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Abstract: Solar home systems (SHS), a cost-effective solution for rural communities far from the grid
in developing countries, are small solar panels and associated equipment that provides power to a
single household. A crucial resource for targeting further investment of public and private resources,
as well as tracking the progress of universal electrification goals, is shared access to high-quality
data on individual SHS installations including information such as location and power capacity.
Though recent studies utilizing satellite imagery and machine learning to detect solar panels have
emerged, they struggle to accurately locate many SHS due to limited image resolution (some small
solar panels only occupy several pixels in satellite imagery). In this work, we explore the viability
and cost-performance tradeoff of using automatic SHS detection on unmanned aerial vehicle (UAV)
imagery as an alternative to satellite imagery. More specifically, we explore three questions: (i) what
is the detection performance of SHS using drone imagery; (ii) how expensive is the drone data
collection, compared to satellite imagery; and (iii) how well does drone-based SHS detection perform
in real-world scenarios? To examine these questions, we collect and publicly-release a dataset of high-
resolution drone imagery encompassing SHS imaged under a variety of real-world conditions and
use this dataset and a dataset of imagery from Rwanda to evaluate the capabilities of deep learning
models to recognize SHS, including those that are too small to be reliably recognized in satellite
imagery. The results suggest that UAV imagery may be a viable alternative to identify very small SHS
from perspectives of both detection accuracy and financial costs of data collection. UAV-based data
collection may be a practical option for supporting electricity access planning strategies for achieving
sustainable development goals and for monitoring the progress towards those goals.

Keywords: electrification; energy access; solar home systems; solar PV; computer vision; deep
learning; machine learning; cost evaluation; UAV; dataset

1. Introduction

Energy access is a global issue. Sustainable development goal (SDG) 7.1, outlined
by United Nations [1], proposed to achieve “access to affordable, reliable, sustainable,
and modern energy for all” by 2030. However, as the latest progress report in 2020 [2]
pointed out, extrapolating from the current progress towards electrification, there would
still be 620 million people without basic access to electricity by 2030. Although the great
majority of the global population has grid-connected electricity access, the high costs of
traversing challenging topographies make grid extension to remote, rural communities less
affordable or efficient [3].
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In attempting to reach SDG 7.1, solar home systems (SHS) have become a promising
solution as an alternative to grid extension [4]. SHS are solar-photovoltaic-based systems
that provide electricity to individual homes. Compared to solar farms where large solar
arrays are installed and generated power is transmitted and regulated by large power
grids, a SHS (a solar panel and associated equipment that provides power to a single
household) is typically a small solar panel fixed to the top of the household roof and not
connected to the electric grid. Off-grid solar systems are often cost-effective solutions for
rural communities far from the grid.

A crucial resource for targeting further investment of public and private resources,
as well as tracking the progress of universal electrification goals, is shared access to high-
quality data on individual SHS installations including information such as location and
capacity. With this information, decision-makers can make more informed decisions
about electrification options, such as grid extensions, mini/micro grids, and stand-alone
systems [5]. Despite the importance of such data, unfortunately this information is often
of limited availability or only accessible by expensive and time-consuming surveys [6] or
incomplete self reports [7].

To address this widespread obstacle to energy access tracking and planning [8], gener-
ally three approaches to small SHS data gathering are available: (1) on-the-ground surveys
(people going door-to-door to collect information), (2) information from retailers of solar
panels or government agencies, or (3) remotely sensed data using overhead photography
(satellites, aircrafts, or UAVs). Ground surveys are usually too expensive (this will be
discussed in Section 6) and gathering data from governments or utilities is often hindered
by either the fact that such data are not collected or that there is not the willingness nor the
incentive to share the data. This leaves remote sensing approaches as a promising path to
data collection. Previous studies have recognized that SHS are visible in overhead imagery
and when remote sensing data sources are combined with machine learning tools, it may
create a suitable approach to data collection for some SHS. Utilizing high-resolution satellite
images, it was shown that medium to large installations of solar panels can be identified
with high accuracy [9–12]. However, significantly smaller sizes of SHS are used in rural
areas of low- and middle-income countries. The majority of the global population using
off-grid solutions use SHS under 50 W [13], which typically occupies an area of 0.3 m2 [14].
This is a challenge even at the highest resolution of commercially available satellite imagery
(typically around 0.3 m/pixel [15]). This is a major limitation of the collection of location
and capacity data for very small SHS. Therefore, unmanned aerial vehicles (UAVs) offer a
higher-resolution alternative to satellite platforms and are a potential alternative solution
to filling this information gap. A more detailed discussion of the existing literature on solar
panel detection using remote sensing data is presented in Section 2.

Contributions of This Work

In this paper, we critically analyze the viability of using drone-based aerial imagery
to detect common, but physically small, energy infrastructure as an alternative to satellite
imagery or manual surveys from both an assessment accuracy and cost effectiveness
perspective. Our contributions closely follow the three research questions that we propose
to answer: (i) what is the detection performance of SHS using UAV imagery; (ii) how
expensive is the drone data collection, compared to satellite imagery; and (iii) how well
does drone-based SHS detection perform in real-world scenarios?

For investigating (i), the detection performance of SHS using UAV imagery, as there
exists no public dataset to directly answer this question, we develop a drone-based solar
panel detection dataset covering various flying altitudes and flying speeds and train a
deep learning detection algorithm to detect the SHS. We then evaluate the performance
and robustness of this algorithm. For research question (ii), regarding the comparative
cost of UAV based data collection, we conduct a cost/benefit analysis of UAV-based SHS
data collection and compare it to common alternatives such as satellite imagery and aerial
photography. For research question (iii) regarding the performance of UAV-based data
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analysis for SHS assessment under real-world conditions, we annotated and evaluated SHS
detection performance on UAV imagery from Rwanda to quantify the performance of UAV
imagery in a real-world setting.

The main contributions of this work are summarized as follows:

• The first publicly available dataset of UAV imagery of very small (less than 100 Watts) SHS
(Section 3). We collected, annotated, and openly shared the first UAV-based very
small solar panel dataset with precise ground sampling distance and flight altitude.
The dataset contains 423 images, 60 videos and 2019 annotated solar panel instances.
The dataset contains annotations for training object detection or segmentation models.

• Evaluating the robustness and detection performance of deep learning object detection for solar
PV UAV data (Section 5). We evaluate the performance of SHS detection performance
with a U-Net architecture with a pre-trained ResNet50 backbone. We controlled for
the data collection resolution (or 1/altitude): sampling every 10 m of altitude across
an interval from 50 m–120 m. We controlled for the dimension of panel size by using
5 diverse solar PV panel sizes

• Cost/benefit analysis of UAV- and satellite-based solar PV mapping (Section 6). We estimate
a cost-performance curve for comparing remote sensing based data collection for
both UAV and satellite systems for direct comparison. We demonstrate that using
the highest resolution satellite imagery currently available, very small SHS are hardly
detectable; thus, even the highest-resolution commercially available satellite imagery
does not present a viable solution for assessment of very small (less than 100 Watt)
solar panel deployments.

• Case study in Rwanda illustrating the potential of drone-based solar panel detection for very
small SHS installations (Section 7). By applying our models to drone data collected in
the field in Rwanda, we demonstrate an example of the practical performance of using
UAV imagery for solar panel detection. Comparing the results to our experiments
with data collected under controlled conditions, we identified the two largest obstacles
to achieving improved performance are the resolution of the imagery and the diversity
of the training data.

2. Related Work

Larger solar PV arrays, especially as compared to very small SHS, have been shown to
be detectable in satellite imagery. Recent work demonstrates the potential of automatically
mapping Solar PV arrays using remote sensing and machine learning from individual
household SHS (5–10 kW [6,9,10,16,17]) to utility-scale (>10 MW [12,18]) installations,
while no past studies have focused on smaller solar arrays that are being deployed for
those transitioning to electricity access for the first time, which could be 100 W or less—an
order of magnitude smaller than all past studies.

The earliest work on solar panel segmentation used traditional machine learning meth-
ods like support vector machines (SVM), decision trees and random forests, with manually-
engineered features like mean, variance, textons, and local color statistics of pixels [6,9,19].
Yuan et al. [16] applied deep neural networks (DNN) for solar panel detection from aerial
imagery. Advances in convolutional neural networks (CNNs) [20,21] in large scale image
datasets like ImageNet [22] have also propelled the field of solar panel segmentation (i.e.,
pixel-wise classification) forward. Convolutional networks for image classification were the
first type of CNNs to be used for a coarse form of solar panel segmentation by [11,16,23].
True segmentation CNNs for solar PV identification soon followed including SegNet [24]
and activation map based methods [10]. U-net structures [25] were also quickly adopted in
this field further increasing model detection performance [7,26].

UAVs have been used for solar PV monitoring and management on solar farms.
However, this has typically been limited to situations where the locations of the solar PV is
already known, such as solar panel monitoring in large solar farms. UAV-based solar array
segmentation has been used for inspecting the arrays of solar farms, using texture features
and a clustering algorithm for the analysis [27]. Other research on drone-based solar panel
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detection used a thermal camera to identify potential defects in solar arrays at the site [28,29].
There have also been techniques for monitoring solar PV farms using satellite imagery, such
as tracking particulate matter deposition and effects on generation efficiency [30]; however,
this is the exception since solar PV condition monitoring typically requires UAV data due
to high image resolution requirements. In these settings, both thermal and optical cameras
have been used. Thermal cameras are used in this setting to identify abnormal temperature
profiles that may indicate malfunctioning solar arrays [31–33]. Optical UAV imagery has
also been used to identify damaged or dust covered solar cells at solar farms [34–38]. None
of the these UAV-based studies released their imagery datasets.

Access to energy at a larger scale has also been explored using night-time lights
imagery. This use of 750 m-resolution data has been used extensively to generate estimates
of which communities are grid-connected and even to explore the reliability of those
grid connections [39–41]. This approach is not able to investigate the small-scale off-grid
systems, however, as some of these SHS are less than a meter in diameter. In this work, we
do not focus on identifying grid-connected communities, but are looking for communities
and individual households that receive their power through off-grid solutions.

3. The SHS Drone Imagery Dataset

Drone datasets containing annotated images of solar panels, and especially very small
(≤100 W) solar panels do not exist to our knowledge. We summarize the most relevant
publicly-available UAV-based datasets in the appendix; however, none of these datasets
contain solar panel annotations, making them unsuitable for training automated techniques
to identify solar PV cells in UAV imagery.

Since no existing public data were available for our study, we collected a new dataset
(DOI: https://doi.org/10.6084/m9.figshare.18093890) specifically for exploring the per-
formance of UAVs (also know as drones) under controlled conditions for identifying very
small solar PV. We describe our dataset, test sites, and equipment below. Below are our
data design considerations:

1. Adequate ground sampling distance (GSD) range and granularity. Due to variations
in factors such as hardware and elevation change, the GSD of drone imagery can vary
significantly in practice. Therefore, we want our dataset to contain imagery with a
range of image GSDs (shown in Table 1) that are sufficient to represent a variety of
real-world conditions, as well as detect SHS.

2. Diverse and representative solar panels. As solar panels can have different configura-
tions affecting the visual appearance (polycrystal or monocrystal, size, aspect ratio),
we chose our solar panels carefully so that they form a diverse and representative (in
terms of power capacity) set (Table A1) of actual solar panels that would be deployed
in developing countries.

3. Fixed camera angle of 90 degrees and different flying speeds: To investigate the
robustness of solar panel detection as well as data collection cost (that is correlated
with flying speed), we want our dataset to have more than one flight speed.

Table 1. Details of the dataset collected. Altitude and corresponding GSD are listed. Img: Images.
Vid: Videos. In total there are 423 images, 60 videos, and 2019 annotated solar panels.

Altitude GSD # Img # Vid # Annotated PV

50 m 1.7 cm 58 6 248
60 m 2.1 cm 63 7 289
70 m 2.5 cm 47 8 227
80 m 2.8 cm 60 8 295
90 m 3.2 cm 44 8 214
100 m 3.5 cm 47 9 230
110 m 3.9 cm 56 4 278
120 m 4.3 cm 48 10 238

https://doi.org/10.6084/m9.figshare.18093890
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Data Collection Process

UAV. A DJI mini 2 was used to collect all our data except for the Rwanda case study
(in which we used previously published data [42,43]). The DJI mini 2 UAV was selected
due to its flexibility in operational mode, high camera quality, and low cost. It has 3 modes
of flight, with a maximum speed of 16 m/s. It has the capability to hover nearly stationarily,
resulting in high image quality in low wind conditions. It uses 1/2.3′′ CMOS sensor
(4 k × 3 k pixels) with a wide range of possible shutter speeds. It shoots 4 k video
(3840× 2160) up to 30 fps. We fixed the gimbal (angle of camera) to be vertically downward
(90 degrees).

Solar panels. We purchased 5 solar panels in total with various physical sizes and
PV materials to be representative of the types of SHS that are typically installed for off-
grid solar projects in communities transitioning to electricity and include the low end of
feasible use (around 10 W). More detailed specifications of our solar panels are presented
in the appendix.

Flight plan. Imagery data were collected in the flight zone within Duke Forest in
Durham, NC. Due to regulations of the federal aviation agency (FAA) under part 107, we
were allowed to occupy class G airspace that includes altitudes lower than 120 m. Therefore,
the height of all the data collected was capped at 120 m. Additionally, to prevent collisions
with trees, we set the lower limit of our flight height to be 50 m.

Annotation. The data were manually annotated with polygons drawn around the
solar panel by a human annotator. These polygons were converted to pixel maps for
network training. All stationary images were labeled and a small subset of the videos
were annotated.

We present examples of our collected dataset here for reference in Figure 1.

Figure 1. Example imagery in our dataset collected. First row contains imagery taken in Blackwood
Field. Second row contains imagery taken in Couch Field. Left column has GSD of 2 cm, middle
column has GSD of 3 cm, right column has GSD of 4 cm.

4. Post-Processing and Metrics

For the evaluation metrics, we use standard object-wise detection precision and recall,
and summary metrics, as described below. As our models are U-Net-based segmenta-
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tion models (code available at https://github.com/BensonRen/Drone_based_solar_PV_
detection) that produce pixel-wise confidence scores, we aggregate the pixel-wise pre-
dictions into objects based on thresholding the pixel-wise confidence scores into binary
images, grouping those binary images into groups of pixels (objects), and morphologically
dilating those objects into groups of neighboring objects, a process illustrated in the Figure 2.
The resulting set of objects and corresponding confidence scores then serve as an input to a
scoring function that compares each detected object to ground truth to determine whether
they are a true positive, false positive, or false negative object, (illustrated in appendix
Figure A2). We consider a predicted object to be a true positive if its intersection over union
(IoU) with a ground truth object is 0.2 or greater. Intersection over union computes ratio of
the intersection of the area between two objects with the union of the area included in the
two objects.

Figure 2. Post-processing diagram. (a) Original RGB drone imagery. The post processing step takes
as input the prediction confidence map (b) from the model output and generates candidate objects
through thresholding, grouping, and dilating. (c–h) are products of the following steps: Step 1
(S1) thresholds the confidence at 0.5, eliminating the least-confident detections. Step 2 (S2) matches
connected pixels into groups of pixels (groups shown in different colors). Step 3 (S3) eliminates the
groups of pixels that are too small (likely noise). Until this point, some pixels that corresponds to the
same solar panel appear disconnected and therefore belong to different groups. Steps 4 and 5 address
this issue by dilating the proposal pixels (S4) and grouping them (S5). To ensure the dilation does not
change the overall area of prediction, we assign the groups based on the pre-dilation map, but with
the dilated grouping by label point-wise multiplication.

While all PR-curves can be found in the appendix, we present summary statistics
including the maximum F1 score and average precision (AP). F1 is the harmonic mean
of precision and recall and is frequently used as a measure of the accuracy of the de-
tection/classification where an F1 score of 1 implies perfect precision and perfect recall.
Average precision is a summary statistic representing the area under the PR-curve. An aver-
age precision of 1 signifies perfect precision and recall as well. They are defined as follows:

F1max = max
τ

2× P(τ)× R(τ)
P(τ) + R(τ)

(1)

AP =
∫ Rmax

0
P× dr (2)

Here, P is Precision, R is Recall, Rmax is the maximum recall that the model can achieve
(usually less than 1 due to object-wise and IoU limitations), and τ is the operation confidence
threshold for object-wise scoring that we sweep to produce the PR curve. The F1 score uses
the harmonic mean to penalize lower values in either precision or recall. For example, if a
detector achieves 90% precision and 10% recall, the F1 score is 18% (a simple mean would
yield 50%).

https://github.com/BensonRen/Drone_based_solar_PV_detection
https://github.com/BensonRen/Drone_based_solar_PV_detection
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5. Experiment #1: Solar Panel Detection Performance Using UAV Imagery

As we describe the three experiments included in this study, recall that we are investi-
gating three goals: (i) the detection performance of SHS using UAV imagery and computer
vision techniques; (ii) the cost of drone data collection compared to satellite imagery and
other data collection approaches; and (iii) performance in a real-world scenario using data
from Rwanda. This section investigates the first (i) of these three questions, and subsequent
sections explore the remaining two.

The primary goal of this first set of experiments is to estimate the achievable accuracy of
small SHS detection models when they are applied to UAV imagery. We also evaluate how
their accuracy varies with respect to two operational settings: the speed of the UAV, and the
ground sampling distance (or resolution) of the UAV’s imagery. We hypothesize that
these two factors will have a significant impact on the achievable accuracy of recognition
techniques. Low image resolution can reduce detection accuracy and higher UAV speed can
result in motion blur in the imagery, which can also negatively impact detection accuracy.
These two factors are likely to vary in practice, making them an important consideration
for practitioners and researchers who wish to employ automated recognition models.

To estimate the accuracy of contemporary PV detection models on UAV imagery, we
applied a proven object detection model called U-Net [25] to the UAV Solar PV dataset
we created for this experiment. The U-Net has been employed in many recent studies
involving object recognition in overhead imagery, including solar PV mapping [26]. Due to
the relatively small size of our UAV dataset, we begin by further training our ImageNet-
pretrained U-Net model on a satelliteimagery solar PV panel dataset [23]. We then fine-tune
the model on our UAV data (more details about this in the appendix). We evaluated the
performance of this fine-tuned detection model as we varied both the resolution of the
imagery and the flight speed at which the imagery was collected. To evaluate the model’s
performance, we split our data into separate training, validation, and testing sets, which
is a widely-used approach to obtain unbiased generalization performance estimates of
machine learning models [44]. Full details of the training and data handling procedure can
be found in the Appendix A.

5.1. Detection Performance Comparison over Imagery Resolution

To investigate the performance as resolution varies, we train and test image detection
models multiple times, varying the resolution of the image for each scenario. Note that we
define image resolution as the GSD of the UAV imagery (other optics-focused definitions
exist [45], but are less relevant for this study).

To evaluate the performance change due to changes in the resolution of the imagery,
we fly our drone at various heights from 50 m to 120 m (the maximum legally allowed
height in our jurisdiction), resulting in an image resolution range of 1.6 cm to 4.5 cm
per pixel. We divide our flying height (altitude) into 20 m-interval groups for which we
evaluate performance. We trained and tested each possible image resolution to evaluate the
performance impact of flying at different altitudes (resulting in varying image resolutions).

Additionally, we compare the performance across UAV image resolution to common
satellite imagery resolutions, which are a potential alternative approach to collecting data
on very small scale solar PV. We simulate the highest commercially available satellite
imagery resolution (30 cm) as well as high resolution aerial imagery resolution (7.5 cm
and 15 cm) to provide a thorough comparison to UAV performance. To simulate these
alternative image resolutions, we resize the high-resolution UAV imagery to the desired
lower resolution (Details in Appendix A.3 list 3).

Results

Even at the highest flying altitude, as shown in Figure 3b, UAV-based solar PV detec-
tion performance had an Average Precision of 0.94 (at 4.5 cm ground sampling distance).
While this high level of performance is reasonable given that the UAV resolution is high
enough to capture multiple pixels of solar panel content for each SHS, these results mas-
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sively outperformed satellite imagery resolutions. As the resolution decreases from our
UAV imagery to satellite imagery, the detection performance drops monotonically. At 7.5 cm
(high-resolution aerial imagery), performance remains high. However, at a resolution of
15 cm and above, the detection capability of our neural network degrades heavily with
only about half of the panels being detected (the maximum recall is 0.6) and at the typical
highest satellite resolution (30 cm), the performance drops to near zero. Therefore, we
conclude that at the best commercially available satellite resolution (30 cm), very small SHS
PV panels are not feasible to detect. UAVs offer a feasible alternative for small solar PV
detection as does high resolution aerial imagery.

Figure 3. Cost and performance tradeoff with UAV and satellite imagery. (a) Cost per km2 in USD
versus resolution for UAV, satellite, and aerial imagery. Hexagon (HxGN*) provides archival piloted
aerial imagery which is limited in coverage compared to satellite coverage. Pilot-{CT, NC}* are
piloted new aerial imagery collection costs estimated from government documents of CT and NC
USA. Note that unit costs vary with different target area sizes for drone operation. (b) Detection
performance vs. resolution up to satellite resolutions with typical resolutions of platform annotated.
The performance drops significantly down to effectively zero from typical UAV resolution to typical
satellite resolutions.

5.2. Detection Performance with Respect to Resolution Mismatch

As demonstrated in the previous section, very small solar PV detection performance
depends greatly on resolution, but across UAV resolutions (1.7 cm to 4.3 cm per pixel in our
data collection), performance was less variable. In practice, the resolution may change for
multiple reasons. Elevation of the terrain may change, the slope of the landscape and angle
of the image may change over the target area and we may fly UAVs at varying heights for
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data collection (also possible if collected by different operators). Therefore, the resolution
may not always be identical. In this section, we investigate the impact of mismatch between
training image resolution and test image resolution.

To accomplish this, we divide our flying height (altitude) into 20 m-interval groups
for which we evaluate performance. We trained and tested all the possible pairwise
combinations of imagery resolution to evaluate the performance impact of a mismatch
between training and testing altitude.

5.2.1. Results

The results are shown in the Figure 4, where we can see the algorithm’s performance
with different training and testing image resolution pairings. When the training resolution
and test resolution matched, the average precision was 90%. This can be seen in the
diagonal pattern (with the only exception in training of 1.6–2.2 cm ground sampling
distance). The off-diagonal performance (when there was considerable mismatch between
the training and test resolution) was generally lower in performance, illustrating the
importance of having a similar resolution during model training and testing.

Figure 4. Average Precision score for the training and testing data at various resolutions. The rows
are the same training resolution and the columns are the testing resolutions. The bins are grouped so
that they correspond to 20 m intervals in flight height.

5.3. Solar Panel Detection Performance with Respect to Flight Speed

Apart from resolution, another important controllable variable for drone imagery
operation is the speed at which to collect the imagery. The faster the drone flies, the shorter
the time span, and hence the lower the cost of data collection. However, greater speed
may also introduce additional noise into the data due to motion blur [46], impacts on the
stability of the flight, reduced exposure time, and forcing the use of a higher ISO. Each
of these may lower the performance of solar panel detection. Here, we aim to provide a
controlled experiment to investigate the change in performance if we fly at different flight
speeds and compare how flight speed impacts detection performance.

The UAV we used for these experiments, the DJI mini 2, has 2 operational flight
speeds: “Normal” mode and “Sport” mode. Normal mode has an average speed of
8 ms, and Sport mode has an average speed of 14 s. Continuous videos were taken, and



ISPRS Int. J. Geo-Inf. 2022, 11, 222 10 of 25

individual frames were cut from the video and labeled for evaluating the performance
change when flight speed changes (models only operate on individual image frames rather
than continuous video).

Results

Figure 5 shows the degradation in detection performance with respect to flying speed.
From the plot, we can see that the detection performance does drop with respect to the flying
speed as all performance statistics (AP, F1max and Rmax) are worse for sports mode than
the normal mode. However, as the resolution differs, the performance drop monotonically
increases as the resolution becomes lower. We also note that with the normal mode (slow
speed) flying, the detection performance is kept the same comparing to stationary mode.

Figure 5. Detection performance degradation due to flying faster at various altitudes. This shows the
absolute difference between each performance metric at a slow flying speed and the same performance
metric at faster flying speed.

6. Experiment #2: Cost Analysis of UAV-Based Solar Panel Detection and Comparison
to Satellite Data
6.1. Cost Analysis: Methods

Having demonstrated that UAVs can accurately identify very small solar PV panels
under laboratory conditions, a remaining question is whether using UAVs for this purpose
is cost-effective. In this section, we estimate the costs of using UAVs for small solar panel
detection and compare the estimated costs with that of commercial satellite data and aerial
photography. Although we present the operational trade-off of detection performance
using small solar PV detection, these costs may be relevant to a variety of similar analyses
of optical overhead UAV imagery data.

To estimate the cost of UAV mapping (in unit of $), we first identify two key charac-
teristics of the final product: (1) image resolution and (2) size of the area imaged. Nearly
all our cost estimates are a function of these two product specifications (e.g., cost per
km2 at a resolution of 0.03 m). With a fixed resolution and total area, the total amount of
work required (total flight time) can be determined. Although we split our cost estimation
into five major categories listed in Figure 6, not all of them are dependent on the image
resolution or size (such as legal costs). We made a few assumptions regarding operational
parameters in order to provide representative cost estimates for a generic case:

• The UAV is operated five days each week, six hours per day (assuming an eight-hour
work day, and allowing two hours for local transportation and drone site setup).

• Each UAV operator rents one car and one UAV; the upfront cost of the UAV is amor-
tized over the expected useful life of the UAV.
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• Total UAV image collection time is capped at three months, but multiple pilots (each
with their own UAV) may be hired if necessary to complete the collection.

• UAV lifetime is assumed to be 800 flight hours (estimate from consultation with a
UAV manufacturer).

• A sufficient quantity of UAV batteries is purchased for operating for a full day.
• The probability of inclement weather is fixed at 20%. and no operation would be

carried out under those conditions.

Using these assumptions, we can translate total required flight time for a given data
collection into total working hours, the number of pilots needed and the number of UAVs
needed. Together, this information can be combined to estimate each individual cost type
we enumerate in Figure 6.

Figure 6. Major categories of our UAV operation cost estimate structure. Legal and permitting cost is
highly region-dependent and is usually a fixed cost that is not dependent on the resolution and area
covered. All other categories are highly resolution-area dependent.

We distinguish four categories of costs, as illustrated in Figure 6, for UAV data collection:

• Legal and permit: The legal and permitting cost of getting the credentials for flying in
a certain country or region. As an example, in the US, although state laws may vary,
at a federal level, flying for non-hobbyist purposes (class G airspace, below 120 m)
requires the drone pilot to have a Part 107 permit, which requires payment of a fee as
well as successful completion of a knowledge test. The legal and permitting costs are
inherently location-dependent, and cost variation may be large.

• Transportation: The total transportation cost for the drone operator. For the purposes
of our estimate here, we assume one drone pilot (thus, total data collection time is a
linear function of area covered). Note that this category includes travel to and from
the data collection location, which is assumed to include air travel, local car rental,
car insurance, fuel costs, and (when the operational crew is foreign to the language) a
translation service.

• Labor-related expenses: Umbrella category of all labor-related costs including wages
and fringe benefits or overhead paid to the drone pilot, as well as boarding and
hotel costs.

• Drone-related expenses: Umbrella category of all drone-related costs including pur-
chase of the drone, batteries, and camera (if not included with the drone).

The details of the price assumptions are outlined in Table 2. In each row, we specify
the major cost item and the unit price. We put additional details in the appendix.
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Table 2. Table with detailed breakdown of the cost assumptions in each category for US-based
operation. References embedded with hyperlinks. Note that nearly all of the unit prices in this
chart vary greatly with the operational location of interest, and therefore anyone referencing this cost
estimate framework should adjust according to local conditions and prices. A detailed calculation and
explanation of our cost assumptions are given in the appendix and can be found at our code repository.

Category Item Unit Cost Unit

Legal and permit
Part 107 certificate $150 [47] /pilot

Pilot training for exam $300 /pilot

Drone registration fee $5 [48] /drone × year

Transportation

Car rental $1700 /month

Car insurance $400 /month

Fuel $3 [49] /gallon

Flight ticket $2000 /pilot

Driver/translator 0 in US /pilot

Labor related
Wage $40 /hour × pilot

Benefit $20 [50] /hour × pilot

Hotel $125 /night

Drone related

Drone $27,000 /drone

Camera $0 /drone

Battery $3000 /drone

Data storage $130 /5 TB

6.2. Cost Analysis: Result

We present our cost estimate in Figure 7. There were three types of drones used in [42]
and we use “Ebee Plus” to estimate our total drone operation cost because it is able to map
the largest area per flight (or per unit time) among the three. From Figure 7, we see that
the relationship between the total cost and the total area of interest after some threshold is
nearly linear (i.e., as the fixed cost is averaged out over a larger amount of area). We also see
that the overall cost of using a UAV to map high-resolution imagery is non-trivial: mapping
an area equivalent to the size of the Federal Capital Territory (7000–8000 km2) around and
including Abuja, the capital area of Nigeria, would cost around 6 million dollars in total.

One of our assumptions of the price estimation is that the pilots are not within day-trip
distance to the place of interest and need lodging during operation. Local pilots are also an
option and are increasingly available, which would yield lodging and other travel related
expense savings. At 0.03 m resolution, the lodging fee, at most represents about 15% of
the total operation cost, which would not impact our conclusion or the relative ranking of
UAV, satellite, or aerial imagery cost. More information regarding lodging fee is provided
in the Appendix A.

Apart from the drone operation cost, the core question we aim to answer concerns
the cost and performance trade-offs between using drone-based high-resolution imagery
or satellite imagery for a given setting or application. Therefore, we combine these two
elements together in Figure 3 for direct reference. Note that the price estimates for commer-
cial offerings are estimated from online sources, government agency reports, and expert
consultation, but we recognize these estimates; estimates which we believe are reasonable
for the purpose of this study, but are certainly imperfect. The exact price would vary
based on negotiated rates, changing business models, and on specific parameters of the
desired data collection including the region of interest, business status (e.g., for nonprofit or
for-profit use), etc. Currently, the highest resolution (0.3 m) commercially available satellite
imagery is provided by private companies. We collected estimates of satellite imagery cost
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per unit area (USD per km2) and compared these with our estimated UAV average cost per
km2 with the same resolution. Note: these costs estimates will vary based on negotiated
rates and size of the imagery order.

Figure 7. Total cost of UAV mapping with respect to total area mapped with resolution of 0.03 m.
The x axis is the area in km2 in log scale, and y axis is the total cost in USD, log scaled. We provide
reference area sizes with the population: (1) O.R. Tambo International Airport of South Africa,
the busiest airport in Africa; (2) N’Djamena, capital city of Chad; (3) Kigali, capital and largest city of
Rwanda; (4) Manus Province, the smallest province of Papua New Guinea; and (5) Federal Capital
Territory, capital area of Nigeria. All description and population information is from Wikipedia.

From Figure 3, we draw several conclusions: (1) The satellite imagery costs are typically
much lower than UAV imagery cost, although they also have significantly lower resolution,
which results in extremely poor performance in very small SHS detection. (2) The unit
price of UAV imagery is lower both when the total area increases sufficiently (to a limit
where the average fixed cost per unit area falls to essentially zero, so that the relationship
between total cost and coverage area becomes essentially linear) and when the resolution
requirement drops. (3) The cost of UAV imagery is comparable to satellite imagery when
operating over a large area (>50 km2) with lower image resolution (4–7.5 cm); which also
achieves excellent performance according to the performance plot.

In addition to the cost and performance of satellites and UAVs, Figure 3 also provides
the same information for one more approach: imagery collection from piloted aircraft. To es-
timate the costs of the piloted aircraft approach, we collected data from two government
reports [51,52]), and also information on the Hexagon (HxGN) Imagery Program. That
report indicates that the cost is $100–200 per km2 and the resolution ranges from 7.5 cm
to 30 cm. However, we note that these cost and resolution figures are based on historical
data collection in the US, conducted for government agencies and for a large coverage
area. Therefore, the average costs may differ in a different setting, such as in South Asia
or sub-Saharan Africa. The Hexagon Imagery Program’s price reflects only the archival
imagery that was collected in previous piloted missions and is limited in geospatial and
temporal coverage compared with satellite imagery.

For context, we also provide data points of cost for ground-based surveys. Since
ground surveys are usually conducted one household unit at a time (rather than by one
unit area, km2, as in aerial surveys), the costs are typically calculated per household.
Researchers and organizations conducting such surveys [53–55] reported that ground
survey costs varies widely between $20–$422 per household, depending on the level of
detail of the survey. Comparing those estimates with UAV cost estimates, as long as the
area of the drone survey has an average density of more than 5 households per km2, then
UAV-based data collection would be cheaper than ground surveys (assuming at 3 cm GSD,
50 km2 in total area for the UAV data collection). For comparison, the average household
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density in Rwanda is around 120 households per km2 and over 90% of the population of
lives in an area where household density is greater than 78 households per km2 (Details
can be found in Appendix A.4) which is much higher than our 5 households per km2 price
parity point for UAV and ground based surveys. Piloted flights (as shown in Figure 3) are
also a potentially cost-effective data collection methodology and are also less expensive
than ground surveys for regions with a density of 15 households per km2 or higher.
Although from these estimates, UAV costs are significantly lower than ground surveys,
ground surveys can provide a much larger variety of information such as economic and
demographic information, which would be nearly impossible to collect from raw overhead
imagery alone.

In conclusion, although satellite imagery are cheaper and logistically easier to access,
satellite imagery simply cannot adequately capture the small solar PV as Section 5 shows.
UAV imagery has the advantage of unmatched high resolution and therefore, even at some-
what higher costs, is far more reliable in very small SHS performance in the SHS detection
task. While tasks other than small SHS would likely have different performance with
respect to image resolution, the trend we show here may be similar for cost estimates rele-
vant to other applications (such as agriculture [42], wildlife conservation [56], emergency
response [57], and wildfire monitoring [58], among others). Additionally, as we found the
biggest cost element is the human operator-related cost, which is indispensable currently
due to the legal requirement of human-guided operation within the line of sight [59]. How-
ever, if automated UAV flights become possible (or did not require on-site operators), then
the cost of drone-based operations would become significantly lower, potentially giving
UAVs a large cost advantage compared to satellites.

The cost estimates provided here were collected regarding data collection in the US
as the numerous cost estimates and underlying operational assumptions that go into
such estimates are readily available. This may be an optimistic estimate when consider-
ing the heterogeneity of applications globally due to differences in operational expenses,
transportation time, and local regulations. Additionally, weather conditions and flight
performance at different altitudes [60] may affect the flight speed and hence impact costs.
We encourage the use of the calculations presented in Appendix A.5 to create estimates for
a specific data collection process.

7. Experiment #3: Case Study: Rwanda SHS Detection Using Drone Imagery

The last of our three questions was to evaluate how well UAV-based SHS detection
performs in real-world scenarios. To test the feasibility and robustness of using UAV
imagery to detect small SHS in rural areas, we conduct a real-life case study in Rwanda
to detect the SHS that villagers in developing countries are currently using, using the
UAV imagery provided by RTI [42,43]). As this imagery was collected from multiple rural
agricultural areas in Rwanda representing different agroecological zones without any prior
information on the prevalence or locations of SHS, the model performance achieved is
expected to be more representative of the actual performance when this method is applied
to a new location of interest. The drone was flown at a fixed height yielding a GSD of
0.03 m/pixel, which was also covered in the range of our controlled experiments above.
We are also making our annotations of these Rwanda data public for reproducibility.

We manually labeled the solar panels in the Rwanda imagery. We found 214 solar
panels in total and split them into a training set of 114 panels and validation set of 100 panels.
We limited the fraction of images without SHS to 10% of the total available to maintain class
balance. The dataset contains around 21,000 image patches of 512 × 512 pixels, of which
1% has solar panels. In total, the model required 2 days to train on the 10% background
data and the 114 solar panels using an NVIDIA GTX2080. We trained 120 epochs to ensure
convergence, which led to 0.25 million images passing through our network.
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Case Study: Result

Figure 8 shows randomly selected examples of our model predictions. Qualitatively,
the majority of the SHS were found with few missing SHS and false positives. Out of the
nine solar panels present in the sample imagery, eight of them are correctly detected and
one of them is missed in the example given. From the example, we can also see that the
network can find panels reliably in two distinct roof types present in the Rwanda data.

Figure 8. Sample predictions from the Rwanda dataset. Left columns are the imagery patches and
right columns show the output of the predictions. Green represents true positives, which are corrected
labeled solar panel pixels. Red represents false positive, which occurs when the algorithm predicted a
solar panel where there was none. Orange represents false negatives, which are actually solar panels,
but were not detected.

Quantitatively, from the PR curve in Figure 9 we can see that the performance achieves
a maximum F1 score of 0.79, and average precision of 0.8 and maximum recall of around
0.9. By properly thresholding the confidence score, we can achieve a Recall of 0.89 (de-
tecting 89% of the solar home systems) with precision of 41%. Lower precision means
more false positives, but in a post-processing the detections could be manually reviewed
quickly and most eliminated without minimal intervention. Alternatively, recall and be
sacrificed for precision, reducing the number of false positives (potentially dramatically
so), but sacrificing some recall, meaning that the number of solar panels that were correctly
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identified would decrease. This amounts to moving around the PR curve in Figure 9 to find
the appropriate balance for a given application.

Figure 9. Precision-recall curve of the case study for small home systems in Rwanda RTI imagery.

Although there is a performance gap between the lab controlled experiment and
the Rwanda case study, it is encouraging to see that recall, the fraction of very small
SHS successfully identified remains high in both cases, suggesting that UAV based data
collection may be a viable approach for providing information to decision makers working
in sustainable development.

While these results are encouraging, there remain several limitations or challenges
around this application that include regulatory requirements [59] to maintain visual line of
sight, which necessitates a trained drone operator; limitations in battery technology that
bottlenecks the overall flight time of each mission [61]; and limited autonomous navigation
and control systems [62]. More specifically in sub-Saharan African countries (where the
majority of people without access to electricity are located), Washington [63] states that the
lack of trained operators, lack of government regulations, and privacy concerns are the
major challenges to be anticipated for drone technologies to be widely and safely applied
to benefit wider communities. However, this has been changing in recent years as more
countries in sub-Saharan Africa have developed standard processes for obtaining flight
permits and local capacity for operating drones to collect and process imagery for analytical
purposes has been expanding rapidly in many countries.

8. Conclusions

Small solar home systems that provide transitional electricity access to communities
are too small for any commercially available satellite imagery to capture. We demonstrate
that UAV imagery is a viable alternative to map these small solar home systems to provide
critical information to stakeholders working to improve electrification in developing coun-
tries including the identification of potential markets and information to track progress to
electrification sustainable development goals. Through controlled experiments examining
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the impact of altitude and speed, we tested the technological and financial viability of UAVs
for this purpose. We investigated the robustness of drone-based small SHS detection with
respect to both resolution (detection performance changes minimally within typical UAV
operational altitude) and flying speed (detection performance drops with higher speed),
estimated the cost of operation and found comparable cost with satellite imagery given a
sufficiently large region to map. We also evaluated UAV small solar detection performance
on a case study in Rwanda that demonstrated that drone-based small SHS detection is a
viable approach to supply crucial information about local SHS conditions for energy access
projects, successfully identifying nearly 90% of solar panels with moderate false positive
rates that could be reduced through post-processing.

The evidence from this study suggest that UAVs are a technically viable and financially
reasonable approach to collect data for small energy infrastructure like solar home systems.
The information about the location and characteristics of small SHS in developing countries
collected from drones may provide evidence for decision-making around energy access
planning for reaching the SDG 7.1 of universal access to electricity by 2030.

Future works: There are at least two potential future directions of this work. The first
is developing a larger, more diverse collection of UAV data on small energy system objects
such as solar PV, diesel generators, electric water pumps for irrigation, and distribution
poles and lines. The dataset we share controlled for a large number of possible experimental
variables to form fundamental conclusions. A larger and more diverse set of imagery could
provide an application-focused benchmark for future algorithm development. The second
potential direction of this work is for a larger set of case studies, preferably with even more
diverse geographies beyond the regions of Rwanda that were available for this work to
explore algorithm robustness.
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Abbreviations
The following abbreviations are used in this manuscript:

SDG Sustainable Development Goal
UAV Unmanned Aerial Vehicles
US United States of America
AP Average Precision
IoU Intersection over Union
CNN Convolutional neural networks
SHS Solar Home Systems
GSD Ground Sampling Distance

Appendix A

Appendix A.1. Data Collection Pipeline and Detailed Specifications of Solar Panels Used

To collect our UAV imagery dataset, (1) the solar panels were randomly distributed
at the data collection site; (2) the UAV pilot operated the drone to reach required each
altitude (every 10 m) and hovered to take stationary images; (3) the UAV was flown at
approximately a constant speed (in both a lower and higher speed setting) across the drone
site, collecting video of the solar panels while the UAV was in motion; (4) this process was
repeated on different dates, drone sites, times of day, and orientations of the drone flight
path; and (5) the SHS in the data were manually annotated by drawing polygons to indicate
the presence of each solar panel.

The list of solar panels we used is provided in Table A1. To ensure our experimental
results are representative of practical applications of small SHS detection, we chose a diverse
set of solar panels from three different manufacturers, included both monocrystalline (black)
and polycrystalline (blue) compositions, and varied the physical dimensions in total area
and aspect ratio. The majority (4/5) are below 50 Watts, and we include one larger panel
with a 100 Watt rated power capacity as well (which we imagine to be the upper limit of
small SHS).

Table A1. Details of the solar panels used in the experiments. X-crystalline (cell composition):
Polycrystalline or Monocrystalline, which have slightly different colors. L: Length. W: Width. T:
Thickness.

Brand X-Crystalline L (mm) W (mm) Aspect_Ratio Area (dm2) T (mm) Power (W) Voltage (V)

ECO Poly 520 365 1.43 19 18 25 18

ECO Mono 830 340 2.45 28.3 30 50 5

Rich solar Poly 624 360.8 1.73 22.6 25.4 30 12

Newpowa Poly 345 240 1.44 8.3 18 10 12

Newpowa Poly 910 675 1.35 61.5 30 100 12

Appendix A.2. Satellite View for Small SHS

Here, we present a simulated (via downsampling) satellite-view of the SHS we investi-
gated in this work to demonstrate the difference in the quality of visibility of the solar arrays
at a satellite imagery resolution as compared to UAV image resolution. From Figure A1
we see that it is almost impossible (for average human eyes) to detect the presence of
solar panels in the image at satellite resolution. We see that the near-zero performance in
Section 5.1 is reasonable at satellite imagery resolution, as there is very limited visibility
of these very small SHS. Therefore, UAV imagery resolution is necessary to successfully
extract information on the location and size of small SHS.
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Figure A1. Satellite resolution view of SHS compared with a UAV example. (a) Original UAV imagery
with GSD of 2 cm. (b) Human labeled ground truth of the SHS. (c) Simulated Satellite imagery with
GSD = 30 cm. (d) Simulated ground truth of SHS at the resolution of satellite imagery.

Appendix A.3. Algorithm and Performance Details

1. Pretraining: As labeled drone datasets, especially the ones including solar panels,
are extremely scarce, we use satellite imagery containing solar panels (same target
as our task, but larger in size) to pre-train our network before fine-tuning it with the
UAV imagery data we collected. This practice increased performance over fine-tuning
from ImageNet pre-trained weights alone, IoU improved from 48% to 70%).

2. Scoring pipeline: We illustrate the process of scoring in Figure A2. Note that in
detection problems, the concept of true negatives is not defined. This is also precision
and recall (and therefore precision-recall curves) are used for performance evaluation
rather than ROC curves.

3. Simulating satellite resolution imagery: In Section 5, we downsampled our UAV
imagery to simulate satellite imagery resolution. To make sure the imagery has an
effective resolution that is the same as satellite imagery, while keeping the same
overall image dimensions so that our model has the same number of parameters, we
follow the downsampling process with an up-sampling procedure using bi-linear
interpolation (using OpenCV’s resizing function). The effective resolution remains
at the satellite imagery level (30 cm/pixel), but the input size of each image into the
convolutional neural network remains the same.

4. Hyper-parameter tuning: Across the different resolutions of training data, we kept all
hyperparameters constant except for the class weight of the positive class (due to the
largely uneven distribution of solar panels and background imagery across changes
in GSD). After tuning the other hyperparameters like learning rate and the model
architecture once for all flight heights, we tuned the positive class weight individually
for each of our image resolution groups due to the inherent difference in the ratio of
number of solar panel pixels within each image.

5. Precision-recall curves for Section 5.2.1: As only aggregate statistics were presented
in Section 5.2.1, we present all relevant precision-recall curves here (Figure A3) for
reference.
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Figure A2. Scoring process. (GT: ground truth). After post-processing, the candidate object groups
are matched with the ground truth labels. The confidence score of each object is denoted as the
average confidence value of all the pixels associated with that object.

Figure A3. All precision recall curves for the summary metrics shown in Figure 4.
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Appendix A.4. Household Density Estimation

To estimate household density, we used the average population density [64] divided
by the average household size [65]. For a further point of reference we calculated the
population density level at which 90 percent of the population of Rwanda lives in a more
dense region. To do so, we collected high resolution population data from 2020 [66],
determined the areas of highest population density, sorting them from highest to lowest,
and determined the level that encompassed 90% of the population. We divided that
estimate (inhabitants per square kilometer) by average household size (4.3 inhabitants per
household [65]) in order to determine an estimate of the average number of households per
square kilometer at that level of population density.

Appendix A.5. Cost Estimation Calculations and Assumptions

Here, we present the details of the calculations and assumptions behind the costs
estimates used in this work for UAV operation.

The area that a drone can map in a day Aday can be calculated from the manufacture’s
specifications on the resolution of the imagery of the drone and the battery life for a given
flight. We also assume a 6 h daily flight limit on drone operation.

Aday = A1 f light(res)/Tbattery × 6(h)

The area that a drone can map in a single flight is dependent on its resolution, and we
assume this relationship to be linear (assuming a constant flight speed). The area of the
field of view for a drone is quadratic with respect to ground sampling distance. Here, we
use the manufacture’s specifications that claims that flying at a height of 120 m produces
3 cm ground sampling distance imagery.

A1 f light(res) = res/0.03× 120

To calculate the required number of days (workday + weekends) for a specific mission
can be calculated using the above quantities. One factor here is that not all days are suitable
for a drone flight (e.g., inclement weather). Therefore, we factor in the probability of sunny
(or otherwise mild) days into the equation and assume it to be 80%. This could be replaced
with the weather conditions of any region of interest. Additionally, note that since we will
use this to calculate the cost of compensation for the pilot, we assume payment during
weekends as well although pilots are not assumed to be working during weekends, and
therefore multiply the number of days required by 7/5 to get the actual time it takes. Note
that we assume only weekends (no holiday) for simplicity.

Daytot = Atot/Aday/5× 7/%sunny

Next, we calculate the number of pilots required for the mission, which can be calcu-
lated from our assumption that the mission should take less than 3 months (90 days). Since
we are paying the pilots by their time, the overall cost would not be largely affected if we
increase the number of pilots, hence reducing time for each of them on this mission.

Npilots = ceil(Daytot/90)

Using the total number of pilots, the fixed cost for the mission can be calculated.
The fixed cost consists of pilot training cost, pilot certificate exam cost, permit/registration
of drone cost, and transportation (assuming airfare) to the mission site. The flight cost
assumption was estimated according to international travel standard ticket fares and
assumed to cover up to two round trips based on the assumption of up to 3 month work
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time. The training cost were estimated from the costs of online preparatory courses for a
part 107 certificate.

$ f ixed+ = ($ f light + $training + $exam + $permit)× Npilots

The bulk part of the operational costs comes from the human labor, hotel, and trans-
portation. Wage information is taken as an average of median wage values reported for
drone operators from salary tables across various online sources. The hotel cost assump-
tions were from average U.S. daily rates from a variety of leading hotel retailers. The car
and insurance cost assumptions come from monthly rental quotes from leading car rental
companies.

$human = ($wage + $bene f it + $hotel + $car

+ $carinsurance + $translator)× Daytot × Npilots

Another cost comes from the amortized cost for the uAV. We assume the total flight
time for a drone and all associated equipment is 800 flight-hours. The price assumption
for drones comes directly from drone retailers. Some drones retailers combine the camera
price into the drone price while some others do not. For battery costs, we assume we buy
enough batteries to support a full day’s operation for each of the pilot teams.

$drone = (($buydrone + $camera + $batteries)

/Tli f etime × Toperation)× Npilot

We assume pilots rent cars to commute locally during the mission, therefore, the fuel
also needs to be factored into the calculation. Although we found this to be a small enough
portion to be neglected retrospectively, we still include it here for completeness. To calculate
the total driving distance of the pilot, we assume the mission is to map a large contiguous
square area. As the maximum communication distance between drone and controller is
7 km, in principle, the pilot needs to drive at least the total area divided by twice the
communication distance (14 km) to complete the mission. The Mile per Gallon (MPG) of
the car is assumed to be 25 MPG and converted to kilometers per Gallon (40 KMPG).

$ f uel = $gallon × Atot/14/KMPG

Another cost is data storage. Assuming 8-bit color imagery, that translates into
1 Byte/pixel/channel. We assume four channels to be stored (red, green, blue, and one for
GIS post-processing), the number of pixels can be calculated for a given area and image
resolution. The total cost of data storage would be the cost of number of hard drives (HDD)
needed to store all the data, which is the total number of bytes divided by the capacity of
the HDD (we assume physical hard drives will be needed in case access to cloud services
are unavailable).

$DataStorage = 1(Byte/pixel/channel)× 4(channels)

× area(km2)/res2(m2)× 106

× $HDD/CapHDD

The total cost of the mission would calculated by adding all of the above costs together:

$tot = $ f ixed + $human + $drone + $ f uel + $DataStorage

Appendix A.6. Lodging Cost Ratio

One of our assumptions is the absence of local pilots that do not require a travel status
(hotel cost). We recognize this might not be as justified as more and more certified pilots



ISPRS Int. J. Geo-Inf. 2022, 11, 222 23 of 25

are available across the globe and therefore provide the ratio of lodging fee to the total cost
with respect to total area change.

Figure A4. Hotel cost as a percentage of total cost with respect to the total area of the mission at
0.03 m resolution.

As Figure A4 shows, the hotel cost gradually ramp up when total mission area increase
and asymptotes to 15%. This means that at resolution of 0.03 m, if local pilots can be found
within day-trip of operation place of interest, up to 15% of the total cost can be saved.
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