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Abstract: In order to improve the effect of path planning in emergencies, the missing position
imputation and velocity restoration in vehicle trajectory provide data support for emergency path
planning and analysis. At present, there are many methods to fill in the missing trajectory information,
but they basically restore the missing trajectory after analyzing a large number of datasets. However,
the trajectory reduction method with few training sets needs to be further explored. For this purpose,
a novel trajectory data cube model (TDC) is designed to store time, position, and velocity information
hierarchically in the trajectory data. Based on this model, three trajectory Hierarchical Trace-Back
algorithms HTB-p, HTB-v, and HTB-KF are proposed in this paper. Finally, experiments verify
that conduct in a different number of sample sets, it has a satisfactory performance on information
restoration of individual points of the trajectory and information restoration of trajectory segments.

Keywords: spatio-temporal data mining; trajectory data completion; transportation network; traffic
condition restoration

1. Introduction

The intelligent transportation system has become hot in recent years, many approaches
on intelligent transportation have been proposed as a result. The excavation of flow can be
used to support vehicle traffic planning [1,2], vehicle path recommendation [3,4], subway
station location planning [5,6], vehicle emergency management [7,8], etc. The potential
commercial value can be obtained through the analysis of vehicle trajectory [9,10]. At
present, there are various analysis methods for vehicle trajectory. For example, through
the historical trajectory data of vehicles, the prediction of urban traffic flow, the mining of
interest points in the city, the prediction of the launching points of shared bikes, and even
the planning of urban public transport service points through the analysis of taxi trajectory
density and stop point detection.

The analysis of vehicle trajectory helps to analyze the travel pattern of citizens, etc.
Tang et al. [11] analyzed the car pooling travel patterns of passengers in that develop a
Prefixspan-prediction using a partial matching (P-PPM) target prediction algorithm to mine
frequent motion patterns from trajectory data and determine the confidence of motion rules.
The method takes the total travel time as the matching target. Zhou et al. [12] studied of
the trajectory of the context information and the found extract information such as location
information is through an analysis of the first to verify the knowledge, however, mobility
management is an important problem is how to learn an accurate travel itinerary, so they
proposed a trajectory of the encoder and decoder trip recommended method. This is a novel
end-to-end approach that encodes historical trajectories as vectors while capturing the
inherent characteristics of individual Point of Interest (POI) and the transformation patterns
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between POIs. The historical attention mechanism is incorporated into the sequential to
sequential trip recommendation task of the method to improve effectiveness. Zou et al. [13]
proposed a geographic services recommendation model (GSRM), which roughly consists
of three basic steps. First, the position sequence is obtained by clustering GPS positions. To
improve efficiency, we adopt a programming model with distributed algorithm to accelerate
clustering. Secondly, the position sequence to mine spatial and temporal information
from cluster trajectories. The MiningMP algorithm is designed that the next possible
location the user will travel to is predicted. A comprehensive framework can then be
constructed for GSRM and provide appropriate geographic recommendation services by
taking into account location information. The MiningMP algorithm provide appropriate
geographic recommendation services by considering location sequences and other relevant
semantic information.

The prediction of traffic flow can assist in directing traffic flow and other issues.
Li et al. [14] proposed a novel multi-sensor data correlation graph convolutional network
model (MDCGCN). The MDCGCN model is composed of near-term, daily and weekly
periods, and each part is composed of two parts: (1) reference adaptive mechanism and
(2) multi-sensor data correlation convolution block. The first part can eliminate the differ-
ences between periodic data and effectively improve the quality of data input. The second
part can effectively capture the dynamic temporal and spatial correlation caused by the
change of traffic mode relationship between roads. Hou et al. [15] studied short-term traffic
flow prediction model that a novel cloud-edge-IOT three-layer traffic flow edge computing
architecture and a short-term traffic flow prediction method based on spatio-temporal corre-
lation is proposed, which uses principal component analysis (PCA) to analyze intersection
correlation. Convolutional gated recurrent unit (CONVL-GRU) and Bidirectional GRU
(Bi-GRU) are used to extract the spatio-temporal and periodic characteristics of traffic flows.
You et al. [16] proposed an improved cellular automata (CA) model to reveal prediction
of traffic flow at signalized intersections. Traffic density and average speed are calculated
to study the characteristics and spatial evolution of traffic flow at signalized intersections
based on CA model. On this basis, a new traffic rule control optimization model and a CA
model with self-organizing traffic signal system is proposed. Sunflower cat optimization
(SCO) algorithm was used to predict the flow effectively. The algorithm is designed by
combining sunflower optimization algorithm (SFO) with cat swarm optimization algorithm
(CSO). In addition, fitness function is designed to guide the control rules of CA model
traffic simulation evaluation.

To sum up, the above studies are dependent on the accuracy of trajectory data. How-
ever, due to signal shielding or other reasons, a large number of trajectory points are often
lost or discontinuous trajectory segments appear in the trajectory. Therefore, we will build
a Trajectory Data Cube model (TDC) Ψ { tn, pn, vn } to store the trajectory data of taxis,
and restore vehicle driving conditions at every moment in the road network through hierar-
chical compression method, where tn is time, pn stands vehicle position, and vn represents
vehicle velocity. A Hierarchical Trace-Back method (HTB) will be designed based on taxi
historical trajectory to study the restoration of lost trajectory and missing information. Due
to the particularity of taxi, its trajectory data are basically in the road network, and taxi
can provide a large amount of trajectory data for data analysis. Table 1 shows the main
parameters mentioned in this paper.

In this paper, the traffic condition at any time in history is obtained by data compres-
sion and dilution, so as to integrate the incomplete vehicle trajectory data and provide
more accurate help for the analysis of trajectory data. The main contributions of this paper
are as follows:

• We build a data cube with spatio-temporal characteristics by analyzing the trajectory
data of taxis, store the trajectory data of each day in the cube, and finally merge the
multi-day data into a TDC model.
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• We analyze the trajectory data of each layer through the established TDC, and com-
press the data layers by HTB-p, HTB-v, and HTB-KF methods. Gain the traffic condi-
tion of the road network at a certain time.

• Finally, the thinning method is used to verify the effect of HTB-p, HTB-v, and HTB-KF
methods and real historical road network traffic, and compared with existing traffic
condition prediction methods and trajectory completion strategies.

Table 1. Notations.

Notation Definition

Ψ represents trajectory information

tn is time expression

pn is position expression

vn represents velocity expression

a represents the acceleration of two points

pos is trajectory point position information

vel represents trajectory point velocity information

time is trajectory point time-stamp

Tra < T, P > represents a trajectory expression

MEE is the Mean Euclidean Error between the position

φ represents reduction velocity error rate

The rest of this paper is organized as follows. Section 2 introduces the traffic flow
prediction methods and the completion trajectory strategy. Section 3 presents trajectory data
cube model based on incomplete taxi trajectory data. Section 4 introduces a hierarchical
track-back algorithm to restore the historical trajectory data of vehicles. Section 5 conducts
three experiments to verify our methods and the conclude in Section 6.

2. Literature Review

At present, the more popular methods of vehicle historical trajectory mining technol-
ogy include trajectory completion method based on context analysis, difference completion
method, and use deep learning method to predict trajectory. These methods explain
the meaning of trajectory data and explore the pattern of trajectory data from different
theoretical perspectives, which lays a foundation for the management and modeling of
spatio-temporal data and the discovery of road network knowledge [17].

2.1. Context-Based Vehicle Trajectory Analysis

Analyzing trajectory data based on context information is one of the main methods
to process trajectory data in the early stage, which requires a large amount of historical
trajectory data information. Zhu et al. [18] studied the trajectory context information and
used a clustering method to group the trajectory of a specific period, restoring the road
characteristics and predicting the road condition through the similar trajectory obtained.
Dai et al. [19] analyzed the missing characteristics of moving trajectory data and accu-
rately located and completed the data through the trajectory data of ground sampling
frequency. Considering the economy of sampling equipment, vehicles rarely use equip-
ment with high sampling frequency, so there are many inaccuracies and missing points in
trajectory data with low sampling frequency. A context-based uncertainty reduction and
ranking (CURR) is designed to deduce missing trajectory points and low precision points.
Mousa et al. [20] proposed a dual-device trajectory sampling hardware based on the low
sampling frequency and poor accuracy of trajectory data. This hardware complements the
trajectory by electrical components and by combining the existing GPS trajectory context
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data. Jansen et al. [21] proposed a ship trajectory prediction method combining semantic
trajectory context information and dynamic Bayesian networks. This method uses Bayesian
network to calculate the probability between ship trajectory and sample trajectory to predict
ship trajectory. The advantage of this method lies in the probability ranking of different
trajectories by probability statistics method, so as to analyze the trajectories of ships and
predict their positions at the next time. Ding et al. [22] designed an online two-level vehicle
trajectory prediction framework. This method combines high-level policy prediction with
low-level context inference. The Long-Short Term Memory (LSTM) network is used to
predict driving strategies (e.g., forward, yield, left, right, etc.) using its continuous historical
observations. The strategy is then used to guide the low-level optimization process based
on context reasoning. Blais et al. [23] deduced drivers’ driving behaviors according to the
context information of vehicle trajectory, so as to obtain more vehicle trajectory information
individually. Yu et al. [24] proposed a new dynamic and static context-aware attention
network (DSCAN). DSCAN uses the attention mechanism to dynamically determine which
surrounding vehicles are currently more important. A constraint network is also used to
design DSCAN to take static environment information into account.

2.2. The Method of Trajectory Missing Point Completion Based on Interpolation Algorithm

The completion strategy of trajectory data is mainly to complete the missing part of
trajectory data through interpolation and other strategies for the breakpoints or missing
information contained in trajectory sampling data. Li et al. [25] proposed an interpola-
tion method based on bidirectional unequal interval kernel adaptive filtering to solve the
problem of data loss in vehicle test trajectory measurement. The training samples of the
adaptive filter are designed according to the data before and after the missing data segment
of trajectory measurement. After training, the kernel adaptive filter is used to predict the
missing data bidirectional. Cruz et al. [26] analyzed traffic vehicle trajectory based on real
datasets, which proved their sparsity and incompleteness problems and hindered location
prediction. In this context, a method to deal with the problem of missing data is proposed.
It also discusses how to combine this method with predictors based on recursive neural
networks. In particular, precision measures were adjusted to account for missing values in
the test set by introducing the distance between the predicted location and the next location
registered. Wei et al. [27] proposed a method based on particle filter (PF) to reconstruct
vehicle trajectory on signal mainlines using sparse detection data. First, the main road
intersections are divided into several road units, and the estimation of unit travel time is
transformed into a quadratic programming problem. Then, PF is applied to reconstruct
incomplete vehicle trajectory between successive updates. Specifically, in order to calculate
and update the initial particle weight, taking into account the structure of the signal trunk
line and the characteristics of vehicle renewal, three important sampling measurability cri-
teria were designed, namely travel time adjustment accuracy, trunk connection speed limit
and travel time adjustment possibility. Qi et al. [28] studied sparse trajectory reconstruction
based on ALPR data. According to the reasonable travel time threshold, the method divides
multiple travel activities of vehicles and identifies incomplete vehicle trajectory. Based on
space-time prism theory, an improved K-shortest path (KSP) algorithm is used to generate
candidate trajectory. The candidate trajectory with optimal decision index is selected by
auto-encoder model, and the vehicle trajectory reconstruction is realized. Tong et al. [29]
proposed a new Internet-based framework for trajectory extraction and missing data recov-
ery of bus trip data. In this framework, a new path joining algorithm is included to solve
the problem that occurs when a path is incorrectly divided into multiple clusters in some
cases. In the process of missing data recovery that a contextual linear interpolation method
is designed for missing data inside the trajectory and median interpolation for missing data
outside the trajectory. Xiao et al. [30] proposed a new framework for integrated transfer
regression based on urban environments, using transfer learning as the main solution for
constructing fine-grained trajectory datasets during GNSS downtime. This framework
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solves the problem of incomplete trajectory data caused by GPS signal loss by constructing
a data filtering strategy to calculate trajectory missing points and retrograde interpolation.

2.3. Trajectory Prediction Based on Deep Learning

With the application of deep learning technology in the field of vehicle trajectory predic-
tion, the means of vehicle trajectory analysis become more and more diverse. Lin et al. [31]
proposed a distributed radar-specific framework with deep learning (DL) models called
predictive radar net to predict future trajectories at binary range angles (RA). A probabilistic
representation map is drawn from the original radar RA diagram to represent the uncer-
tainty of the estimated trajectory. Hui et al. [32] proposed a novel deep learning model to
treat vehicle trajectories as first-class citizens model called TrajNet. This model captures
the spatial dependence of traffic flows by propagating information along real trajectories.
In order to improve training efficiency, the multiple trajectories in a batch used for train-
ing with a trie structure to reuse shared computation is used. TrajNet designed a spatial
attention mechanism to adaptively capture the dynamic correlations between different
road segments, and dilated causal convolution to capture long-range temporal dependency.
You et al. [33] proposed a path pattern tree generation method based on deep learning.
Deep learning convolutional neural network (CNN) and recursive neural network (RNN)
models are used for trajectory generation and prediction. Liu et al. [34] mined taxi GPS
trajectory to analyze traffic characteristics in Beijing. The crowding coefficient of each side
of the sliding track is defined as the consumption time of sliding per unit distance. By ana-
lyzing the congestion coefficient distribution of all taxi trajectory. Jiang et al. [35] designed
three deep neural networks: short and long memory (LSTM), gating recursive unit (GRU)
and stacked auto-encoder (SAE) to predict the position and speed of the vehicle ahead.
Yao et al. [36] restudied the trajectory clustering problem by learning the low-dimensional
representation of trajectory. Firstly, the time-invariant feature of sliding window is used to
extract the feature of sliding space. Through feature extraction module, each trajectory is
converted into a feature sequence to describe the motion of the object, and further using
sequence to sequence auto-encoder to learn the fixed length of depth representation. The
learned representation robustly encodes the motion characteristics of the object, resulting in
spatially and temporally invariant clusters. Gao et al. [37] proposed a trajectory prediction
method for cyclists’ intention in real traffic scenarios. The method is based on dynamic
Bayesian network (DBN) and short and long-term memory (LSTM). The sporting intentions
of cyclists are hard to predict because of the potentially huge uncertainties. DBN is used to
infer the distribution of intentions of cyclists at intersections to improve the prediction time.
Kaouther et al. [38] studied the problem of vehicle trajectory prediction on the extended
horizon. On the highway, human drivers constantly adjust their speed and path according
to the behavior of their adjacent vehicles. Therefore, the vehicle trajectory is very relevant.

In the above methods, the trajectory data is processed linearly, that is the trajectory
data is analyzed according to the time before and after in two dimensions. However, the
actual trajectory data can be regarded as the distribution of different discrete points in the
same position in multiple periods and days. Figure 1 describes four kinds of trajectory
data, where x axis is longitude, y is latitude and z is time-stamp. Figure 1a shows the full
trajectory state, that is the data part is complete. Figure 1b Shows that a point is missing
from the trajectory. Figure 1c shows the trajectory loss in multiple periods. Figure 1d is that
the similar trajectory is analyzed and the trajectory is predicted.
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Figure 1. Vehicles trajectory processing category. (a) Analyze of three complete trajectories to
determine whether they are similar. (b) Analyze of the similar trajectories at different times to
complete the missing trajectory points at a certain time. (c) The similar trajectories at different times
are analyzed to complete the missing trajectory segments. (d) The trajectory is predicted by the
characteristics of similar trajectory.

3. Trajectory Data Cube Model Based on Incomplete Vehicle Trajectory

In this section we will introduce a novel form of trajectory data storage. Trajectory
data has spatio-temporal characteristics, so the storage structure is usually Tra < T, P >,
where T is the time set at the trajectory point, and P is the latitude and longitude coordinate
set. The traditional trajectory model storage structure is mainly based on position vari-
ables P(lat, lon) and time series T(t0, t1, t2, t3, . . . , tn), thus forming a continuous trajectory
segment for storage. The direction of the trajectory can be judged by time series. The
characteristic of spatio-temporal data is that position information can be derived from
time factors, or time variables can be derived from position information. This kind of
data structure that can be mutually extrapolated constitutes the unique characteristic of
spatio-temporal data.

3.1. Trajectory Data Structure with Point Velocity Factor

The velocity information of trajectory points is particularly important as a factor of
vehicle trajectory data. The velocity information of the vehicle trajectory point can reflect
the form of the vehicle at the moment. For example, the higher the velocity value, the
better the road network traffic condition, and the lower the velocity value, the worse
the road network traffic condition. However, there is another potential knowledge of
velocity information that can be mined that is vehicle position. Therefore, this section will
describe the relationship between vehicle trajectory point velocity information and position
information and road network status information.

From Figure 2a, we can see several continuous trajectory points, and the position
information of trajectory points can be deduced according to the time information, which
is the traditional vehicle trajectory mining knowledge. In Figure 2b that the relationship
between the velocity information of the trajectory point and time can be obtained. Due to
the frequency of trajectory acquisition, trajectory points present discrete point states. We
can find the acceleration a(pi, pj) between any two points in the trajectory at any time from
Equation (1).

a(pi, pj) =
vj − vi

tj − ti
(1)
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where vi is initial velocity, vj is terminal velocity, tj − ti is represent use time. The driving
state of the vehicle can be obtained by the acceleration change between each trajectory
point. The distance formula between two points in the road network is Equation (2).

d(pi, pj) =|| (xi+1 − xi) + (yi+1 − yi) || (2)

where x and y represent the map coordinates of two adjacent trajectory points in the road
network respectively, d(pi, pj) is Manhattan distance between adjacent trajectory points
(Manhattan distance is used because it avoids two adjacent points in a continuous trajectory
from appearing in two roads). The relationship between position information and velocity
information of trajectory points is expressed by Equation (3).

d(pi, p′) =
v′ + vi

2
× (t′ − ti)

d(p′, pj) =
vj + v′

2
× (tj − t′)

(3)

where (v′ + vi) is velocity difference between trajectory points, (t′ − ti) is time difference
between trajectory points. The mathematical relationships between the position, velocity
and time of trajectory points are established by Equations (1)–(3).

time

position

p2

p3

p4

t2 t3 t4

(a)

time

velocity

v2

v3

v4

t2 t3 t4

(b)

Figure 2. Different trajectory representation models. (a) Traditional trajectory data pattern, (b) Adding
trajectory data pattern of velocity.

3.2. Trajectory Data Cube Model

This section describes trajectory data cube model to store the position, velocity and
time of trajectory points. The purpose is to better represent the temporal and spatial
characteristics of trajectory data. The velocity representation of trajectory points is to more
accurately restore the position of missing points in the trajectory, which will be introduced
in Section 4.

Figure 3 shows the trajectory data cube model, where pos is trajectory point posi-
tion, vel represents trajectory point velocity, time is trajectory point time-stamp, each row
represents a continuous trajectory segment in unit time, each cube piece represents the
information of trajectory points. In this paper, trajectory data cube model will be established
in unit of minute according to paper [39].

The cube consists of three parts: the position of the trajectory, the velocity, and the
time. We design two time unit cubes from the level, so each layer represents the date and
hour respectively. Position information of trajectory points in each column of the data
cube. We specify that the trajectory points within each road be stored in the same piece
(the position points of the road can be determined by two adjacent intersections of the road
network dataset), thus, each column represents the same road. Each row is represented as
a continuous trajectory in a unit time.
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Figure 3. Store the trajectory data in the cube.

It can be seen from Figure 3 that each time unit is stored in the form of data blocks,
and the data time-stamp stored in each layer is the data in the same unit time. The purpose
of this design is due to the characteristics of the trajectory data. The amount of trajectory
data at each moment is small and sparse. Therefore, if the time-stamp is used as the time
unit for storage, a large amount of space will be wasted.

It is worth noting that since latitude and longitude information is not necessarily adjacent
to each other in the actual road network when stored (i.e., topology relation is missing), a
pointer is added into the small module in each layer named Topology− Pointer (TP), the
pointer points to the next position ID adjacent to it. We specify a set Point = {loc, vel, time, TP}
to represent the points in a trajectory. Therefore, the TDC has the characteristics of vec-
tor representation.

It is also worth noting that the selection of unit time requires experimental verification,
but we cannot guarantee that vehicles will not run on the same road in unit time. Therefore,
this paper has done some processing. Based on our previous research, it is appropriate to
change the road network condition in 10–15 min, but data storage at such time interval is
still sparse. Therefore, we extend the unit time of the data cube to 30–60 min, so if the same
track point appears on the same road in unit time, calculate the average speed of the cube
according to Equation (4) and store.

vel(vi, vj) =
vel1 + vel2 + vel3 + . . . + veln

n
(4)

where vel(vi, vj) is the average road network speed expressed between vertices vi and vj.
vel1 is the trajectory point velocity at a certain time. The trajectory point velocities in all
time units and on the same road are added and averaged. In this way, all trajectory data is
stored in the data cube.

4. Hierarchical Trace-Back Method Based on Trajectory Data Cube

In this section, a hierarchical trace-back (HTB) algorithm based on spatio-temporal
trajectory data will be introduced. This method includes a Bayesian probability method,
which is used to restore the missing points or missing trajectory segments in the trajectory.
The purpose of classifying trajectory data according to time hierarchy is to find out the
spatio-temporal features hidden in the trajectory.

Figure 4 shows the trajectory chart of a vehicle in four days, from which it can be seen
that the same path or different paths occurred in four days. The purpose of HTB algorithm
is to focus on the similar trajectories that appear in the same time period in different dates,
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and these trajectories are classified and stored by TDC model. In trajectory data, time
information is generally not lost or missing, and what the equipment usually records is the
time information when the data is generated (especially the trajectory data collected under
the condition of constant frequency). Even in the case of unequal frequency there is still a
definite time period. Therefore, the most important information restoration is the position
information and velocity information of trajectory points.

lon
lat

day

Figure 4. Hierarchical graph of trajectory based on time division.

4.1. Trajectory Position Restoration Based on TDC Model

In the actual trajectory dataset, there are often trajectory points with inaccurate trajec-
tory positions, which are often caused by unstable equipment signals or vehicles in a space
blocked by signals. Therefore, the missing or offset of trajectory position information in this
paper can be completed by TDC and hierarchical trace-back position (HTB-p) algorithm.
The calculation process of HTB-p will be described the following.

Definition 1. Given a missing dataset M, according to the trajectory data characteristics, there is
a continuous trajectory segment P < pi, pm, pj >, where pm is the missing trajectory point, then
the time information of the point can obtain the time range of missing data from the time of pi and
the time of pj.

Definition 1 gives the time range of missing data. Similarly, the position area of the
missing trajectory can be determined according to the front and rear position information
segments of the missing trajectory data.

Definition 2. Given a missing dataset M, there is a continuous trajectory segment P < pi, pm, pj >,
where pm is the missing trajectory point, then the position information of the point can obtain the position
area of missing data from the position of pi and the position of pj.

Definition 2 gives the position area of missing data. According to Definition 1,
Definition 2 and TDC, the trajectory data information of all lost data in the same time
period in history can be obtained. The information related to missing data is extracted
hierarchically from TDC. Figure 5 shows the examples of missing position information and
position offset of trajectory points.
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Real trajectory point

Miss trajectory point

miss point

position offset point

Figure 5. Missing position information and position offset of trajectory points.

The core of HTB-p algorithm is the process of calculating the information in the
time period extracted by TDC. HTB-p algorithm is divided into two steps; 1. By lack of
traversal path set point data, matching with the data in the TDC and search, through the
corresponding time to get the corresponding TDC layer, and return loss trajectory points
corresponding to the data information in the TDC, with this information as the keyword
as a search condition, then return all trajectory data information of different levels in the
same time. 2. All the qualified information obtained from TDC is calculated for conditional
probability. According to the condition of time and velocity, the probability statistics of all
possible road ID are carried out. Finally, the road ID with higher probability is returned
to the missing trajectory data, and the position is marked as the position information
of the missing trajectory point. Algorithm 1 introduces a HTB-p method with position
information of the missing trajectory point.

Algorithm 1 HTB-p

1: Input: TDC, M
2: Output: Tra < P, V, T >
3: Initialization Tra < P, V, T >, MapSet prob
4: for M do
5: search Mp(time) from TDC
6: compare Time in each level
7: if Time == M(time) then
8: Calculation Pr(pi|v, t) = Pr(pi)Pr(v|pi)Pr(t|pi ,v)

Pr(v)Pr(t|v)
9: prob.put(pi,Pr(pi|v, t))

10: end if
11: get pi with maximum Pr value from prob
12: Tra < P, V, T > = pi
13: TDC = Tra < P, V, T >
14: end for
15: RETURN TDC

Where M is missing trajectory set, Tra < P, V, T > is contain the position, velocity, and
time with one point in the trajectory. Mp(time) is time of loss trajectory point, Pr represents
the probability of candidate position. prob stores the probability of each candidate position.
M(time) is the time of missing trajectory point, pi is miss point ID. Lines 4–6 describe
obtaining the ID of trajectory points from the missing trajectory set M in turn, and obtaining
all trajectory information in the same time layer in TDC by comparing with the time in
TDC. Lines 7–9 find the trajectory data block with the same time as that in the M set from
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the TDC, return all the trajectory information in the block, calculate all candidate points in
the TDC through Bayesian conditional probability. Line 11–15 finally return the value with
the maximum probability, and supplement the information of the missing points to the
TDC. Since there is only one loop in the algorithm, the time complexity of the algorithm is
O(n), where n is the number of missing trajectory points.

4.2. Trajectory Velocity Restoration Based on TDC Model

A HTB-v method will be introduced in this section, which aims to supplement the
trajectory points without measured velocity information in the trajectory. Since the known
information includes position information and time information, the missing velocity
information is calculated according to the structural characteristics of the TDC. Firstly, the
position points with missing velocity information can be obtained according to the position
information. In this process, the position of the missing velocity trajectory point set can
be classified through the position classification module of the TDC to screen the accurate
position. Secondly, the time of the missing trajectory point set is matched with the time
layer divided by the data cube, and the missing trajectory point set is divided into the
corresponding time layer. Through the above two steps, all points in the trajectory point
set with missing velocity information are divided into TDC blocks.

Definition 3. Given a missing velocity dataset M, according to the trajectory data characteristics,
there is a continuous trajectory segment P < pi, pm, pj >, where pm is the missing velocity
trajectory point, then the position information of the point can obtain from the pi (position) and pj
(position), the time information of the point can obtain the time range of missing data from the pi
(time) and pj (time).

Definition 3 gives the position information and the time range of missing data. the
following we need to calculate the missing velocity information in the trajectory point. We
still need to calculate the probability of the trajectory block in the TDC with the help of
Bayesian conditional probability formula, and finally return the maximum speed probabil-
ity value, and the result is returned to the specific missing point. Algorithm 2 describes the
process of restoring trajectory points with missing velocity information by HTB algorithm.

Algorithm 2 HTB-v

1: Input: TDC, M
2: Output: Tra < P, V, T >
3: Initialization Tra < P, V, T >, MapSet prob
4: for M do
5: search Mv(position) from TDC
6: compare position in TDC
7: if position == Mv(position) then
8: search Mv(time) from TDC
9: compare Time in each level

10: if Time == M(time) then
11: Calculation Pr(pi|p, t) = Pr(pi)Pr(v|pi)Pr(t|pi ,p)

Pr(v)Pr(t|v)
12: prob.put(pi,Pr(pi|p, t))
13: end if
14: end if
15: get pi with maximum Pr value from prob
16: Tra < P, V, T > = pi
17: TDC = Tra < P, V, T >
18: end for
19: RETURN TDC

Where M is missing trajectory set, Tra < P, V, T > is contain the position, velocity,
and time with one point in the trajectory. Mv(position) is position of loss trajectory point,
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Mv(time) is time of loss trajectory point, Pr represents the probability of candidate position.
prob stores the probability of each candidate position. M(time) is the time of missing
trajectory point, pi is miss point ID. Lines 4–9 describe obtaining the ID of trajectory
points from the missing trajectory set M in turn, and obtaining all trajectory information
in the same time layer in TDC by comparing with the time in TDC. Lines 10–12 find the
trajectory data block with the same time as that in the M set from the TDC, return all
the trajectory information in the block, calculate all candidate points in the TDC through
Bayesian conditional probability. Line 15–19 finally return the value with the maximum
probability, and supplement the information of the missing points to the TDC. Since there
is only one loop in the algorithm, the time complexity of the algorithm is O(n), where n is
the number of missing trajectory points.

4.3. Trajectory Position and Velocity Restoration Based on TDC Model

The road network state restoration method when there are continuous and missing
position information and trajectory velocity in the trajectory segment will be introduced
in this section. Kalman-Filtering (KF) [40] and variants can effectively restore the missing
trajectory, but the restoration strategy for multi vehicle trajectory loss in the road section and
road network traffic flow still needs to be improved. Therefore, this section will introduce a
hierarchical backtracking algorithm HTB-KF that combines KF and TDC.

Firstly, the missing position information in the trajectory data is restored for the first
time by KF algorithm. The restored information is returned to the missing trajectory set
and TDC. The position information in TDC and the missing trajectory is compared, and
the position information and time information are matched once. Secondly, the velocity
information of missing trajectory points is assigned. The result of matching the position
information restored by KF with TDC is returned to the missing trajectory point, the match-
ing velocity information value is found from the TDC block, the probability superposition
is carried out through the position front-rear information and time information, and finally
the velocity information with the greatest probability is returned to the missing trajectory
point. Equations (5) and (6) describe the trajectory data process of KF. It is worth noting that
this paper compares the position information and velocity information of lost trajectory
points as restored separately, so only a single element of information restore is considered
when using KF method. A trace-back mechanism will be added in this section to verify the
missing information.

xk = Axk−1 + Buk−1 + wk−1 (5)

where A is the state transition matrix and w is the process noise. The state transition matrix
A is determined according to the kinematic formula, B is the matrix that takes part of
influencing the system state change.

zk = Hxk + ek (6)

where z represents the predicted value, and H is the conversion matrix from the current
measured value to the predicted measured value. e represents noise. In this paper, the
position of the missing trajectory is predicted for the first time with the assistance of
KF [40]. The velocity information of the missing trajectory data is assigned by the restored
position information and TDC. The position information is checked by TDC again after the
assignment. Algorithm 3 describes the calculation process of HTB-KF.

Where M is missing trajectory set, Tra < P, V, T > is contain the position, velocity, and
time with one point in the trajectory. Lines 4–6 describe the preliminary judgment of the
missing trajectory position using KF. Lines 7–17 calculate the position information obtained
through KF, so as to deduce the velocity information of missing trajectory points. Line 18 is
to recheck the position obtained by KF, so as to further reduce the error. Lines 19–23 return
the final result and store it in TDC. The time complexity of the HTB-KF algorithm is O(n2),
where n is the number of missing trajectory points.
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Algorithm 3 HTB-KF

1: Input: TDC, M
2: Output: Tra < P, V, T >
3: Initialization Tra < P, V, T >, MapSet prob
4: for M do
5: Calculation of M by KF
6: end for
7: for M with position information do
8: search Mv(poistion) from TDC
9: compare position in TDC

10: if poistion == M(position) then
11: search Mv(time) from TDC
12: compare Time in each level
13: if Time == M(time) then
14: Calculation Pr(pi|p, t) = Pr(pi)Pr(v|pi)Pr(t|pi ,p)

Pr(v)Pr(t|v)
15: prob.put(pi,Pr(pi|p, t))
16: end if
17: end if
18: HTB-p
19: get pi with maximum Pr value from prob
20: Tra < P, V, T > = pi
21: TDC = Tra < P, V, T >
22: end for
23: RETURN TDC

5. Experimental

In this section, the experimental process and parameter settings will be introduced in
detail. In this paper, three types experiments will be conducted. The first experiment is
to validate the proposed HTB-p algorithm for restoration of missing position information
points in trajectory dataset. The second experiment is to verify HTB-v algorithm for restora-
tion of missing velocity information points in trajectory dataset. The third experiment is
to verify HTB-KF algorithm for restoration of missing position and velocity information
points in trajectory dataset.

5.1. Experiment Setting

All experiments are implemented in Java, Python, and all algorithms are executed
on 16G memory, 64-bit Windows 10 operating system, and Intel i5 @3.30 GHz CPU. The
road network data in this paper comes from the Beijing map data, Shanghai map data, and
New York map data of OpenStreetMap (https://www.openstreetmap.org) (accessed on 5
December 2020) The vehicle trajectory data is three months and the size is 57 G with Beijing
Taxi in 2012.4 and 2013.6–2013.7 (Beijing Municipal Commission of Communications),
one day and size is 332 MB with Shanghai Taxi in 2007 (https://cse.hkust.edu.hk/scrg/,
accessed on 1 February 2022), and size is 119 GB New York Yellow Taxi Trip Records in 2019
(https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, accessed on 1 February
2022). Table 2 shows the information of the dataset. Visualization using Mapbox API
(https://studio.mapbox.com/, accessed on 1 February 2022). Since the vehicle dataset
in New York only has position information and does not have velocity information, the
verification based on velocity information restoration will not be used. However, the
average speed of the vehicle can still be obtained after the processing of position information
and time information, so it can be used for the verification of the Section 5.4.

https://www.openstreetmap.org
https://cse.hkust.edu.hk/scrg/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://studio.mapbox.com/
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Table 2. Datasets.

Dataset Region Size

BJ Beijing 57 G

SH Shanghai 332 MB

NY New York 119 GB

5.2. Verification of Missing Trajectory Position Based on TDC Hierarchical Trace-Back Method

Firstly, the trajectory details of the three main roads in the three sample datasets are
extracted, as shown in Figure 6.
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Figure 6. Sample trajectory selection of three datasets. (a) Taxi trajectory selection in Beijing city.
(b) Taxi trajectory selection in Shanghai city. (c) Taxi trajectory selection in New York city.

The gray icons in Figure 6 is the trajectory position information points Ψ { pn } deleted
from the original trajectory set, but these points retain time information and velocity
information. The following will compare the position restoration results of the proposed
HTB-p algorithm and the existing trajectory position completion algorithm. Figure 7
shows the experimental comparison of HTB-p based on TDC with other trajectory position
restoration algorithms.

From Figure 7 show the effective of KF algorithm, Interpolation algorithm and HTB-
p algorithm on restoring the trajectory, and compare it with the actual GPS trajectory.
Figure 7a shows the restoration of a continuous trajectory based on taxis in Beijing. Ac-
cording to the four position of the missing trajectory selected in Figure 6a, it can be seen
that the position information restored by HTB-p is better than that of KF and Interpolation
algorithm. Figure 7b shows the restoration of a continuous trajectory based on taxis in
Shanghai. According to the five position of the missing trajectory selected in Figure 6b.
Figure 7c shows the restoration of a continuous trajectory based on taxis in New York.
According to the six position of the missing trajectory selected in Figure 6c.

The effect of interpolation algorithm is better because there are points with continuous
missing position information, so multiple interpolation operations are required, which
has poor effect. Although the effect of KF is better than the interpolation algorithm, its
calculation core is to predict the results of this time based on the results of the previous
calculation. Therefore, when there are missing continuous trajectory points, the restoration
effect of KF algorithm depends on the results of the previous calculation. HTB-p not
only calculates the missing trajectory position points according to the front-rear point
information of the trajectory, but also needs to evaluate and compare the probability of
historical position through the condition of historical data. Therefore, HTB-p has good
calculation results. Table 3 shows the Mean Euclidean Error (MEE) between the position
obtained by the three algorithms and the actual position, dimension is [m], the average of
all error distances is shown Table 3.

MEE =
∑n

i=1

√
(x f − xm)2 + (y f − ym)2

n
(7)
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Figure 7. Comparison results of three trajectory restoration methods. (a) Comparison of taxi position
information restoration in Beijing city. (b) Comparison of taxi position information restoration in
Shanghai city. (c) Comparison of taxi position information restoration in New York city.

Equation (7) describes the calculation process of MEE. Where n is the number of
missing trajectory points, (x f , y f ) is estimated position point, (xm, xm) is position of actual
missing trajectory points.

Table 3. The result of Mean Euclidean Error [m] between predicted value and actual value.

Methods

MEE Datasets
BJ SH NY

KF 26.470 42.614 14.155

Interpolation 27.529 45.847 16.238

HTB-p 11.982 19.347 8.786

Table 3 can see the average error between the predicted value and the actual value
of the three algorithms. The error distance of the interpolation algorithm is much greater
than that of KF algorithm and HTB-p algorithm. There is a certain relationship between
the effect of the trajectory completion algorithm and the dataset itself. It can be seen from
Table 3 that the trajectory error of taxis based on the average error is related to the distance
and time according to the trajectory information before and after the missing trajectory
points. When the trajectory information front-rear missing trajectory points is known,
the effect of interpolation trajectory is better. When the front-rear trajectory information
positions of trajectory points are missing, the restoration effect of HTB-p is better.

5.3. Verification of Missing Trajectory Velocity Based on TDC Hierarchical Trace-Back Method

This section will continue to select three consecutive tracks from three trajectory
samples for verification. According to Figure 6, the velocity information of the missing
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points in the figure is deleted, and the position information is added to the dataset. The
experiments in this section will verify the velocity information Ψ { vn } restoration and
sample error rate of the three algorithms for missing trajectory points in three datasets.

Figure 8 show the restoration of position information by KF algorithm, Interpolation
algorithm and HTB-v algorithm, and Figure 8a shows the velocity restoration based on
Beijing vehicle trajectory. It can be seen from the figure that when the velocity information
of continuous trajectory points is missing, the effect of KF is better than Interpolation, and
the effect of HTB-v is similar to that of KF. Similarly, it can be seen from Figure 8b that the
effect of Interpolation algorithm is worse, while the effect of KF and HTB-v algorithm is
better. Table 4 shows the error rate φ of the algorithm to restore the trajectory velocity.

φ =
|vel f − vela|

vela
× 100% (8)

(a) BJ (b) SH

Figure 8. Comparison results of three trajectory restoration methods. (a) Comparison of taxi velocity
information restoration in Beijing city. (b) Comparison of taxi velocity information restoration in
Shanghai city.

Equation (8) describes the calculation process of φ. Where vel f is estimated velocity
value, vela is velocity value of actual trajectory data.

Table 4. The error rate φ of the three algorithms.

Methods
BJ SH

t10 t11 t12 t13 t8 t9 t10 t11 t12

KF 11.0% 9.0% 7.5% 8.2% 6.7% 23.0% 33.5% 5.0% 2.9%
Interpolation 21.0% 20.6% 21.3% 8.0% 13.3% 21.0% 70.0% 24.0% 6.4%
HTB-v 6.4% 8.9% 4.3% 6.5% 1.7% 12.4% 30.0% 2.1% 1.4%

It can be seen from Table 4 that the three algorithms restore the velocity of two
datasets. The error rate of Interpolation algorithm is significantly higher than that of other
algorithms (The percentage data of reaction in the table refers to the error rate between the
actual velocity value and the restored velocity value), For example, at t12, the error rate of
Interpolation is 20.6%, while the error rates of KF and HTB-v are 9.2% and 8.9% respectively.
The reason is that when there are continuous missing trajectory points, the Interpolation
algorithm can not effectively process the data (the Interpolation algorithm depends on the
trajectory information before and after the missing trajectory points). The restoration of KF
and HTB-v algorithms is better, but the φ value is still large. The main reason is because of
the training sample set. The Section 5.4 will train and model all trajectory datasets.

5.4. Verification of Missing Trajectory Position and Velocity Based on TDC Hierarchical
Trace-Back Method

This section will complete and verify the data of multiple trajectory segments in the
trajectory by training all trajectory set samples. In this section, 70% of the three datasets are
used as training sets and 30% as restore test sets for verification. A group of experiments
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delete the position information and velocity information of the remaining 5%, 10%, 15%,
20%, 25%, and 30% of the dataset through the training and backtracking dataset, retain the
time data, and restore it. The other group is to change the number of training sample sets
to restore the trajectory information in the remaining datasets.

Firstly, HTB-KF is compared with the existing trajectory completion algorithm. From
Figure 9 shows that the restoration of three trajectory datasets by different algorithms, and
the effect of algorithm restoration through MEE.

(a) BJ

(b) SH

(c) NY

Figure 9. MEE results of different algorithms for the number of missing trajectory datasets. (a) Trajec-
tory restoration based on Beijing city. (b) Trajectory restoration based on Shanghai city. (c) Trajectory
restoration based on New York city.

The experiment compares KF, LSTM, MDCGCN, Interpolation and HTB-KF algorithms
to restore the trajectory by training the data of three trajectory sets. It can be seen from
Figure 9a that with the increase of the number of restored trajectory datasets, HTB-KF
and MDCGCN algorithms have better restoration effects. The reason why interpolation
algorithm restores trajectory query is that it needs to rely on the information of adjacent
trajectory points of missing trajectory points for interpolation. However, when there are
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segments of missing trajectory in the dataset, the restoration effect is poor. It is not suitable
for restoring a large number of trajectory segments. The restoration effect of KF and LSTM
algorithms is slightly worse than that of MDCGCN and HTB-KF.

Figure 9b shows the restoration of Shanghai vehicle trajectory dataset by the algorithm.
The same HTB-KF and MDCGCN have better effects. Figure 9c shows the restoration of
New York vehicle trajectory datasets by the algorithm. However, the effect of Figure 9b
is worse than that of Figure 9c. The reason is that the trajectory datasets in Shanghai has
only one day, and its sample size is smaller than that of Beijing and New York. Therefore,
the overall restoration effect is worse than that of the other two sample sets. However,
even if the sample size of the dataset is insufficient, HTB-KF algorithm still has satisfactory
restoration effect.

Figure 10 represent the restoration of velocity information in the trajectory segments
of two datasets by different algorithms. Figure 10a restores the information in the trajectory
set in Beijing. It can be seen from the figure that with the increase of the number of restored
samples, the error rate of KF, LSTM, MDCGCN and HTB-KF algorithms is also increasing,
but the growth slope is lower than that of other algorithms.

5% 10% 15% 20% 25% 30%
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10%
15%
20%
25%
30%
35%
40%
45%
50%

Percentage of restored trajectory dataset

φ

KF
LSTM
MDCGCN
Interpolation
HTB-KF

(a)
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5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

Percentage of restored trajectory dataset

φ

KF
LSTM
MDCGCN
Interpolation
HTB-KF

(b)

Figure 10. Error rate of velocity information restoration in trajectory segment by different algorithms.
(a) BJ datasets. (b) SH datasets.

Figure 10b restores the velocity information in the trajectory set of Shanghai. From the
figure can be seen that the error rate of the algorithm is also increasing with the increase of
the number of samples. Compared with Figure 10a, the error rate φ is higher because the
number of training samples in Shanghai is small, so the information error rate restored by
the algorithm is higher. The error rate φ of Interpolation algorithm is higher than that of
other algorithms. The main reason is that the essence of its restoration theory requires the
lack of trajectory information front-rear trajectory information.

The following experiment verifies that the HTB-KF algorithm restores vehicle velocity
based on the Beijing trajectory datasets and Shanghai trajectory datasets. This experiment
sets up an intersection on each trajectory set to be the most observable intersection. Figure 11
show the BJ datesets chooses the intersection of Dongsanhuan Road and Guangqu Road
(116°46′80.48′′ E, 39°89′91.33′′ N), and SH datesets chooses the intersection of Jiujiang Road
and Henan Middle Road (121°49′17.69′′ E, 31°24′24.17′′ N).

Figure 11a shows a curve comparison of the true data and the completion value at
9:00–11:00 on a certain day in the Beijing datasets with a data loss rate of 20% (time interval
5 min), Figure 11b shows a curve comparison of the true data and the completion value
at 18:00–20:00 on a certain day in the Shanghai datasets with a data loss rate of 20% (time
interval 5 min). From the graph, it can be seen that the completion result of the HTB-
KF method is very close to the true situation of the ground, and can capture the dynamic
changes of traffic velocity in the complex conditions of early and late rush hours. The results
of the completion fluctuate very smoothly compared with the ground truth. In summary,
the HTB-KF methods presented in this paper can interpolate the traffic situation reasonably.
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Figure 11. Velocity information reconstruction by different algorithms. (a) The variation of HTB-KF
compare with Beijing truth GPS trajectory data velocity at 9:00–11:00. (b) The variation of HTB-KF
compare with Shanghai truth GPS trajectory data velocity at 18:00–20:00.

6. Conclusions

In conclusion, a novel trajectory data cube (TDC) is introduced to model, analyze and
process trajectory data in this paper. Three trajectory hierarchical trace-back algorithms
based on the TDC model are designed to restore the missing information in the trajectory,
and to restore the traffic flow of the missing trajectory. Because the position information and
velocity information in the trajectory information can effectively explain the traffic manifold
at that time. Finally, in the experimental part, the trajectory restoration of the HTB-p, HTB-v,
and HTB-KF algorithms is verified. Firstly, the HTB-p method is verified the restoration
of the missing position of individual trajectory points in the trajectory segment by HTB-p
method (there are few training sample sets in this experiment, and all trajectory sets are
not processed), and its MEE and error rate are less than those of other methods. Secondly,
the HTB-v method is verified to restore the velocity information of individual trajectory
points in the trajectory segment. Through experimental comparison, it can be concluded
that the HTB-v method has a better restoration effect. Thirdly, the restoration of missing
trajectory segment information by HTB-KF algorithm is verified. It is also verified that
HTB-KF algorithm can restore driving conditions, and it is found that HTB-KF algorithm
still has good restoration ability when the sample training set is limited.

In future work that we will add the deviation angle of trajectory information as a
factor of trajectory information, and try to complete the missing part of trajectory datasets
with less training sample size.
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