultural activities related to planting and
harvesting times also vary across the region in response to crop and climate changes. In
addition, almost all land cover products currently rely on optical remote sensing imagery,
whereas SAR and LIDAR techniques have proven to be advantageous in many ways,
particularly in distinguishing between shrubland and wetland types [75–78]. The low
statistical consistency results in this paper may be due to the openness of the area and the
highly confused shrubland and grassland.

The timing of the original images selected for classification can also greatly affect
the accuracy of the product classification. For example, even in the simplest of features,
the body of water may change seasonally, i.e., it may be snow and ice in winter and bare
ground in summer. The study showed [79] that the accuracy of all images available during
the year was lower than the classification accuracy of the seasonal image composites, and
in addition, the accuracy of the land cover products generated from the composite images
from multi-year data was lower than that of the data from one year. Frantz et al. [80] also
point out that trade-offs between different years of imaging and different days within the
same year (potential loss of phenological consistency) should be taken into account when
producing land cover products. In this case, the land cover product is best classified using
the same year’s data source if a high level of accuracy is to be obtained.

https://esa-worldcover.org/en/data-access
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(3) The quantity and quality of the validation samples can also have an impact on the
results of the consistency evaluation. The published Geo-Wiki and GLCVSS validation
samples used in this paper are limited in number in this study area, and the validation
sample points obtained based on visual interpretation of Google Earth imagery, although
large in number, are subject to greater human intervention and the selection of sample
points may be biased towards the categories we are most certain of or consider most
important, which may produce an error of 5–10% [61]. When collecting sample data and
performing image classification, a broad assumption is that classes are mutually exclusive
and have strong, well-defined boundaries [24], which is rare in natural environments such
as natural vegetation or wetlands. So, the method of Millard et al. can be used in the future
for selecting sample point data [81], where polygons are drawn around regions where a
category is known to exist, then highly aggregated training sample points with inherently
high spatial autocorrelation are generated, and finally the grid cell values for each input
derivative are extracted from the locations of the training data points to generate the sample
data. Therefore, the design of obtaining reasonable validation sample points for a more
subjective and reasonable evaluation of land cover products is a worthwhile in-depth
study. In particular, for the classification and updating of land cover products worldwide,
the establishment of a shared and updated sample database is important for both the
production of early remote sensing products and the analysis of later geographical results.

4.3. Suggestions on Land Cover Mapping

The spatial consistency demonstration and accuracy evaluation analysis presented in
this paper shows that the FROM-GLC, ESA, and ESRI products use Sentinel-1 and Sentinel-
2 data at 10 m resolution to characterize land cover globally with higher quality and good
spatial detail. However, it was found during the study that there were still some limiting
factors between the different products that could be addressed in future mapping exercises.

(1) The issue of edging between different land cover types. As shown in Figure 14,
there is a clear demarcation between forest and grassland in the FROM-GLC product,
while a similar anomaly can be found between shrubland and grassland classes in the ESA
product, and similarly between shrubland and bareland in the ESRI product. In order to
avoid such a problem, in the future, we can consider increasing the training accuracy of the
model when classifying, and using a block stacking strategy, so that the blocks are stacked
with each other in a certain number of steps, thus avoiding the problem of edge-joining.

Figure 14. Examples of artefacts in the three LUCC product with sharp boundaries between land
cover types: (a) FROM-GLC, (b) ESA, (c) ESRI.

(2) For feature categories with small differences in spectral and textural characteristics,
it is more difficult to accurately classify optical remote sensing images, so some auxiliary
data can be considered in the classification. For example, to accurately distinguish between
vegetation such as grassland, cropland, and shrubland, consider using Sentinel-1 Radiation
Corrected Ground Distance Detection (GRD) data. In addition, the inclusion of time-series
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features, such as measurements of vegetation health over a year, can improve the classi-
fication accuracy of grassland, cropland, and shrubland. Since the NDVI and EVI values
of vegetation differ between seasons or growth stages, it is possible to find the implicit
phenological information in vegetation to accurately distinguish between vegetation types,
and this method has also received widespread attention in recent years [82,83]. In addition,
the accuracy of the classification was influenced by the different features selected for the
three land cover products during pre-processing. For example, the center of each sample
location is used in the pre-processing of the FROM-GLC product to match the nearest
locations of the sentinel data to extract and construct spectral features. The slope and
aspect data extracted from the SRTM elevation data are included in the feature set. The ESA
product uses long range averaged timestamps as features along with quartiles, introduces
time dynamics information in the classification, and extracts height and slope features from
the Copernicus Global 30m Digital Elevation Model (DEM), and includes a range of spatial
positioning features. The ESRI product was trained using over 5 billion hand-labelled
Sentinel-2 pixels, and the underlying deep learning model uses six bands of Sentinel-2
surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared
bands. To create the final map, the model will be run on images from multiple dates
throughout the year and the output will be synthesized into a final representative map
for 2020. Therefore, how feature data is selected during pre-processing has an impact on
areas with strongly seasonal surface cover types. For the wetland type, in areas with high
vegetation cover, the use of radar data should be focused on because optical and thermal
systems are limited because they cannot penetrate the vegetation canopy [84,85].

(3) Built-up land faces great challenges in classification due to the small size of the
patches and the high internal heterogeneity. It has been shown that construction sites can
be effectively extracted using DMSP OLS nighttime lighting data [86]. Therefore, nighttime
light data could be introduced into the production of global-scale land cover products
in the future. Conflicts between land use and land cover when distinguishing between
grassland and built-up land could be addressed by extending the land cover classification
products to secondary categories to better understand specific land uses in different areas
(e.g., plantations versus natural forests, residential versus commercial built-up areas).

5. Conclusions

This paper compares and analyzes the consistency between three of the current main-
stream global land cover products at 10 m resolution, taking southwest China as the study
area, in order to provide a reference for the selection of suitable land cover data for many
studies in rocky desertification areas. The satellite remote sensing land cover products
assessed include: FROM-GLC, ESA, and ESRI. The methods of consistency analysis include
three main methods: similarity of type composition, spatial consistency, and absolute
accuracy assessment. The main findings of the study are as follows.

The FROM-GLC product had the highest overall accuracy of between 49.47 and 62.42%,
followed by the ESA product with an overall accuracy of between 45.13 and 64.50%, and
the ESRI product with the lowest overall accuracy of between 39.03 and 61.94%. Analysis
of the spatial consistency of the three products shows that the proportion of perfectly
consistent areas is low at 44.89%, mainly in areas with low surface heterogeneity and more
homogeneous cover types. Differences in the discrimination of some vegetation types, such
as grassland, shrubland, and bareland, are the main reason for the low consistency of the
three products. In general, the accuracy of these three high-resolution global land cover
products in southwest China is not ideal, and the accuracy of some vegetation types such
as grassland, shrubland, and bareland needs to be further improved in the future.

Overall, the production of a global 10 m high-resolution land cover product based
on Sentinel 1 and Sentinel 2 data shows great potential. However, as different land cover
products express the fineness of different land types differently, the user needs to select the
appropriate land cover product in the best way based on a statistical accuracy analysis and
an assessment of spatial accuracy.
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