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Abstract: Task allocation is a critical issue of spatial crowdsourcing. Although the batching strategy
performs better than the real-time matching mode, it still has the following two drawbacks: (1)
Because the granularity of the batch size set obtained by batching is too coarse, it will result in
poor matching accuracy. However, roughly designing the batch size for all possible delays will
result in a large computational overhead. (2) Ignoring non-stationary factors will lead to a change
in optimal batch size that cannot be found as soon as possible. Therefore, this paper proposes a
fine-grained, batching-based task allocation algorithm (FGBTA), considering non-stationary setting.
In the batch method, the algorithm first uses variable step size to allow for fine-grained exploration
within the predicted value given by the multi-armed bandit (MAB) algorithm and uses the results of
pseudo-matching to calculate the batch utility. Then, the batch size with higher utility is selected,
and the exact maximum weight matching algorithm is used to obtain the allocation result within the
batch. In order to cope with the non-stationary changes, we use the sliding window (SW) method to
retain the latest batch utility and discard the historical information that is too far away, so as to finally
achieve refined batching and adapt to temporal changes. In addition, we also take into account the
benefits of requesters, workers, and the platform. Experiments on real data and synthetic data show
that this method can accomplish the task assignment of spatial crowdsourcing effectively and can
adapt to the non-stationary setting as soon as possible. This paper mainly focuses on the spatial
crowdsourcing task of ride-hailing.

Keywords: spatial crowdsourcing; online task assignment; multi-armed bandit algorithm; fine-
grained batching algorithm

1. Introduction

Crowdsourcing is a computing paradigm whereby humans actively or passively
participate in the procedure of computing, especially for tasks that are intrinsically easier
for humans than for computers [1]. With the popularization of advanced mobile devices, a
new crowdsourcing framework, spatial crowdsourcing (SC) [2–8], harnesses the potential of
the crowd to perform real-world tasks with a strong spatial nature that are not supported by
conventional crowdsourcing techniques [9]. On excellent spatial crowdsourcing platforms
such as Uber [10], Waze [11], GrubHub [12], and Gigwalk [13], task requesters can send
spatial tasks to SC servers, which employ smart device carriers as workers to physically
move to designated locations to complete these spatial tasks. Crowdsourcing workers are
participants in the process of spatial crowdsourcing task allocation, also known as task
executors.

How to assign large-scale tasks to the corresponding crowdsourcing task executors is
the first challenge that the spatial crowdsourcing platform faces; that is, task assignment.
The purpose of task assignment is to arrange tasks for suitable task performers according
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to multiple objectives. Task allocation in spatial crowdsourcing is generally defined as:
Given a group of tasks and a group of task performers, task allocation is the process of
arranging tasks and task performers for specific goals under the premise of meeting spatial
constraints, time constraints, or other constraints. The real-time matching method [14–16]
can give the allocation result as soon as possible.

In fact, a real application might not strictly require tasks to be assigned immediately.
By waiting for a reasonably short period of time, it is feasible for the system to implement
local static allocation in batch mode. However, how to theoretically select the optimal
single batch or adjust the batch size in real time to significantly improve the effectiveness
of the task allocation algorithm is still an open problem. Most of the existing spatial
crowdsourcing batch modes mostly adopt fixed batch size and test the influence of different
batch sizes on the task allocation algorithm in the experimental stage.

Kazemi et al. [17,18] adopted the batch strategy and simplified the bipartite graph
as an instance of the maximum flow problem, obtaining accurate results using the basic
strategy based on the Ford–Fulkerson algorithm. However, the fixed batch mode does
not perform well in practical application, with a constantly changing demand density,
therefore the real-time batch adjustment strategy has attracted more and more attention
from researchers [19–23]. Qian et al. [24] proposed an adaptive batch processing mechanism
based on spatial crowdsourcing to take better care of user experience and more realistic
situations. Due to the advantages of the design mechanism, some traditional task allocation
methods can also be combined with the adaptive batch processing mechanism, which
improves the efficiency of online dynamic task allocation and shows good compatibility.
According to this framework, they designed a dynamic batch adjustment scheme based on
the multi-armed bandit (MAB) algorithm, which is an algorithm used to infer the next most
suitable batch size through historical data. At the same time, they also took the average
waiting time of users as the optimization goal, so as to enhance the user experience and
better meet the needs of the real situation.

However, this algorithm does not fully consider the non-stationarity of the optimal
batch size. In our research, we optimize the task allocation effect of spatial crowdsourcing
by tracking the dynamic change of the optimal batch size. In addition, if there are too
many kinds of optional batches in the MAB algorithm, the algorithm overhead will be
greatly increased. There are too few optional batch types, which will affect the accuracy of
batching and lead to poor task allocation effects. We take a fine-grained batching approach
and consider the benefits of multiple stakeholders simultaneously. Overall, the main
contributions of this article are as follows:

1. We propose a fine-grained batching-based task allocation algorithm (FGBTA) for the
online allocation problem in batch mode (OAPB) to achieve precise batching and
improve allocation efficiency;

2. We introduce the non-stationary setting to consider the dynamic changes of the
environment and use two concept drifts (a phenomenon that a target variable changes
over time) to verify the effectiveness of the algorithm in experiments;

3. We verify the effectiveness and efficiency of the algorithm on synthetic data and real
data. Experimental results show that our method is superior to the compared methods
in terms of overall utility and waiting time.

In the remainder of the paper, we review relevant studies in Section 2 and formally
define the OAPB problem in Section 3. Section 4 formally introduces the FGBTA method.
The Section 5 sets up experiments to evaluate our solutions. The Section 6 summarizes this
paper and looks forward to further research.

2. Related Work

Under the framework of spatial crowdsourcing, the online allocation problem based
on batch mode is studied, and an adaptive batch processing method based on MAB is
adopted. Therefore, in the related research section, we review the following three topics.
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2.1. Crowdsourcing and Geographic Information Crowdsourcing

Crowdsourcing [25–29] refers to the process of collecting information or inputting
tasks from a large number of crowds, usually through the Internet [30]. Crowdsourcing
is an online distributed problem-solving paradigm, in which an individual, company, or
organization publishes defined task(s) to the dynamic crowd through a flexible open call
to leverage human intelligence, knowledge, skill, work, and experience [31]. Currently, it
widely supports various applications and has made remarkable achievements.

Many researchers have studied crowdsourcing about geographic information [32–35].
Goodchild et al. [36] studied the potential role of volunteered geographic information
(VGI) [37,38] in disaster management, which is closely related to the concept of crowdsourc-
ing. They not only reviewed the field of the VGI, but also studied the correlation between
crowdsourcing data quality and disaster management, and discussed four forest fires that
affected the Santa Barbara area as an example. Basiri and Hacklay et al. [39] focused on
the challenges and future directions of crowdsourcing geospatial data, especially on the
problems caused by data quality and VGI deviation. They believed that VGI can not only
be used as a method of making maps, but also as a complex, more democratic, reproducible,
open, and reliable system, which can involve the society and promote diversity, coopera-
tion, and wider participation. Hacklay et al. [40] regarded geographic citizen science as
a field wherein crowdsourcing geographic information and citizen science are combined,
and crowdsourcing allows ordinary people to participate in scientific work, because the
data they generate has obvious geographical characteristics. Khajwal et al. [41] improved
the effectiveness of crowdsourcing in post-disaster damage assessment by enhancing the
content and reliability of information gathered through public participation. The research
presented a novel framework for the quantification and reduction of uncertainty in the
outcome of participatory damage assessment. Vrbik [42] introduced a process of collecting
non-standardized place names in two cities of the Czech Republic. The collection process is
carried out by crowdsourcing using a network map application specially created for this
purpose.

Numerous spatial crowdsourcing applications have appeared in developed areas such
as North America and Europe. Since 2009, the successful Geo-Wiki Project [43] has been
running. The Geo-Wiki project is an online volunteer network created to eliminate location
incompatibilities and increase the accuracy of global land cover maps. The Global Earth-
quake Model (GEM) [44] project uses the concept of crowdsourcing. It is an international
forum where organizations and individuals gather to develop, use, and share tools and
resources to make an unbiased assessment of earthquake risk. The experimental project
Clickworkers [45] was launched by NASA in 2000. This project aimed at identifying and
classifying craters on Mars, and thousands of participants analyzed every image in the
database. In the above projects, data is actively generated and submitted, which means that
a specific mobile application or service is established to collect reports generated by users.
This crowdsourcing is called active crowdsourcing. Even without voluntary contributors,
crowdsourcing may be activated. This crowdsourcing is called passive crowdsourcing. For
example, people now consume and generate geographic information as new geographic
information sources at any time through Flickr, Twitter, Facebook, and Instagram.

2.2. Online Allocation in Batch Mode

Kazemi et al. [17] firstly applied the batch method to solve the task allocation problem
of spatial crowdsourcing, and proposed three solutions to the maximum cardinality prob-
lem in batch mode: Greedy Strategy (GR), Lease Location Entropy Priority (LLEP), and
Nearest Neighbor Priority Strategy (NNP). Although they clearly and completely described
the specific matching methods, spatial tasks, and crowdsourcing workers’ participation in
the matching within fixed time intervals, they did not consider the influence of the interval
length (batch size) on the matching performance.

In the scheduling framework based on batch processing, Wang et al. [46] adopted
the reinforcement learning method of Q-learning to adaptively change the batch size
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and gave the theoretical analysis results ensuring the competition ratio. Different from
Wang et al., who focused on the overall utility of the platform, Qian et al. [24] focused
on the effects of user experience and supply and demand on batching. They introduced
the MAB problem into the batching mechanism and improved the ε-greedy method. In
our work, we comprehensively consider the requirements of requests, crowdsourcing
workers, and platforms, and balance and improve the benefits of all these aspects by
constructing reasonable optimization objectives. Sun et al. [47] firstly predicted the number
of future spatial tasks and crowdsourcing workers through the GRU deep learning model,
and then studied the adaptive batching strategy based on DQN and DDQN to solve the
task allocation problem. For specific spatial crowdsourcing applications and ride-hailing
applications, Qin et al. [21] customized a series of methods based on reinforcement learning
to overcome the dimension curse and sparse reward problems. Meanwhile, this work also
provided a solution for the balance of spatial partition between the state representation
error of asynchronous matching and the optimal gap. Aiming at the bottleneck matching
problem, Wang [48] proposed an adaptive holding strategy based on reinforcement learning,
and gave the theoretical results of the stochastic algorithm of performance boundary. Due
to the dynamic characteristics of spatial tasks and crowdsourcing workers’ arrival, the
non-stationarity of optimal batch size has not been fully considered in the above research.
By tracking the dynamic changes of the optimal batch size, the task allocation effect of
spatial crowdsourcing can be optimized.

2.3. Multi-Armed Bandit (MAB)

The problem of MAB is a classic problem in probability theory, which belongs to the
category of reinforcement learning. The problem is as follows: a gambler enters a casino
and faces a gambling machine with N arms. He does not know the real profit of each arm
in advance. Every time he plays, he can pull down one arm and receive profit. He needs
to select an arm drop each time to obtain the maximum payoff (or minimum regret) for
round T.

With stationary setting [49–51], the reward distribution Dk of each arm k in all T rounds
is fixed. A simple and effective way to deal with the problem is ε-greedy. It selects the
optimal arm (called “exploitation”) with a probability of 1-ε and randomly selects the arm
(called “exploration”) with a probability of ε. The limitation of this method is that the
probability of selection of all arms is equal during exploration, and the observed reward
information is not fully utilized. Upper Confidence Bound (UCB) [52–56] is an optimistic
strategy for dealing with uncertain environments. The Upper Bound of Confidence is
calculated by counting the selected times of each arm, and this algorithm can obtain the
regret value of O(logT). The limitation of this method is that it is necessary to calculate
and update the upper bound of confidence interval of each arm. When the number of arms
is too large, the computational cost is too high. Thompson sampling [57–61] was first put
forward by Thompson in 1933, also known as posterior sampling and probability matching.
Its basic idea is this: firstly, assume that the reward distribution parameter of each arm
is a simple prior distribution, and then select the optimal arm according to the updated
posterior probability. Thompson sampling algorithm works well, but its performance is
poor in time sensitivity problems. Although there has been abundant and effective research
on MAB algorithms in stationary environments, many methods are still being explored for
more realistic non-stationary environments.

In non-stationary circumstances, the reward distribution Dk of each arm k in round T
may change over time. Cao et al. [62] perceived changes in the environment by detecting
changes in the average value of arm reward experience. They developed M-UCB algorithm,
which combined the UCB method with a change point detection component based on
sliding window (SW) and solved the problem of MAB with piecewise stability. This
method adopts a change detection algorithm to monitor environment changes and perform
restart, which is an active adaptive strategy. Another strategy is known as passive adaptive
strategy. Trovo et al. [63] used the Thompson Sampling (SW-TS) method in SW to deal with
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two different forms of non-stationary environment: sudden change and smooth change in
a unified way. This method uses the reward distribution of the information updating arm
in the last n rounds. Cavenaghi et al. [64] proposed three versions of F-DSW TS algorithm:
pessimistic version, optimistic version, and average version. The discount factor and the
SW method were added to the reward function, which not only enhanced the influence of
recent awards but also retained the influence of the historical awards, so as to achieve the
purpose of adaptively tracking the optimal award allocation.

Concept drift [65–69] refers to the unpredictable change of the statistical characteristics
of the target variables that the model tries to predict with the passage of time. The existence
of a concept drift makes the prediction result inaccurate, resulting in a suboptimal deci-
sion [70]. In this study, we suggest that the distribution of arm reward changes over time.
Concept drift has the following four types: (1) sudden drift, which occurs suddenly in a
short period of time, and the new concept replaces the old one; (2) gradual drift, in which
the new concept gradually replaces the old concept in a period of time; (3) incremental drift:
the old concept gradually develops to the new concept in a period of time; (4) reoccurring
drift: old concept will reappear after a period of time.

3. Problem Statement

In this section, we give the basic definition of spatial crowdsourcing task allocation,
and then we formally define the optimization objective of task allocation.

3.1. SC Allocation-Related Definitions

Definition 1 (Requester). The requester firstly designs the task and sets the constraints that need
to be met when executing the task, and then publishes it on the spatial crowdsourcing platform,
waiting for crowdsourcing workers to accept the task.

Definition 2 (Worker). A crowdsourcing worker is a participant in the process of spatial
crowdsourcing task allocation. After accepting the task, he needs to move to a specific geo-
graphical location as soon as possible to perform the spatial task. A worker is represented by
wki = (ai, vi, lati, loni, duri, radi).

1. airepresents the time stamp when he appears on (lati, loni) geographic coordinates. Consider-
ing that, in practical applications, workers (such as taxi drivers) tend to move dynamically
and that their geographical coordinates are constantly changing, we assume that, if a worker is
not assigned a suitable task within a certain period, the worker needs to update his geograph-
ical location (lati, loni) and the corresponding appearance time ai, and then appear on the
platform as a new worker, that is, wki disappears and wknew_i appears.

2. vi indicates the speed at which workers move to the task location.
3. lati and loni respectively represent the latitude and longitude of workers’ geographical position

at ai.
4. duri means that crowdsourcing workers are near the geographic coordinate of (lati, loni)

in the period, and they can still use this coordinate to express their geographic position. It
is worth noting that, if crowdsourcing workers cannot find a suitable task to match during
duri, they will re-participate in the platform matching process at a new time stamp and a new
location.

5. radi represents the acceptable order radius for crowdsourcing workers. If the order distance
exceeds the acceptable radius, we think that the task position is too far away, and reckless
dispatch will greatly reduce the experience of both sides.

Definition 3 (Spatial Task). Different from traditional tasks, spatial tasks carry geographic
information and require crowdsourcing workers to be present at the mission location. A task is
defined by tj =

(
aj, latj, lonj, durj, desj

)
.

1. aj represents the release timestamp of the task, that is, the time when the task arrives at the
server.
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2. latj and lonj represent the latitude and longitude of the geographical location of the task,
respectively.

3. durj indicates the duration of the task, and aj + durj is the expiration time stamp of the task.
4. desj represents the specific description of the spatial task. In the application of taxi order

dispatch, its specific description is mainly composed of the customer’s destination, namely
desj =

(
destLatj, destLonj

)
, where destLatj represents the latitude of the task destination

and destLonj represents the longitude of the task destination.

Definition 4 (Matching Triplet). The matching triplet consists of crowdsourcing workers, spatial
tasks, and allocation time, that is, mijk =

(
wki, tj, mtk

)
. mtk is the matching time of spatial task

tj and worker wki.

3.2. Problem Definitions

Definition 5 (Batch Size). The batch size is represented by bs, which means that the platform
allocates tasks once every b time units. bsi represents the time interval between the i-th and (i− 1)-th
task assignments. Fixed batch means that the batch size is a constant value and will not change with
the variation of the data input stream, namely bs1 = bs2 = bs3 = . . . = bsn. Variable batch means
that the batch size will increase or decrease with the variation of data input stream. B is a batch set,
which records the size of each batch. It is expressed as B = {bs1, bs2, bs3, . . . , bsn}.

Definition 6 (Waiting Time). In this paper, we mainly focus on the spatial crowdsourcing task
of ride-hailing. Therefore, the waiting time in this scenario goes through three stages: (1) Firstly,
the requester issues the spatial task tj; (2) Then, in the process of task allocation, the platform finds
a suitable crowdsourcing worker wki for the requester; (3) Finally, the crowdsourcing worker wki
receives the requester at the timestamp tsx. The subscript x in wtijx indicates the timestamp when
the requester meets with the crowdsourcing worker and finishes waiting.

The waiting time wtijx of the requester is composed of two parts: (1) The waiting time for
task assignment, that is, the difference between task assignment time and release time is expressed
as wtallocate = mtk − aj. (2) The waiting pickup time consumed by crowdsourcing workers to

receive requesters, namely, the ratio of spatial distance to speed, is expressed as wtpick =
dist(wki , tj)

vi
.

dist
(
wki, tj

)
represents the distance between spatial task and worker. Therefore, the total waiting

time of the requester is defined as

wtijx = wtallocate + wtpick (1)

Definition 7 (Order Reward). Order Reward refers to the profit that crowdsourcing workers can
obtain when completing the spatial task. In the application of ride-hailing, the rewards for workers
are often related to the distance to their destination. Therefore, we use distance to express order
reward, which is represented by

tlj = dist
(
latj, lonj, destLatj, destLonj

)
(2)

Definition 8 (Success Rate of Allocation). For crowdsourcing platforms, the more tasks they
allocate, the more benefits they can earn. We use sr = count(M)

count(T) to represent the success rate of
allocation, where T and M represent the spatial task set and matching pair set after all tasks are
completed, respectively, and the meaning of the count function is to count the total number of sets.

Definition 9 (Matching Utility). Requesters, workers, and platforms are the three related sides of
spatial crowdsourcing task allocation, and they attach different importance to the allocation factors.
In the application of ride-hailing, the requester hopes that the crowdsourcing worker will pick up
the driver as soon as possible and reduce the waiting time. Crowdsourcing workers are more likely
to be assigned to long-distance orders, which increases the income and reduces the idle rate of cars.
The platform hopes to improve the success rate of matching, meet the requirements of both supply
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and demand sides, and gain more profits. In this paper, the matching utility score comprehensively
measures the benefits of three sides by using three factors: the waiting time of user, the reward of
order, and the success rate of allocation. The matching utility between tasks and crowdsourcing
workers is calculated by weight value and normalized value.

Weight value:

1. the waiting time of user: wwt
2. the reward of order: wtl
3. the success rate of matching: wsr

Normalized function:
There are two reasons for using normalization function here: Firstly, normalization can trans-

form dimensional expression into dimensionless expression. The normalized data is in the same order
of magnitude. It can eliminate the influence of dimensions and dimension units between indicators.
Secondly, normalization can convert data into decimals between (0, 1), which is convenient for data
processing.

1. Wait time normalization function normwt: normwt =
wtmax−wtijx
wtmax−wtmin

2. Order reward normalization function normtl : normtl =
tlj−tlmin

tlmax−tlmin

3. Success rate of matching normalization function normsr: normsr =
sr−srmin

srmax−srmin

In order to keep consistency with other indicators, we also calculated normalization for the
success rate, where the default value of srmax is 1 and the default value of srmin is 0.

The utility score of a single match uijx is calculated by the following formula:

uijx = wwt·norm(wt) + wtl ·norm(tl) (3)

It is worth noting that the subscript x is the same as x in wtijx above. The subscript x in
uijx indicates the timestamp when the requester meets with the crowdsourcing worker and finishes
waiting.

The total utility score uall is calculated by the following formula, where uavg is the average
utility and wavg is weight of uavg.

uavg =
∑M uijx

count(M)
(4)

uall = wavg·uavg + wsr·normsr (5)

Definition 10 (Online Allocation Problem in Batch Mode, OAPB). In a static scenario (also
known as offline scenario), it is assumed that the platform knows all the spatiotemporal information
about participants from the beginning, including the arrival time and location of tasks and workers.
Different from an offline scenario, an online scenario represents most of the real scenarios of spatial
crowdsourcing, in which spatial tasks and crowdsourcing workers arrive dynamically and their
spatiotemporal information cannot be obtained in advance before the time is up. Due to the limited
information obtained by the greedy algorithm of instant matching, we cut the time stream into set B
by batch processing. The objective of an online allocation problem in batch mode is to find a set of
matching pair M to maximize the matching utility uall .

maxuall = wavg·uavg + wsr·normsr
s.t. wavg + wsr = 1

wtallocate ≤ dur
dist

(
wi, tj

)
≤ radi

(6)

4. Fine-Grained Batching-Based Task Allocation Algorithm (FGBTA)

In this section, we firstly introduce the basic idea of fine granularity batching, and
then design the FGBTA algorithm combined with an in-batch matching algorithm to solve
the online allocation problem in batching mode.
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4.1. Basic Idea

The task assignment process in batch mode consists of two steps. Firstly, we do
not rush to task assignment and actively delay decision time, allowing for input spatial
tasks and crowdsourcing workers to obtain as much information as possible. At the same
time, the delay time should be suppressed to avoid the task waiting time being too long.
Secondly, when the batch size is determined, the spatial tasks and crowdsourcing workers
in the batch can be used as nodes to construct a bipartite graph, and the Kuhn-Munkres
(KM) algorithm is used to solve optimal matching. Since the latter can be solved using the
classical maximum flow algorithm or the Hungarian algorithm, our focus is on determining
the appropriate batching timing.

Figure 1 shows the overall architecture of the algorithm. Parameters and return values
are transmitted in four large rectangular blocks, which use ε-greedy MAB, fine-grained
batching, KM, and SW algorithms, respectively. We will introduce these four parts one by
one.

Figure 1. Algorithmic framework.

1. Execute ε-greedy MAB algorithm: the algorithm explores the optional batch size with
a probability of ε, and utilizes the optimal batch size with a probability of 1-ε. The
gray rectangular box in the ε-greedy MAB algorithm box represents the list of stored
optional batch size; the circle represents optional batch size and the yellow circle
represents the optimal batch size. The algorithm returns a batch size bsi as the input
of the next algorithm.

2. Execute the fine-grained batching algorithm:

1. The first step is to divide the obtained batch size bsi into n parts.
2. The second step, every time through this step, the algorithm will wait bsi

n seconds
for new spatial tasks and crowdsourcing workers to enter. The small box in the
upper left corner of the fine-grained batching box expresses this process. Each
blue puzzle piece in the left queue represents a spatial task, and each yellow
puzzle piece in the right queue represents a crowdsourcing worker.

3. The third step is to use greedy algorithm to perform pseudo-matching and
calculate utility. In the pseudo-matching process, we use the first-come-first-
served principle to find suitable crowdsourcing workers for tasks. The box in
the lower left corner of the fine-grained batching box expresses this process.
The upper part of the box represents the existing tasks and workers, and the
sequence numbers in the puzzle pieces represent the order in which they arrive
at the platform. The lower part shows the algorithm-matching process. Task
1 arrives first, chooses first, and chooses crowdsourcing worker 3. Then, there
are still two choices for task 2 and it chooses crowdsourcing worker 2. Finally,
there is only crowdsourcing worker 1 available for task 3, and it can only choose
crowdsourcing worker 1.
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4. The fourth step, if the calculated batch utility does not decrease, which means
that more tasks and crowdsourcing workers can be stored in the batch, returns
to the second step. If the utility of the batch declines, more crowdsourcing data
cannot be stored in the batch and the next algorithm is entered. This process is
expressed in the judgment box on the right side of the fine-grained batching box,
which is used to judge whether the batch utility is declining. If not, return to the
second step; otherwise, enter the next algorithm.

3. Execute KM algorithm: Execute KM algorithm: This is a process of bipartite matching.
The blue puzzle pieces on the left in the KM box represent the existing spatial tasks,
and the yellow puzzle pieces on the right represent the existing crowdsourcing work-
ers. One less piece of the puzzle on the right is used to show that the number of left
and right nodes in the real task allocation scene is often unequal.

4. Execute SW algorithm to update batch utility: For a non-stationary environment, the
SW method retains short-term utility scores of batches to eliminate adverse effects
caused by historical utility. The timeline on the left in SW represents the passage of
time. As time goes on, new utility is input into the queue; the yellow moving box
represents the sliding window and the length of the moving box represents the length
of the sliding window. Sliding the window to the right means receiving newer recent
data.

In citation [24], the author proposed an adaptive batching method based on MAB to
adapt to the change of real-time supply and demand. The exploration rate of this algorithm
decreases continuously. Although this action can tend to select efficient batches under
stable conditions, it will lead to a poor allocation effect when the optimal batch size changes.
In order to track the dynamic changes of the optimal batch size, we introduce an unsteady
MAB algorithm to perform batch tasks and use an SW to preserve the recent batch utility.
In addition, if there are too many kinds of batches in the MAB algorithm, the algorithm
overhead will be greatly increased. The types of batches are too few and too sparse, which
will affect the accuracy of batches, resulting in a poor task allocation effect.

Therefore, the research focus of this paper is to make fine-grained decision un-
der the framework of MAB. We divide the predicted batch size bsi into n sub-range
R =

{[
0, bsi

n

]
,
[
0, 2 ∗ bsi

n

]
,
[
0, 3 ∗ bsi

n

]
, . . . , [0, bsi]

}
, when the time reaches the end of

a certain sub-range, we use greedy algorithm to approximate KM algorithm for pseudo
matching. The greedy algorithm used here works with the batch utility function, unlike the
greedy algorithm of instant matching. It can be observed that, with an increase in batch
size, the average utility of matching has an overall trend of an initial oscillating increase
and then an oscillating decline. Because time cannot go back, we put the decision point at
the time when the utility declines for the first time, and then use KM algorithm to formally
perform matching to obtain the highest possible profit.

4.2. Fine-Grained Batching Algorithm

In terms of fine granularity, we design a set of selectable batch sizes according to the
expiration time dur of the task. Since the minimum time interval is one second, there are
|dur| kinds of batches that can be selected if the design is carried out every one second,
which is too expensive. Therefore, we set optional batches at certain intervals. Assuming
the interval length is l, the set of optional batch size is B = {l, 2 ∗ l, 3 ∗ l, . . . , dur}. Then,
we use MAB algorithm to predict the appropriate batch size bsi, and divide it into several
time periods R =

{[
0, bsi

n

]
,
[
0, 2 ∗ bsi

n

]
,
[
0, 3 ∗ bsi

n

]
, . . . , [0, bsi]

}
. With the passage of

time in the real world, the platform collects spatial tasks and crowdsourcing workers, uses
the pseudo-matching of Algorithm 1, and calculates the utility according to the results
of the pseudo-matching. In this article, batch utility is the utility score of batch size. The
calculation process of the batch utility is as follows:
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ubsi
= wavg ∗

∑Mbsi
uijx∣∣∣Mbsi

∣∣∣ + wsr ∗ normsr − γ ∗ bsi
dur (7)

where uijx is the utility score of single pair matching, ubsi
represents the utility score of

batch size, Mbsi
represents all matching pairs formed in this batch,

∣∣Mbsi

∣∣ represents the
number of all matching pairs, bsi represents the batch size of this batch, γ is an adjustable
parameter.

The last term γ ∗ bsi
dur is used as a penalty term to avoid selecting a batch size that is too

long. Ostensibly, the longer the batch size is, the more information can be obtained, and the
better the batch utility score can be obtained by matching within the batch size; however,
many long-awaited tasks and crowdsourcing workers will be invalidated, which will affect
the overall allocation effect, therefore adding penalty items is beneficial to the overall task
allocation.

Finally, when utility rises and begins to decline, on the whole, we think that the
optimal decision point has been passed, and here is the available position nearest to the
optimal point. Therefore, we perform the true matching of KM algorithm at this point.

Algorithm 1 Pseudo Matching with Greedy Algorithm

Input: a set T′ of n tasks order by timestamp, a set W ′ of m workers
Output: batch size utility value
1: initial in-batch match set Mbsi

;
2: for t in T′:
3: find a worker w to maximize the utility score uijx from W ′

4: delete w from W ′

5: Mbsi
= Mbsi

∪ (w, t)
6: calculate batch size utility value ubsi

with match set Mbsi
;

7: return ubsi
;

Algorithm 1 uses the greedy algorithm to make tentative pseudo-matching to approxi-
mate the Hungarian algorithm to find the batch size that maximizes the batch utility. Firstly,
according to the arrival order of tasks, the crowdsourcing worker with maximum utility is
selected for each task (line 3), then the worker is deleted (line 4) to avoid the worker being
selected again, then the match is added to the whole matching set (line 5), and finally the
batch utility is calculated (line 6).

We use a case to explain fine-grained batching. Please see Figure 2.

Figure 2. A case to explain fine-grained batching.

Assuming that the current optimal batch size is 20 s, the prediction batch size given by
the MAB algorithm is 40 s, and the interval size (exploration step) is l = 10 s.

At first, the algorithm collected the first 10 s of spatial tasks and crowdsourcing
workers and achieved a batch utility of 0.6 by using pseudo-matching. The purpose of
pseudo-matching is only to calculate the batch utility, and it will not form a matching triplet.
Then, the next 10 s of data were collected and added to the task set and worker set, and
the batch utility of 0.7 was obtained. Because of the increase in batch utility, we continued
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to explore. When the batch size reaches 30 s, the matching batch utility of spatial tasks
and crowdsourcing workers in crowdsourcing platform is 0.65, which starts to decline
compared with 0.7 when the batch size is 20 s. Although we know that, when the batch
size is 20 s, the utility is better, we cannot turn back the time. Tasks and workers have been
waiting in the batch, therefore we should immediately perform the matching in the batch,
and the matching result will form the final matching triplet.

4.3. Using Sliding Window (SW) Approach to Deal with Non-Stationary Setting

For the non-stationary environment, we use the SW method to retain the short-term
utility score of batch size and eliminate the adverse effects caused by too long historical
utility.

We use a queue of size k (called hot path here) in each batch size bsj to save the recent
utility score HT j =

{
uj

bs1
, uj

bs2
, uj

bs3
, . . . , uj

bsk

}
. When selecting the optimal batch size, the

average value of k utility score htabsj is used to represent the current utility of the batch
size, so as to track the optimal batch at the current time point. The calculation formula of
htabsj is:

htabsj =
∑k

i=0 uj
bsi

k
(8)

Finally, we present FGBTA in Algorithm 2.

Algorithm 2 Fine-Grained Batching-based Task Allocation Algorithm Considering Non-Stationary Setting

Input: a set T of n tasks, a set W of m workers, the timestamp set S, exploration rate ε, adjustable parameter γ,
Output: the batch size selection trace of the entire data stream BT
1: Initialize exploration rate ε, empty tasks set T′, empty workers set W ′, batch size bs0 = 0, optional batch set
B = {l, 2 ∗ l, 3 ∗ l, . . . , dur};
2: Initialize hot trace HT j in each optional size bsj to record recent k batch size utility value, matches set M;
3: while incoming timestamp s do:
4: if random(0, 1) ≤ ε then:
5: exploration: bsi = B[random(|B|)];
6: else
7: find the optimal batch size with the average value of hot trace htabsj ;
8: exploitation: bsi = B[argmax(htabsj )];
9: end
10: interval set: R =

{[
0, bsi

n

]
,
[
0, 2 ∗ bsi

n

]
,
[
0, 3 ∗ bsi

n

]
, . . . , [0, bsi]

}
;

11: initialize ulast = 0, step = 0;
12: for interval in R:
13: collect tasks T′′ and workers W ′′ from [s, s + |interval|];
14: execute algorithm 1 and get batch size utility value uinterval with formula (7) and (8);
15: if uinterval < ulast:
16: step = |interval|
17: break;
18: else:
19: ulast = uinterval ;
20: end
21: for incoming tasks s and incoming workers w in [s, s + step] do:
22: collect tasks and workers: T′ ← T′ ∪ t, W ′ ←W ′ ∪ w ;
23: execute task assignment algorithm and M← M ∪ (t, w, s + step) , BT ← BT ∪ step ;
24: find a batch size bsj which closest to the step;
25: get batch size utility value uj

bs with formula (7) and (8);

26: HT j ← HT j ∪ uj
bs

27: if
∣∣∣HT j

∣∣∣ > k:

28: delete the first element of HT j

29: end
30: s = s + step;
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Algorithm 2 describes the FGBTA algorithm. First, we initialize the exploration rate,
the optional batch size set, the matching set, and the thermal path of the optional batch
(line 1–2). Then, use the ε-greedy method to select a random batch size or the current
optimal batch size (line 4–9). Then, the greedy algorithm with a small time cost is used for
pseudo matching. When the batch utility drops for the first time, the step size at this time is
selected as the real batch size later (line 10–20). Finally, the Hungarian matching algorithm
is performed to calculate the real batch utility and update the hot path, matching set, and
current timestamp (line 21–30).

5. Experimental Study

In this part, we use the proposed FGBTA algorithm to perform experiments on syn-
thetic data sets and real data sets, and show the experimental results.

5.1. Experimental Setup

In the experiment, we used both synthetic and real data sets.
There are two real data sets:

1. Desensitized online car-hailing order data came from Xiamen Big Data Security Open
and Innovative Application Competition [71]. The time span is from 31 May 2019
to 9 June 2019, and the spatial range is from latitude 24.2◦ to 24.8◦, longitude 117.7◦

to 118.7◦, with a total data of 3,027,488 pieces. According to the order data of online
car-hailing in Xiamen on 1 June 2019, we drew the heat map of order distribution. The
redder the color in the legend, the larger the number, indicating the higher the order
density. The heat map is shown in Figure 3a.

2. Desensitized taxi order data came from the Gaia Data Opening plan [72]. The time
range is from 1 November 2016 to 30 November 2016. The space range is from latitude
30.571532◦ to 30.791919◦ and longitude 103.938215◦ to 104.21534◦. The total data
amount is 6844253. According to the order data of taxis in Chengdu on 1 November
2016, we drew a heat map of order distribution, in which the redder the color in the
legend, the larger the number, which means the higher the order density. The heat
map is shown in Figure 3b. It is worth noting that the two figures use a different
maximum density and minimum density, therefore the same color does not mean the
same order density. It is difficult to distinguish online car-hailing order or cruise order
from taxi order attributes, so we handled taxi orders in the same way, whether they
are online car-hailing orders or not, because there was no more attribute information
to help us distinguish whether it was a cruise order or not.

Figure 3. (a) Xiamen car-hailing order heat map; (b) Chengdu taxi order heat map.
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The order data is composed of attributes such as the customer’s pickup time stamp,
pickup latitude and longitude, getting off time stamp, and getting off latitude and longitude.
We regard the pickup time stamp and pickup latitude and longitude as the arrival time
aj of the order and the geographic information of the crowdsourcing task

(
latj, lonj

)
,

respectively. The combination of the longitude and latitude of getting off the taxi and the
time stamp of getting off the taxi is regarded as the appearance time ai of crowdsourcing
workers in a certain geographical location

(
latj, lonj

)
. Besides, the longitude and latitude

of getting off the car here is also regarded as the task destination desj. Because the data set
does not contain the expiration time of each node, we manually generate the valid period
dur.

Because the real data we obtained is limited, as it is difficult to obtain the data that
completely matches the information required by the article, we had to do some processing.
In the following section, we explain the data processing process, the mapping between
real data and the data we needed, and the process of spatial crowdsourcing from the
perspectives of requesters, crowdsourcing workers, and platforms.

Similar to the processing methods in other research literature [24,46,48], we paid
attention to the matching between the left and right nodes in the bipartite graph, and we
performed fuzzy processing for the real physical meaning between them. The following
data information can be obtained from real data: pickup timestamp, pickup longitude,
pickup latitude, getting off timestamp, getting off longitude, getting off latitude. Therefore,
we split the above information from an order, gave it to the requester or the worker,
respectively, and then sorted it according to the time sequence. we established the following
mapping, as shown in Tables 1 and 2:

Table 1. Mapping table of partial attributes required by spatial task.

Data Mapping Release Timestamp Longitude of Task Latitude of Task

properties from real data pickup timestamp pickup longitude pickup latitude

required properties release timestamp aj
longitude of the

location lonj

latitude of the
location latj

Table 2. Mapping table of partial attributes required by worker.

Data Mapping Appear Timestamp Longitude of Worker Latitude of Worker

properties from real
data getting off timestamp getting off longitude getting off latitude

required properties appear timestamp ai
longitude of the

location loni

latitude of the
location lati

The remaining information durj (duration of the task) is set according to the actual
situation. desj (description with destination) can be set by custom or getting off latitude
and longitude. From the requester’s point of view, we explain the task allocation of spatial
crowdsourcing. The requester sends out a request to arrive at the system server at aj, and
waits for the platform to assign suitable workers within the duration time durj. After the
assignment is completed, the requester waits patiently for the worker to finish the task and
submit the result. In ride-hailing application, the requester waits for the crowdsourcing
worker to reach the uploaded geographic location

(
latj, lonj

)
and takes a taxi to destination

desj.
Other information, such as vi, duri and radi, are set according to the actual situation.

From the worker’s point of view, we explain the task allocation of spatial crowdsourcing.
Free crowdsourcing worker automatically submits location information (lati, loni) so that
the platform can assign him an appropriate task. After the assignment is completed, the
crowdsourcing worker goes to the designated place to complete the task and submits
the results. In the ride-hailing application, a crowdsourcing worker first drives to the
designated location to pick up the requester, and then goes to the destination together.
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From the perspective of platform, we explain the task allocation of spatial crowd-
sourcing. The platform is responsible for receiving information of spatial tasks and idle
crowdsourcing workers and matching tasks with workers by using appropriate allocation
algorithm. The incentive mechanism of the algorithm is often related to the development
strategy of the platform. In addition, in the real platform, it is often possible to set the
maximum failure time of spatial tasks or the search radius of workers and so on.

For the synthetic data set, we vary the optimal batch size to test the tracking capability
of the algorithm. We consider two types of conceptual drift: (1) sudden drift; (2) incremental
drift. All of these changes are likely to occur in the real world, and, in the longer term, they
are often mixed.

Compare algorithms: we compare the FGBTA algorithm with the following algorithm:

1. Greedy algorithm (GR). This algorithm is slightly different from Algorithm 1 in this
paper. It is a simple real-time algorithm that selects the most effective match for spatial
tasks or crowdsourcing workers without batching. In an average order case, it is a
competitive algorithm.

2. Fixed-batch algorithm (FB). The batch size of the algorithm is a fixed value. In the
non-stationary environment, the optimal fixed batch size will change with the arrival
of new inputs. Therefore, we test the optimal batch size for each experiment. In-batch
matching uses KM algorithm.

3. ε-greedy MAB algorithm(G-MAB). The algorithm uses the ε-greedy strategy to bal-
ance exploration and exploitation, combined with the MAB algorithm, to select the
appropriate batch for the input stream over time in order to obtain as much profit as
possible.

4. ε-greedy MAB with variable exploration (GV-MAB). This algorithm dynamically
adjusts the exploration rate on the basis of the previous algorithm, which can im-
prove the efficiency of the dynamic task allocation on the whole and shows good
compatibility [24].

Evaluation and implementation: all algorithms are evaluated based on task waiting
time, order payoff, allocation success rate, and total utility score. We took into account
the concerns of requesters, crowdsourcing workers, and platform. All algorithms were
implemented by Java language, and the experiments were performed on a machine with a
Windows 7 operating system, Intel® Core™ I7-3540M 3.00 GHz processor, and 8 GB main
memory.

5.2. Experimental Results
5.2.1. Performance of the Algorithm on Synthetic Data Sets

The synthetic data set we used in this part is expanded from the real data set. We
can add random data to increase the data density and delete some existing data to reduce
the data density. The supply-demand ratio is controlled by adjusting the number of
crowdsourcing workers and spatial tasks to evaluate the performance of the algorithm
under the influence of concept drift. We also evaluated the duration, the search radius of
crowdsourcing worker, the exploration rate, and adjustable parameter in the algorithm to
test the influence of these factors on total utility score.

Impact of Concept Drift

We can control the density of spatial tasks and crowdsourcing workers in unit time
and unit space, as well as the ratio of supply and demand to adjust the total utility score,
resulting in sudden drift and incremental drift. Our experience is that, when the number
of crowdsourcing workers in unit time and unit space is much higher than the number of
tasks, the total utility score is often higher. Because there are fewer tasks and more workers,
spatial tasks have a better chance of matching the right workers. On the contrary, when
there are more tasks and fewer workers, some tasks will expire because they cannot match
suitable workers. At the same time, the matched tasks will have a longer waiting time
because of the sparse density of workers.
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Use synthetic data to generate sudden drift: In practice, the instability of supply and
demand occurs in a short period of time. From the shortage of supply to the oversupply,
with the increase in data density, the total utility score will be promoted from a lower state
to a higher state in a short time. On the contrary, the total utility score can be reduced from
a higher state to a lower state.

Use synthetic data to generate sudden drift: On the basis of sudden drift, the increasing
speed of crowdsourcing workers will be slowed down so as to achieve the effect of gradually
improving the total utility score.

In the synthetic data sets, we show the performance of the algorithm on a sudden and
incremental concept drift. The experimental conditions are shown in Table 3.

Table 3. Setting of synthetic data parameters and algorithm parameters in concept drift experiment.

Cardinality rad
(Radius)

dur
(Duration)

l
(Interval) n ε (Exploration

Rate)
γ (Adjustable

Parameter)

100 K 5 KM 180 s 10 s 2 0.6 0.01

In Figure 4a, we select the optimal batch for FB algorithm before and after the sudden
drift, therefore the utility of the fixed batch in two stages is a smooth straight line. The
horizontal axis is used to represent the change of time. For example, abrupt drift requires
the change to occur in a short time, while incremental drift can be gradual. The utility on
the vertical axis represents the total utility score. After the sudden drift occurs, FGBTA
algorithm uses a pseudo-matching heuristic algorithm combined with SW to keep the size
of the recent excellent batch to obtain the optimal utility as quickly as possible. In Figure 4b,
the total utility score increases over time, and the FGBTA algorithm is also updated step by
step and tries to track the optimal batch size, which is the best. Although the utility score of
other algorithms is also increasing, the reason for the increase is not that the optimal batch
size is obtained, but that the input workers and tasks are more likely to produce higher
utility.

Figure 4. (a) The comparison of different algorithms in sudden drift; (b) the comparison of different
algorithms in incremental drift.

Impact of Duration

The experimental conditions are as follows: the synthetic data is based on the real data
and the dur attribute is added and changed to 50, 100, 150, 200 and 250 s, respectively, to test
the change of the total utility score of each algorithm under different dur. The experimental
conditions are shown in Table 4.
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Table 4. Setting of synthetic data parameters and algorithm parameters in duration experiment.

Cardinality rad dur l n ε γ

100 K 5 KM 50 s, 100 s, 150 s, 200 s, 250 s 10 s 2 0.6 0.01

With the growth of duration, more spatial tasks and crowdsourcing workers will exist
in the platform for a long time, and will not be quickly discarded by the system, which will
also increase the number of members participating in matching. As a result, the allocation
success rate will increase, the waiting allocation time wtallocate will increase, the pick-up
time wtpick will decrease, and the order revenue will increase, which generally shows an
increase in total utility score, as shown in the Figure 5. In Figure 5, the horizontal axis
represents the change in duration, and the vertical axis represents the total utility score.
Due to the growth of duration, the size of optional batch increases, and tasks can exist on
the platform for a long time and participate in matching, which increases the computational
cost of the algorithm and makes the running time longer. It can be seen from the figure
that the effect of FGBTA algorithm is similar to that of the FB algorithm, but that FGBTA
algorithm is better.

Figure 5. Utility of varying duration.

Impact of Radius

The experimental conditions are as follows: the synthetic data is based on the real
data, and the rad attribute is added and changed to 2, 3, 4, 5 and 6 KM, respectively, to test
the change of the total utility score of each algorithm under different rad. The experimental
conditions are shown in Table 5.

Table 5. Setting of synthetic data parameters and algorithm parameters in radius experiment.

Cardinality rad dur l n ε γ

100 K 2 KM, 3 KM, 4 KM, 5 KM, 6 KM 180 s 10 s 2 0.6 0.01
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In the case of small radius, GR algorithm is even better than the G-MAB algorithm,
because the search radius of crowdsourcing workers is limited; even if the delay time is
longer, they may not be able to obtain appropriate orders. As radius increases, the number
of matching candidates increase, and the algorithm takes longer and has higher utility, as
shown in Figure 6. In Figure 6, the horizontal axis represents the change in radius, and the
vertical axis represents the total utility score. FGBTA algorithm and FB algorithm are better
than other algorithms and have higher utility.

Figure 6. Utility of varying radius.

Impact of Exploration Rate and Adjustable Parameter

The experimental conditions are as follows: The synthetic data is unchanged after
being expanded by real data. By adjusting the parameters of the algorithm, the exploration
rate changes from 0.1 to 1.0, and the step size is 0.1. The adjustable parameter γ changes
from 0.00 to 0.05, and the step size is 0.01. The experimental conditions are shown in
Tables 6 and 7.

Table 6. Setting of synthetic data parameters and algorithm parameters in exploration rate experi-
ment.

Cardinality rad dur l n ε γ

100 K 5 KM 180 s 10 s 2 [0.1–1.0] 0.01

Table 7. Setting of synthetic data parameters and algorithm parameters in adjustable parameter
experiment.

Cardinality rad dur l n ε γ

100 K 5 KM 180 s 10 s 2 0.6 [0.00–0.05]

The exploration rate of FGBTA algorithm is used to weigh the exploration and ex-
ploitation in the process of choosing the optimal batch size. In Figure 7a, the horizontal axis
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represents the change in exploration rate, and the vertical axis represents the total utility
score. As shown in the Figure 7a, the optimal exploration rate is 0.6. When the exploration
rate reaches 1.0, the selection of batch size is completely random, and the past information
cannot be used, therefore the utility drops to the lowest. Similarly, when the exploration
rate is low, if the suboptimal batch size is selected, the long-term failure to update to the
optimal batch size will also reduce utility. The adjustable parameter of γ works best at the
position of 0.01, as shown in Figure 7b. In Figure 7b, the horizontal axis represents the
change in the adjustable parameter, and the vertical axis represents the total utility score.

Figure 7. (a) Utility of varying exploration rate ε; (b) utility of varying adjustable parameter γ.

5.2.2. Performance of the Algorithm on Real Data Sets

As time goes by and the amount of data increases, we compare the performance of
these five algorithms on total utility score, task waiting time, order reward, and allocation
success rate. The experimental conditions are shown in Table 8.

Table 8. Setting of synthetic data parameters and algorithm parameters on real data sets.

Cardinality rad dur l n ε γ

50 K, 100 K, 150 K, 200 K, 250 K 5 KM 180 s 10 s 2 0.6 0.01

In Figure 8a, the horizontal axis represents the change in cardinality, and the vertical
axis represents the total utility score. It can be seen from Figure 8a that, when the amount
of data is increasing, the total utility score of FGBTA algorithm is always higher than that
of other four algorithms, followed by FB algorithm. Because the batch size selected by FB
algorithm is the optimal batch size screened out by parameter adjustment, the optimal
batch size cannot be determined in real time. At the same time, we notice that, although
GV-MAB algorithm can dynamically adjust the exploration rate, when the exploration rate
drops to a certain degree and stabilizes at the sub-optimal batch size, its utility score is not
good.
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Figure 8. (a) Comparison of total utility score; (b) comparison of average wait time for tasks.

In Figure 8b, the horizontal axis represents the change in cardinality, and the vertical
axis represents the average waiting time. In the comparison chart of the average waiting
time of tasks in Figure 8b, the average waiting time of tasks calculated by FGBTA algorithm
is the shortest, followed by FB algorithm. The greedy algorithm (GR) has the longest
average waiting time, because the real-time batch algorithm needs to match immediately,
and the obtained information is limited, thus it cannot delay the allocation to wait for a
more suitable matching object. As the waiting time of the task is composed of the waiting
time for allocation and the pick-up time of crowdsourcing workers, we can see more details
from Figure 9a,b.

Figure 9. (a) Comparison of waiting allocation time; (b) Comparison of waiting pickup time.

In Figure 9, the GR algorithm has the shortest waiting time for allocation because it is
immediately allocated, but the distance between the matching sides is too long, resulting
in the driving time being too long (waiting pickup time). On the contrary, the GV-MAB
algorithm delays batch for the longest time, obtains a lot of crowdsourcing information,
and has the shortest pick-up time. In the trade-off between these two factors, the FGBTA
algorithm trades the shortest waiting time with shorter batch delay time and shorter pickup
time.
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In Figure 10a, the greedy algorithm has the highest success rate in terms of platform-
concerned allocation success rate, mainly because there are few spatial tasks or crowdsourc-
ing workers that cannot match due to the overdue period. The allocation success rate of
FGBTA algorithm is close to that of the FB algorithm, which is better than the other two
adaptive batch methods. The GV-MAB algorithm causes more tasks or workers to expire
due to their long delay time. Figure 10b shows that there is not much difference among the
algorithms in order revenue.

It can be seen from Figure 11 that the GR algorithm had the shortest running time,
which also depended on the simple matching rules of the real-time matching algorithm
and did not need to use the exact maximum weight matching algorithm. We iterated over
all the optional batch lengths for FB algorithm and selected the optimal result, and the
FB algorithm seemed to perform better than the FGBTA algorithm. However, in a real
operating environment, the system would not have the opportunity to iterate over all
possibilities. The FGBTA algorithm is superior to G-MAB and GV-MAB on the whole, and
it is slightly inferior to the FB algorithm because the algorithm takes a certain trial and
pseudo-matching strategy before the actual batch processing.

Figure 10. (a) Comparison of allocation success rate; (b) comparison of order income.

Figure 11. Comparison diagram of algorithm running time.
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The experimental results show that the FGBTA algorithm is optimal or nearly optimal
on both real and synthetic data sets in terms of total utility score and the average waiting
time of spatial tasks. The FGBTA algorithm is also strong in terms of allocation success rate
and order income.

6. Discussion

The FGBTA algorithm handles the task allocation of spatial crowdsourcing from the
perspective of fine-grained batching. This method is feasible and can perform well in the
face of unsteady changes. Next, we compare the FGBTA algorithm with some algorithms
in related research.

The FGBTA algorithm is not a pure real-time algorithm, because, in a real-time al-
gorithm [14–16], tasks are matched immediately when they arrive at the system. These
methods are similar to GR in the comparison algorithm in this paper. Although real-time
matching is extremely fast, there is often little room for operation, and the improved
matching effect is limited, which affects the user experience. FGBTA is not a fixed batch
algorithm either. The fixed batch algorithm [17,18] uses a fixed time interval as the batch
size, which is similar to FB in the comparison algorithm in this paper. The LLEP and NNP
algorithms in [17] add some heuristic ideas to obtain the maximum utility, but the method
of determining the optimal batch length is not given, and only by trying constantly in the
experiment can we find out the optimal value. The FB algorithm in this paper is to compare
with our algorithm under the optimal batch size.

The deficiency of our research is that this method is an online algorithm without offline
knowledge guidance. The batch size can only be controlled by the historical feedback of
the online algorithm and the increase and decrease in batch utility under pseudo-matching.
Articles [21,46–48] used trained offline information as guidance information for online
matching. However, offline training is not considered in this paper.

1. In the research of [21], the ride-hailing platform can use the learned strategy structure
as a look-up table to adaptively decide when to use the delay matching strategy and
how long these matching delays should be. Offline information is a learned strategy
structure.

2. In the research of [46], this paper designed restricted Q-learning (RQL), which is an
algorithm based on reinforcement learning and can produce a near-optimal batch
processing strategy. Offline information is a batch processing strategy stored in Q
table.

3. In the research of [47], a method combining deep learning and reinforcement learning
was proposed. By considering the historical data, the GRU model is trained to predict
the number of future tasks. The Hungarian algorithm was adopted in batches. Offline
knowledge is the predicted number of future tasks.

4. In the research of [48], aiming at the online bottleneck matching problem with delay,
the author proposes an adaptive holding strategy which is based on reinforcement
learning and developed a method called adaptive-h on top of the new holding strategy.
Offline knowledge is the holding strategy that has been learned well.

The above methods pay attention to the prediction of future tasks or the training of
the optimal strategy table, and the effect is good. We think that these research studies use
offline knowledge to guide online matching. Because this paper pays more attention to
fine-grained batch processing in online situations and dealing with unsteady situations, it
does not consider acquiring a lot of offline knowledge, which is also the difference between
this paper and these research studies.

Research [24] focused on the control of exploration rate in the ε-greedy MAB algorithm,
hoping to maximize the use of the known optimal batch size. However, compared with our
method, the disadvantage of their method is that it cannot locate the optimal batch length
more accurately. On the other hand, their method is futile for the possible non-stationary
environment. Our method performs better on these two points.
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7. Conclusions and Future Work

Experimental results show that, compared with GR, FB, G-MAB, and GV-MAB algo-
rithms, the FGBTA algorithm is optimal or near optimal in both data sets and synthetic
data sets. The FGBTA algorithm also has strong advantages in allocation success rate and
order revenue, but it is slower in running time than GR, a real-time algorithm, and FB, a
fixed batch algorithm with optimal batch size.

The advantages of FGBTA algorithm are as follows: (1) Pure online algorithm, which
only uses a certain feedback mechanism to adjust the batch size, without too much offline
training knowledge. (2) Using this algorithm can obtain higher total utility score and
shorter waiting time for users, and enhance the experience of requesters, crowdsourcing
workers, and platforms. (3) In the face of unsteady changes, it will respond faster.

The disadvantages of FGBTA algorithm are as follows: (1) We decided to implement
the bipartite matching within the batch when the batch utility declined for the first time.
Although the experiment shows that the final effect of this strategy is not bad, it may not
be the best strategy to take the time when the batch utility declined for the first time as the
decision point of bipartite matching. (2) In this paper, the application of taxi dispatch is
taken as the key case to study, and the reward mechanism of the task lacks generality, and
the expansibility needs to be improved.

This method can also be commercially implemented in general service. Because this
method (FGBTA) is an online task allocation algorithm, it can quickly match the spatial
tasks and crowdsourcing workers. We can expand the incentive mechanism to make it
more diversified to adapt to different kinds of general services. In addition to ride-hailing
applications, it can also be applied to take-out crowdsourcing and courier crowdsourcing,
especially tour guide dispatch in the tourism platform.

In this paper, we proposed a spatial crowdsourcing task allocation algorithm based on
fine-grained batching, which took into account the experience of requestors, crowdsourcing
workers, and platforms, and a more realistic non-stationary environment. Experiments
showed that our algorithm performed well in both real and synthetic data. Since we
adopted the passive SW approach to deal with concept drift, our future research direction
is to take the active approach, detect whether drift occurs, understand when, where, and
how drift occurs, and adapt to drift.
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