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Abstract: Geometrically induced topology plays a major role in applications such as simulations,
navigation, spatial or spatio-temporal analysis and many more. This article computes geometrically
induced topology useful for such applications and extends previous results by presenting the un-
published used algorithms to find inner disjoint (d + 1)-dimensional simplicial complexes from a
set of intersecting d-dimensional simplicial complexes which partly shape their B-Reps (Boundary
Representations). CityGML has been chosen as the input data format for evaluation purposes. In
this case, the input data consist of planar segment complexes whose triangulated polygons serve as
the set of input triangle complexes for the computation of the tetrahedral model. The creation of the
volumetric model and the computation of its geometrically induced topology is partly parallelized by
decomposing the input data into smaller pices. A robustness analysis of the implementations is given
by varying the angular precision and the positional precision of the epsilon heuristic inaccuracy model.
The results are analysed spatially and topologically, summarised and presented. It turns out that
one can extract most, but not all, volumes and that the numerical issues of computational geometry
produce failures as well as a variety of outcomes.

Keywords: geometrically induced topology; simplicial complexes; topological algorithms; watertight
volumetric model; robustness analysis

1. Introduction

B-Reps (Boundary Representations) of geometric data such as city models are useful for
retrieving the topological relationships between entities such as buildings and infrastructure
elements. Ideally, they are watertight in the sense that volumes bounded by surfaces are
modelled in a way that all planar border surfaces form a non-overlapping cover. A widely
used data format for city models is CityGML [1], which is a B-Rep model. Complex
volumes or solids are represented by a set of planar polygons which are supposed to form
a watertight hull. The polygons themselves are also B-Reps to represent planar surfaces.

To compute the geometrically induced topology of this type of data is not a trivial task.
In [2], it was found that such data often contains various types of topological inconsistencies,
in the sense that elements have intersections which are not referenced explicitly. For this
reason, data of this kind need a rendering to topologically consistent models. If the
volumetric model is topologically consistent, then simulations relying on the topology of
the model will capture flows of substances such as air, water, heat, pollutants, etc., through
the correct elements because the correct connectivity relationships are known.

The article [3] presents a method for producing solid models from B-Rep models
together with the geometrically induced topology represented as a graph. The approach
there is to find inner disjoint (d + 1)-dimensional simplicial complexes from a set of
intersecting d-dimensional simplicial complexes which partly shape their B-Reps, and to
triangulate these in order to create tetrahedral volume models. The overlay computation of
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these tetrahedral volume models in order to produce a topologically consistent model was
not needed in [3], as only the volume measure was of interest. However, the geometrically
induced topology is represented as a Property Graph Model using certain relation types. The
Property Graph Model in turn can be used for topological queries without recalculating each
intersection on demand with the help of some spatial or spatio-temporal access methods.
The input data have been decomposed into different simplicial sub-complexes in order
to test different kinds of parallelisations. Parallelisation is a major need to process big
geo-spatial data efficiently. Three types of decompositions of the CityGML input data were
tested by the definition of grouping tags. Each type of decomposition results in a number
of different sets of open volumes, one set per decomposition or thread of the parallelisation.
Those sets of disjoint open volumes can intersect each other. The quality of the output
depends on the floating point arithmetic, the precision model and the decomposition of
larger pieces into disjoint pieces, which has been performed for parallelization purposes.
In other words, rounding errors, or said otherwise, uncertainty in the geometry, and the
method of the decomposition can influence the global topology on which some application
may rely.

The aim of this article is (a) to present the remaining algorithms to compute topologi-
cally consistent volumetric models in addition to [3], (b) to analyse the robustness of the
algorithms by variation defining parameters for the equality of angles and lengths and
(c) to study the speed-up and the parallelization impact on the results by using different
decomposition types of input entities into smaller pieces.

The following Section 2 gives an overview of the state-of-the-art in research in related
work. Section 3, on Methodology, introduces the algorithms to find B-Reps. Section 4
presents the experiments, and Section 5 discusses the findings in the context of their
meaning for simulations on topologically inconsistent data.

2. Related Work

This article is a contribution to topological methods in geographical information
systems (GIS) by studying the rendering method of topologically inconsistent input data
from [3] with respect to its sensitivity to certain uncertainty parameters.

Already in [4], we find simplicial complexes as data structures for managing 3D/4D
topological information in GIS. A theoretic foundation for topological databases for applica-
tions in geographic science or systems was laid out in [5], which relies on the mathematical
result that partially ordered sets correspond to a certain large class of finite topological
spaces [6]. Practically, this was implemented in [7], where the focus is on the management
of topology in GIS. The review article [8] gives a more in-depth overview of applications of
topology in this field of research.

Recently, it was found how to enable topology management systems to allow for a
distributed implementation of simulations on topological models in GIS [9,10]. This is
based on a method to obtain volumetric models from topologically inconsistent data [3].
This is a necessary step, as the widely spread format CityGML [1] contains various types
of topological inconsistencies [2,11]. Notice that the literature contains various differing
notions of topological consistency, cf., e.g., [12–14]. However, to quote from [2]:

In [15], the most common geometric and semantic errors in CityGML data are
analysed. They find that the most common topological errors are that polygons
are not properly oriented, and that geometries are not properly “snapped”. From
what is stated there, one can see that our approach is, on the one hand, a further
differentiation of that error type, and, on the other hand (unlike loc. cit.), we do
not require a building to consist of solids only, as long as the polygons intersect
in common boundary elements, e.g., balconies, porches, and shelters often have
geometries which do not form a shell, i.e., are non-closed surfaces.

Already, Refs. [16,17] deal with finding and automatically repairing inconsistencies
in CityGML data. As healing methods rely on geometrical operations which depend on
rounding errors, this is an issue which deserves attention. In particular, it is of interest
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whether a method is robust or sensitive to variations in parameters. Such a robustness
analysis can be found, e.g., in planning optimal road alignments [18]. Uncertainty or
sensitivity analysis leads to tools for GIS-based model implementation [19]. As geometric
operations are fundamental for GIS, robustness considerations can be found already in [20].
A first study of a method of transforming a B-Rep of a solid model into a tetrahedral space
partition using rounded integer values was presented in [21], where it was found that the
achievable accuracy is sufficient for the civil engineering industry. Finally, we mention error
propagation using Monte Carlo methods in GIS that can be found, e.g., in [22], although
we use a different method of analysis in this article.

3. Methodology
3.1. Epsilon Heuristic

The use of an epsilon heuristic is a common and straight forward inaccuracy model to
use for imprecise data. Five different scaling factors need to be chosen in addition to one
fixed value as the basic constant α. The basic constant α has to be set to 10−n with n being a
desired integer number and n > 0. So, there is one precision parameter α which scales all
precision types and five different factors for each precision type:

1. Base precision value α
as base value for all the different precision types;

2. Positional precision ε = αε′

with factor ε′ for distance, length, area and volume comparison;
3. Positional line precision ε = αε′

with factor ε′ for point- or line-on-line comparison;
4. Positional plane precision σ = ασ′

with factor σ′ for point-, line- or plane-in-plane comparison;
5. Angular precision ζ = αζ ′

with factor ζ ′ for cosine comparison;
6. Skew precision λ = αλ′

with factor λ′ for the skew comparison of two lines.

Smaller values of the positional precision ε reduce the buffers around points, which
leads to less point equality as well as smaller lengths of segments, areas of triangles and
volumes of tetrahedra. Smaller values of the positional line precision ε reduce the buffer
around lines, which leads to fewer contains and intersects identifications of a line with
points and lines. Smaller values of the positional plane precision σ lead to fewer contains
and intersects identifications of a plane with lines and points. Smaller values of the angular
precision ζ lead to thinner angles. This in turn leads to fewer collinear, fewer parallel and
fewer orthogonal identifications of planes and lines. Smaller values of the skew precision λ
lead to fewer skew identifications when comparing two lines.

3.2. Geometrically Induced Topology

According to [2], a spatial model consisting of points, open segments and open poly-
gons is topologically consistent if all objects are pairwise disjoint. Otherwise, it is topologically
inconsistent. Consequently, if a model is topologically inconsistent, then the existing over-
laps between objects are not captured in the topological model and therefore appear to be
non-existent. This notion of topological consistency differs from previous definitions in the
literature in that it relates geometry and topology in a meaningful way. In fact, through
this, a comparison between the explicit topology of the model and the topology induced by
geometry now becomes possible.

The models considered in this article are mostly simplicial complexes, i.e., their consti-
tuting objects are simplices. The textbook by Hatcher [23] contains more information about
these structures. The topology of a finite simplicial complex can be captured explicitly by
modelling the boundary relationships between a simplex and its bounding simplices. This
gives the so-called face poset, a partially ordered set whose elements are the k-dimensional
simplices for any k ≥ 0 called faces, and the partial order relation is the inclusion of faces.
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According to [6], a finite partially ordered set is a certain topological space known as a
so-called T0-space, and vice versa every finite T0-set a partially ordered set.

A minimal representation of the topology of a partially ordered set is given by the Hasse
diagram, which depicts all direct relationships between elements in the partial ordering. The
Hasse diagram is a minimal binary relation such that the reflexive and transitive closure of
this binary relation gives back the partial ordering. An example Hasse diagram is given in
Figure 1, which depicts the Hasse diagram of the face poset of a triangle.

A

a b c

P Q R

R

b
A

c

P a Q

Figure 1. (Left): The Hasse diagram of the face poset of the triangle on the (right).

This idea led to the notion of topological database, which encodes topological data
into a relational database where the reflexive and transitive closure operation becomes a
fundamental operator in relational algebra. More details can be found in [5].

By assigning coordinates to the 0-dimensional simplices of a simplicial complex, it
becomes a geometric model in Euclidean space. Special care must be taken if the model
is to be topologically consistent (in the sense above), even if all points are given distinct
coordinate tuples. For example, if a 1-dimensional simplicial complex (i.e., a simple graph)
is given a geometry in this way, it can happen that, e.g., edges overlap. A complete list
of the possible configurations of two line segments without common points is given in
Figure 2. Notice that the solid points • in Figure 2 indicate that the point is explicitly
modelled in the topology, whereas the hollow point ◦ indicates that it is modelled as a
part of the horizontal line segment, but its intersection with the vertical line segment is
not explicitly modelled in the topology. In the model topology, the two line segments are
disjoint in all three cases.

•

• •

•

(a)

•

• •

•

(b)

•

◦ •

•

(c)

Figure 2. Two line segments whose explicit topology does not allow common points: (a) topologically
consistent; (b) topologically inconsistent line–line intersection; (c) topologically inconsistent point–
line intersection. Case (b) is missing the intersection point. Both lines should explicitly reference the
intersection point within their definition. Case (c) misses the intersection point explicitly referenced
by the vertical line.

If we assume that all simplicial complexes are of dimension two and that every
point and edge is contained in the boundary of a triangle, then there are more possible
topologically inconsistent configurations. For two triangles without common vertices or
edges, there could possibly occur any one of the following intersections:

point–line; point–face; line–line; line–face; face–face.
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The latter implies further topologically inconsistent intersections, such as line–line or
point–line. Real-world examples where these occur are given and illustrated in [2].

A B-Rep is a common approach to explicitly store the topology of a model via the
boundary relationships. However, it is prone to topological inconsistency, as has been
demonstrated in [2]. Hence, if not carefully applied, the B-Rep representation can induce a
loss of topological information. Because of the spread of this carelessness, some data types,
such as CityGML, approach this issue by using labels expressing a part-of relationship or
a similar kind of semantics. Another issue is that a B-Rep does not model the interior of
the object it represents—only its boundary. However, the interior cannot always be clearly
inferred from the boundary, cf. Figure 3, left and right configuration. So, here, we may and
will presume that a B-Rep does not always properly recover the topology.

In order to remedy this problem and to obtain topological consistency, we define the
overlay of two topological objects X and Y. It is given by defining a topology on the set of
intersections of the interiors and boundary objects of X and those of Y. Namely, for two
such objects x, y, we define:

x � y

if either already x is in the boundary of y in X or Y (either old boundary or in the Euclidean
topology) or if x is a subset of y geometrically. The latter case does not occur in the old
topologies of X and Y, respectively, but in the new overlay topology. This new situation
is for us a part-of relationship which extends the topology of the union X ∪ Y. In the
implementation, we distinguish between the old boundary relationships and the new
Euclidean boundary and new part-of relationships in the overlay:

•

B
•

A • •

•

•

•

B

•

◦
ABA • •

◦

•

•

•

•

B A • •

•

•

Figure 3. (Left and middle): the overlay of two triangles; (right): configuration of two triangles with
same B-Rep as (left).

The intersection complex is then the structure of a cell complex on the geometric inter-
section given by the overlay complex.

Figure 3 illustrates the concept of overlay. On the left, there are two triangles consisting
of points, lines and an interior A and B, respectively, and some objects of A have a non-
empty intersection with objects of B. On the right, the overlay is given by the old objects
plus six new objects: the two circle-points, the three broken lines and the interior area AB.
The topology is given by the old boundary relationship in the union of the two triangles,
plus the new Euclidean boundary and the new part-of relationships. The latter is given
by: new circle-points are part of old lines, new broken lines are part of old broken lines
and new area AB is part of A and of B. The Euclidean topology shows us, e.g., that the
circle-points, the broken lines and the bullet in the interior of B are all in the boundary of
AB. The intersection complex in this example consists of the triangle AB together with all
its boundary elements. Observe that the overlay topology does not only consist of border-of
relations but also contains part-of relations.
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3.3. Euler Characteristic

Topological invariants play an important role in the characterization of topologies,
in that if they are different, then the topological spaces are not homeomorphic, i.e., dis-
tinguishable from a topological point of view. An important set of topological invariants
is given by the Betti numbers bi(X), which can briefly be explained as the numbers of
independent holes of a given dimension i (the i-th Betti number), and was discussed in [9].

The Euler characteristic can be defined by the Betti numbers as follows:

Definition 1 (Euler characteristic topological). Let X be an n-dimensional cell complex built of
only finitely many cells. Let bi(X) be the i-th Betti number of X with i = 0, . . . , n. The topological
Euler characteristic can be defined as:

χtop(X) =
n

∑
i=0

(−1)ibi(X)

The Euler characteristic can also be defined by the number cm of m-dimensional cells
of X with m = 0, . . . , n as follows:

Definition 2 (Combinatorial Euler characteristic). Let X be an n-dimensional cell complex built
of only finitely many cells. Let cm be the number of m-dimensional cells of X with m = 0, . . . , n.
The combinatorial Euler characteristic can be defined as:

χcom(X) =
n

∑
m=0

(−1)mcm

Both definitions are equal if the cell complex X with only finitely many cells is topo-
logically consistent (which is true by the definition of cell complex) and the cells of the
cell complex X do not have holes. Practically, problems may occur due to computational
geometry based on standard computational arithmetic (e.g., double precision) when cal-
culating the geometrically induced topological overlay space X̄. Some intersections may
not be recognized, and others may not exist. Therefore, the results happen to be topologi-
cally inconsistent and the correctness of both Euler characteristics of those geometrically
calculated unions are not always true. Furthermore, these two quantities may differ.

An n-dimensional sphere is the boundary of a n + 1-dimensional ball. A cellulisation
is a decomposition of a manifold to finitely many cells. A cellulisation of a ball can be
deformed by flattening each cell to a polyhedron. Euler’s polyhedron formula states that
any 3-dimensional polyhedron has Euler characteristic two. The generalized formula
for n-dimensional spheres is given by the definition in [23] [Examples 0.2 and 0.3] via a
representation of the sphere as a cell complex with precisely two cells:

Theorem 1 (General Euler’s polyhedron formula). Let X be a n-dimensional cell complex,
which is a cellulisation of an n-dimensional sphere. Then, it holds true that:

χcom(X) = 1 + (−1)n

Therefore, a segment complex in the shape of the border of a polygon (1-dimensional
sphere) has Euler characteristic zero. A triangle complex which is the triangulation of a
polyhedron (2-dimensional sphere) has Euler characteristic two (original Euler’s polyhe-
dron formula with n = 2). A tetrahedron complex in the shape of a 3-dimensional sphere
has Euler characteristic zero, etc.

In general, it is not a simple task to compute the Euler characteristic of a finite poset.
The thesis [24] found a divide-and-conquer algorithm, but the time complexity of comput-
ing the Euler characteristic is still unknown, and possibly exponential in the number of
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points. For this reason, we approximate the topological Euler characteristic of the overlay
space X̄ with the combinatorial Euler characteristic:

χtop(X̄) ≈ χcom(X̄)

which can be expected to bring a great speed-up.
In our sensitivity and uncertainty study, we assume an uncertainty in the precision

parameters, and this leads to a multitude of possible configurations which are either
topologically consistent or not. In this way, one can determine the resulting topology or
value of χtop(X̄) as a function of the precision parameters.

3.4. Algorithms

The used data model is described in [3,9,10], which also include a brief description
of the used data model following the Property Graph Model, where special node properties
have been added in order to support the Feature Model of the Open Geospatial Consortium
(OGC). Algorithm 1 below, which calculates the disjoint inner of a set of intersecting d-
dimensional simplicial complexes, has been introduced and visualized in [3]. Article [3]
also includes some straight-forward algorithms to find the intersections or differences of
simplicial complexes and provides certain triangulation algorithms of B-Reps based on
double precision arithmetic with an epsilon heuristic inaccuracy model described in [20].
Article [3] did not include the description of the algorithms to find B-Reps from a set
of d-dimensional simplicial complexes, which are thought to be topologically consistent,
where the corresponding T0-space is represented by a sub-set of the property graph, which
is derived from the intersections of each d-dimensional simplicial complex with another.
Those algorithms are discussed in the following.

Algorithm 1: Computing a set of (d + 1)-dimensional simplicial complexes
from a set of d-dimensional simplicial complexes—inner disjoint means that the
interiors are disjoint.

input :set of d-dimensional simplicial complexes
output :set of inner disjoint (d + 1)-dimensional simplicial complexes

1 collect (d− 1)-dimensional intersections;
2 create inner disjoint d-dimensional patch nodes;
3 create inner disjoint (d− 1)-dimensional seam nodes;
4 stitch patch nodes which form manifolds and clean up;
5 stitch seam nodes which share the same patch nodes;
6 stitch patch nodes to form B-Reps and triangulate them to inner disjoint

(d + 1)-dimensional simplicial complexes;
7 create difference;

The complexity of finding all (d− 1)-dimensional simplicial complex intersections
in Step 1 depends on the used spatial access method for the n input d-dimensional sim-
plicial complexes. There are m seams which are all (d− 1)-dimensional intersections, the
borders of each d-dimensional intersection and the borders of each d-dimensional sim-
plicial complexes. Creating k inner disjoint d-dimensional patches for Step 2 depends on
the dimension d. If d = 1, it also depends on the spatial access method to retrieve the
d-dimensional simplicial complexes, which need to be split by those m seams. In case of
d > 1, the complexity of Step 2 is equal to the complexity of Algorithm 1 with d′ = d− 1
and m seams as input, since this algorithm creates the patches from the m seams recursively.
The creation of the spatial access method for the patches needs to be considered within the
calculation of complexity. The complexity of Step 3 depends on this spatial access method
for k patches to find all l seams by intersecting each of the k patches with another. The cre-
ation of the spatial access method for the m seams needs to be considered, too. Step 5 takes
O(m) steps to glue patches to one manifold by iterating over the list of m seams. Step 6 to
stitch patches to form valid B-Reps is parallelized for each seam through Algorithm 2. The
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complexity of Algorithm 2 will be discussed in the following paragraph. Figure 4 illustrates
Algorithm 2 of Step 6 of Algorithm 1. Step 7 of Algorithm 1 depends on the number of
patches w that could not be connected to the T0-space. The complexity to calculate the
difference to the list of v inner disjoint (d + 1)-dimensional simplicial complexes resulting
from Step 6 of Algorithm 1 depends on the used spatial access method for v inner disjoint
(d + 1)-dimensional simplicial complexes queried by w patches. The creation of the spatial
access method for v inner disjoint (d + 1)-dimensional simplicial complexes also needs to
be considered.

Algorithm 2: Run() operation of a thread for Step 6 of Algorithm 1—needs to
run for every single seam node.

input :seam node s, spatial access method SAMd containing all d-dimensional
patch nodes, spatial access method SAMd+1 containing all inner disjoint
(d + 1)-dimensional simplicial complexes

output :spatial access method SAMd+1 containing all inner disjoint
(d + 1)-dimensional simplicial complexes

1 for patch p0 inner-of s do
2 for patch p1 inner-of s with p1! = p0 or any other predecessors of p0 and p0 and p1

are both not border-of some c in SAMd+1 and p0 and p1 are on the same plane or
line (in case of CURVE3D) do

3 L = new empty set of patch nodes that closed patchworks;
4 q = false;
5 while not q do
6 q = true;
7 M = new empty set of nodes for the patches of the patchwork;
8 R = new empty route map;
9 Dijkstra(s, p0, p1, L, M, R);

10 glue all patches in M to one closed (without boundary) manifold md;
11 md+1 = triangulate md

12 if md+1 intersects strict any patch in SAMd then reject md+1 and set q =
false;

13 if md+1 intersects strict any simplicial complex in SAMd+1 then reject
md+1 and set q = false;

14 end
15 end
16 end

As mentioned before, Algorithm 2 describes how to find inner disjoint (d + 1)-
dimensional simplicial complexes for each pair of patches which are connected to one
specific seam, which realizes Step 6 of Algorithm 1. In the 1-dimensional case, each patch is
supposed to be a planar curve. Within the second FOR-loop (see Step 2 of Algorithm 2),
patches p1 will be rejected if it is not on the plane of p0. If a plane cannot be defined by
patch p0 (patch lies on a straight line), a plane is defined by p0 and p1 for later checks
within the Step 9. If a plane cannot be defined by patch p0 and p1, then every p∗ which
will be determined within Step 9 may help to define a plane. If a plane was defined before,
every p∗ will be ignored in step 9 that does not lie on that plane. If not, and the union of
all patches from Step 9 are not able to define a plane, then all patches are on a straight
line, and a triangulation is not possible, since a straight line cannot be closed. However,
the step to create a patchwork which can be triangulated to some (d + 1)-dimensional
simplicial complex is Step 9. This step will be discussed in Algorithm 3. After that step, the
patchwork is glued to one closed (without boundary) d-dimensional simplicial complex
and triangulated to a (d + 1)-dimensional simplicial complex. If the patchwork could not
be glued to one closed (without boundary) d-dimensional simplicial complex or the triangu-
lation returned NULL, the algorithm does not try to find more closed (without boundary)
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d-dimensional simplicial complexes for the patches p0 and p1. If the triangulation was
performed successfully, the resulting (d + 1)-dimensional simplicial complex is tested as
follows. If the resulting (d + 1)-dimensional simplicial complex strictly contains any patch
or strictly intersects any previously created (d + 1)-dimensional simplicial complex (see
Steps 12 and 13), the final patch that closed the corresponding d-dimensional simplicial
complex within Step 9 is added to a set of patches for the patches that closed any of the
previously generated patchworks. Those patches will be ignored for the next trials of Step 9.

Input 6.1 6.2

6.3 6.56.4

b a

Figure 4. Illustration of Algorithm 2, Step 6 of Algorithm 1. The input of Algorithm 1 is shown in the
top right (5 segment complexes). The result of Steps 1–5 of Algorithm 1 is shown in 6.1 (patches are
coloured, seams are yellow dots). There is also one triangulated grey surface already found, bounded
by the black segment complex that did not intersect any of the other coloured segment complexes.
Two patches (thick blue and black line) are connected through one seam (red dot) in 6.2. The goal
is to stitch a patchwork with those two patches that forms a valid B-Rep. The idea is to follow the
connected patches (dotted lines) on the green seams (see 6.3). One patch is ignored (black red dotted
line). It was rejected in a former iteration. All yellow seams have to be checked in 6.4. Starting with
the blue seam, two options are available (patch a in orange and patch b in red). Taking patch a first
leads to an invalid loop since it maps to the same green seam of the black starting patch where the
blue seam is connected to. This loop is ignored. Taking patch b leads to a valid loop since it maps to
the green seam of the blue starting patch where the blue seam is not mapped to. The orange square
can be triangulated and checked against any one dimensional intersection, which would indicate that
the found surface is not a distinct surface in 6.5. Patch b is added to the list of patches which closed
some invalid loop to be ignored when restarting at Step 6.2.

Step 9 of Algorithm 2 follows the idea of a Dijkstra algorithm with edge values of
one as first straight forward implementation (see Algorithm 3) to find closed loops within
the T0-space. The set of loops represents balls containing the two patches p0 and p1
and the connecting border seam s. Any loop may fulfill the geometrical constraint (see
Steps 12 and 13 of Algorithm 2). In fact, it is possible that the longest loop may fulfill the
geometrical constraint only. Therefore, it is not the purpose to find the shortest loop here.
It is a fact that most path-finding algorithm have a similar idea as Dijkstra’s, which is
explained as follows. Let B be the set of borders from two patches p0 and p1 without the
connecting border seam s. Algorithm 3 starts with this set of borders by the use of a Queue.
This is a collection designed for holding elements prior to processing (with first in first
out). The seam s functions as a barrier. Following the relations of the T0-space, each border
is connected to a set of patches. However, each border needs to be stitched to only two
patches in order to fulfill the manifold constraint. The first patch is where the Dijkstra
comes from, and the second patch is where the Dijkstra goes to. As mentioned before,
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in case the patches are planar curves, only patches are taken into account which lie on
the previously defined plane. If a plane was not defined, each of the patches may help to
define a plane. However, the patches themselves are bounded by some border seams also.
Each patch will be added by Algorithm 4. If this algorithm returns “true” then the second
patch closed the d-dimensional simplicial complex or a path back to some border(s) in B.
Algorithm 4 returns “true” only if a non-self-intersecting loop was found. The patch is
added to the set of patches M which represents the resulting patchwork. The complexity
of Algorithm 4 depends on the number of interconnected borders and patches. The worst
case would be that the non-self-intersecting loop with the most edges in the T0-space forms
the d-dimensional simplicial complex, which fulfils the constraints of Steps 12 and 13 of
Algorithm 2.

Algorithm 3: Dijkstra(s, p0, p1, L, M, R) operation—Step 9 of Algorithm 2.
input : s, p0, p1, L, M, R
output : L,M,R

1 add entries (s, NULL), (p0, s) and (p1, s) to R;
2 D new Queue (with first in first out);
3 Pb

0 = border-of p0;
4 add all s0 in Pb

0 with s0! = s to R as (s0, p0) and to D;
5 Pb

1 = border-of p1;
6 add all s1 in Pb

1 with s1! = s and s1 is not contained by R to R as (s1, p1) and to D;
7 while D is not empty do
8 sD = first of D;
9 pD = value of sD in R;

10 for patch p inner-of sD with p! = pD, p not bounded by s and L does not contain p
do

11 if p0 is a CURVE3D then check if p0, p1 and p are on the same plane;
12 if previous check passed in case of CURVE3D and

addPatch(p, sD, R, D, M, L) returned “true” then break the for-loop;
13 end
14 end

Algorithm 4 checks if one of those new border seams was already visited and is
connected to a different border seam within B. If so, a loop is found. It may happen that
the second patch is bounded by only one border. This patch is like a capping and closes
the border it is connected to the hole of the first patch. However, if a second patch like this
or a loop was found, all the patches of this loop or the path back to the seam s are added
to the result set M. If the second patch brings in some new borders, then they need to be
closed in the same manner. Algorithm 4 filters the set of borders D which need to be visited
in the next step of the Dijkstra if any second patch was found. All borders which contain
any patches in M on their path back to the seam s are rejected. On the other hand, all new
borders of the second patch need to be added to D if the second patch contains borders
which need to be closed.

If a seam is connected to n patches, the complexity will be O(n2) times the complex-
ity within the two for loops (see Algorithm 2). If there are k closed (without boundary)
d-dimensional simplicial complexes which can be triangulated to k (d+ 1)-dimensional sim-
plicial complexes, then it takes O(k) steps to find the one which fulfills the two constraints
(see Step 12 and 13) in the worst case. The worst case is that the d-dimensional simplicial
complex consists of the maximal number of patches relative to the other d-dimensional
simplicial complexes. This one would be found at last within the Step 9. The Dijkstra itself
will take O(m) for m patches.
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Algorithm 4: addPatch(p, sD, R, D, M, L) operation—Step 12 of Algorithm 3.
input : p, sD, R, D, M, L
output :boolean

1 add entry (p, sD) to R;
2 if sD is connected to p0 using R then b = border of p0 on the route;
3 if sD is connected to p1 using R then b = border of p1 on the route;
4 q = “false”;
5 if p has only one connected seam (p is capping) then
6 add all r’s in R (patches only) with r! = p0 and r! = p1 following from key sD

until p0 or p1 is reached to M;
7 add p to M and L;
8 fix Queue D;
9 q = “true”;

10 else
11 for seam s border-of p with s! = sD do
12 if R contains s then
13 if D contains s then
14 remove s from Queue D;
15 if s is connected to p0 using R then b′ = border of p0 on the route;
16 if s is connected to p1 using R then b′ = border of p1 on the route;
17 if b! = b′ then
18 add all r’s (patches only) with r! = p0 and r! = p1 following

from key s until p0 or p1 is reached to M;
19 fix Queue D;
20 q = “rue”;
21 end
22 end
23 else
24 add entry (s, p) to R;
25 add s to Queue D;
26 end
27 end
28 if q then
29 add all r’s in R (patches only) with r! = p0 and r! = p1 following from key

sD until p0 or p1 is reached to M;
30 add p to M and L;
31 fix Queue D;
32 end
33 end
34 return q;

3.5. Decomposition Types

As described in [3,10] different ways of decomposing an XML based file (e.g., CityGML)
exists by grouping geometries by an XML tag. Figure 5 shows examples. We choose the
same decomposition types for this research as described in [3,10]. The first decomposition
type tetrahedralises all buildings in one step. The second decomposition type tetrahe-
dralises each building separately, and if the building is a collection of building parts, all the
building parts will be tetrahedralised in one step. The third decomposition type tetrahe-
dralises each building separately, and if the building is a collection of building parts, the
building parts will also be tetrahedralised separately. Therefore, the first method leads to
inner disjoint tetrahedron complexes which may share border objects. The second method
leads to shared solid volumes between buildings, if the interiors of the tetrahedron com-
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plexes overlap. The third method also leads to shared solid volumes within buildings if the
different tetrahedron complex interiors of the building parts overlap.

XML root

<bldg:Building>

<gml:posList>

<gml:LinearRing>

</bldg:BuildingPart>

<core:CityModel>

Figure 5. CityGML examples for decomposing an XML based file. If a finer-grained decomposition
type does not exist, the next less fine-grained decomposition is used (red arrow).

4. Experiments
4.1. The Influence of Double Precision Arithmetic

The focus of the sensitivity analysis lies on how many decompositions (buildings/build-
ing parts or buildings as a whole) are can be triangulated under a certain parameter setting.
For geo-information purposes, shared solid volumes are calculated and the reciprocal speed
up in percentage of a certain parallelization is also presented. The test parameters have
been chosen from the inaccuracy model as follows. Only the factor ζ ′ for cosine comparison
and the base precision value α have been manipulated for the sensitivity analyses. The
other factors have been set to the value of one. This implies that ε = ε = σ = λ.

Figure 6 shows an overview of the data quality of some portions of the data released by
the Thuringian state office for land management and geo-information (TLBG). The raw data
are CityGML, which is a tree as a special case of a graph. Since the tree consists of 1,411,404
nodes with 109,224 distinct polygons (see second Figure 6 “LoD2-642-5648-2-TH”), we
decided not to provide a figure in the form of a graph/tree. However, an example is given
later on for explanation purposes in Figure 7 (left), which is part of "LoD2-642-5648-2-TH",
and summarized in the first Figure 6, column “Krämer-Brücke”.

The sensitivity analysis has been calculated for the last quadrant of the second table in
Figure 6, LoD2-642-5648-2-TH. The algorithmic pipeline is shown in Figure 8. An example
is given in Figure 7 with ε = ε = σ = λ = 10−1 and ζ = 10−9. The set of segment
complexes of a group is defined by the used decomposition type (left). Each segment
complex is triangulated to a triangle complex (second from left). The next step is to start the
parallel tetrahedralisation for each sub-node (see Figure 8 in red) by using a set of threads.
The final set of inner disjoint tetrahedron complexes of each thread is created by calling
the Algorithm 1 with the previously generated set of triangle complexes as the input set.
The result can be seen in Figure 7 (second from right). The resulting set of inner disjoint
tetrahedron complexes of each thread are added to one aggregation node. This node is the
source node for the pipeline which creates the results for the sensitivity analysis.
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Building(s) Juri-
Gagarin-
Ring 2

Juri-
Gagarin-
Ring 126c

Severi-
Kirche

Krämer- 
Brücke

Marien- 
Dom

CityGML tree nodes 222 222 3385 5062 14940

buildings / building parts 1 1 31 33 86

polygones 18 18 285 373 1398

distinct polygones 18 18 283 371 1198

decimal places 3 3 3 3 3

min. point distance [m] 0.450 0.320 0.057 0.001 0.001

segments 78 96 1172 1632 5652

min. length [m] 0.450 0.320 0.073 0.031 0.002

average length [m] 8.527 21.073 11.809 7.684 7.821

max. length [m] 16.485 47.844 53.844 31.507 59.345

Building(s) LoD2-
644-5652-
2-TH

LoD2-
642-5644-
2-TH

LoD2-
644-5644-
2-TH

LoD2-
642-5648-
2-TH

CityGML tree nodes 32630 39085 56708 1411404

buildings / building parts 278 322 486 9288

polygones 2411 2911 4119 112924

distinct polygones 2378 2837 4076 109224

decimal places 3 3 3 3

min. point distance [m] 0.001 0.001 0.001 0.001

segments 10319 12140 17280 506503

min. length [m] 0.003 0.001 0.005 0.001

average length [m] 4.495 4.669 5.502 7.014

max. length [m] 40.197 38.981 48.413 127.456

Figure 6. Data quality at ε = ε = σ = λ = 10−3 and ζ = 10−9.

The first step in the pipeline to create the results is to create each sub-node for each
tetrahedron complex of the previously created aggregation node. All sub-nodes (see
Figure 8 in yellow) are collected into one spatial access method (SAM) to support the
next step. A thread pool calls the buildOverlay() operation on each sub-node to create the
interior overlays in parallel. The buildOverlay(. . . ) operation calculates all strict intersections
(border intersections are ignored) with a set of given nodes. Each node-to-node intersection
is linked to a new node, and the new node is related to its parents in an aggregation relation.
The set of the resulting tetrahedral interior overlay nodes (see Figure 8 in green) are the
shared solid volumes of the groups, since the Algorithm 1 for each group returned inner
disjoint tetrahedralised tetrahedron complexes. The next step is to retrieve each border
sub-node of each sub-node in order to calculate the border interior overlay of the set of
border sub-nodes in parallel, just as the interior overlay calculation of the sub-nodes for
the inner disjoint tetrahedron complexes previously. The set of the resulting border interior
overlay sub-nodes (see Figure 8 in blue) are the shared border areas, curves and points of
the border sub-nodes. The shared border areas, curves and points include the inner border
areas, curves and points of all groups, since the tetrahedralisation of a group may result in
the aggregation of several tetrahedron complexes (see previous paragraph). Figure 7 shows
the intersection geometry (top right) and the whole resulting T0-space (bottom right).
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Figure 7. Geometries in first row from left to right: CityGML segment complexes colored by group,
triangle complexes colored by group, resulting tetrahedron complexes from Algorithm 1 colored by
ID, result of the inner overlay of each tetrahedron complex and their borders colored by aggregation
level. Sequence of T0-space extensions in second row from left to right: CityGML (black) with the
segment complexes (top green headed ring) and their grouping (bottom cyan headed ring), triangle
complexes (outer bottom cyan headed ring), whole resulting T0-space after overlay.

Set of
CityGML Files

SAM of
decomposition nodes

(Segment3DNets)

multithreaded
tetrahedralisation

multithreaded
import

Solid node
(Tetrahedron3DNet) buildSubComponents()

Set of
sub nodes

SAM of
overlay nodes

(Tetrahedron3D*)

buildBorders()

multithreaded
buildOverlay()

SAM of
border nodes
(Triangle3D*)

multithreaded
buildOverlay()

SAM of
overlay nodes

(*3D*)

Figure 8. Pipeline to build one run of the sensitivity analysis. The “*” within the green box and
the black box indicates that the SAM may contain multiple aggregation levels (e.g., single simplex,
simplex complexes or simplex nets as the topological sum of a set of simplex complexes). The first “*”
within the blue box indicates that the SAM may contain multiple dimensions (e.g., samples, curves
and surfaces). The second “*” indicates the aggregation level.

Figures 9 and 10 show the results of the spatial analysis. Figures 11 and 12 show the
results of the processing times analysis.
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Figure 9. Results of city centre of Erfurt, second decomposition type. The dataset is decomposed into
several groups, where each group consists of one building together with its parts. (x-axis: angular
precision ζ, different colours for each precision ε = ε = σ = λ value).

The light blue triangle is a reference point from the first decomposition type when
collecting all “planar” polygons (represented as B-Reps) of the input CityGML dataset
into one aggregation, triangulating the set of segment complexes one after another, which
creates a set of triangle complexes which in turn serves as the input for Algorithm 1. This
first decomposition type (no decomposition) leads to inner disjoint tetrahedron complexes,
as mentioned before over the whole CityGML dataset.

Figure 9 shows the results of the second decomposition type, which tetrahedralises
each building separately. If the building consists of multiple parts, all “planar” polygons
(represented as B-Reps) of the building are collected into one set of segment complexes.
As mentioned before, this strategy may lead to shared solid volumes between buildings
only, since the Algorithm 1 returns inner disjoint tetrahedron complexes for each group.
Therefore, if the building consists of multiple parts, they will be integrated into the whole
building solid, which consists of inner disjoint tetrahedron complexes.
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Figure 10 shows the results for the third decomposition type, which separately tetra-
hedralizes each building or building part if the building consists of multiple parts. As
mentioned before, this strategy may lead to shared solid volumes between buildings and/or
building parts.
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Figure 10. Results of city centre of Erfurt, third decomposition type. The dataset is decomposed
into several groups, where each group consists of one building or one building part if a building
consists of several building parts. (x-axis: angular precision ζ, different colours for each precision
ε = ε = σ = λ value).

The top diagram of Figures 9 and 10 show the relative number of solid groups to the
number of groups. Both decomposition types show nearly the same percentage results. To
understand the diagram, it is important to know that a group is counted as a tetrahedralised
group if at least one valid tetrahedron was calculated by Algorithm 1. Precisions ε =
ε = σ = λ > 10−2 lead to more failures. The percentages rise with growing angular
precision ζ and drop at 10−16. The maximum is at 10−9. The curves for each precision
ε = ε = σ = λ value are relatively equal in shape but differ in their maximum. A value of
ε = ε = σ = λ = 10−2 and ζ = 10−9 shows the highest maximum at nearly 90% for the
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second decomposition type. As expected, this value is slightly higher than its counterpart in
the third decomposition type. If one building part is not able to be tetrahedralised, it will not
count within the third decomposition type, whereas a group of the second decomposition
type, which contains all triangle complexes of the contained building parts, seems to have
more chances to be tetrahedralised successfully. This contradicts the assumption that larger
groups are more difficult to be tetrahedralised successfully. Having in mind that a group is
tetrahedralised successfully if at least one valid tetrahedron could be found, the assumption
becomes relativised.

The second diagram (left in second row) shows the overall volume of all tetra-
hedralised solids. The light blue reference (no decomposition) shows much less vol-
ume than its yellow counterpart at the same angular precision at both decomposition
types. The shapes of the curves are relatively equal to the first diagram. Precisions
ε = ε = σ = λ > 10−2 lead to more failures. The second decomposition type shows gener-
ally smaller values than the third decomposition type. This may be caused by redundant
volumes of overlaid building parts which are not part of the second decomposition type.
It may also be caused by tetrahedralisations which have not been successfully calculated
when using the second decomposition type and tetrahedralisations which have been suc-
cessfully calculated when using the third decomposition type. The last two reasons are
also the reasons why the shared solid volume shown in Figures 9 and 10 (right in second
row) does not explain the differences. The value of the light blue counterpart affirms the
assumption that larger groups lead to more failures in the tetrahedralisation process, even
if more groups are able to be tetrahedralised successfully.

The shared solid volume shown in Figure 9 (right in second row) of the second
decomposition type is less than the shared solid volume of the third decomposition type
shown in Figure 10 (right in second row). Where the second decomposition type shows
up to 170 m3, the third decomposition type shows values up to 1700 m3. The third row
illustrates the shared border areas and curves. Both are smaller in the second decomposition
type, as well. These values are not comparable since it is unknown which solid volumes
have been successfully tetrahedralised in both, either the one- or non-decomposition type.

The last row shows how many “planar” polygons (represented as B-Reps) of the input
CityGML dataset were not triangulated through the pre-processing step before Algorithm 1
(left) and the number of rejected patches from the recursive call of Algorithm 1, which are
not part of the input of Algorithm 1 (right). As expected, the pre-processing step fails more
often on larger angular precision ζ, since thinner triangles may be needed to triangulate
a polygon which is represented as B-Rep, whereas the number of rejected patches grows
on smaller values of the angular precision ζ, since the difference between a patch and the
input may not be “Null” due to a too-high precision (less collinear, less parallel, etc).

Figure 11 shows the processing times of the tetrahedralisation when using six threads
to tetrahedralise the set of groups and three threads to build each decomposition type on an
Intel® Core™ i7-7700K CPU @ 4.20 GHz × 8 for the second decomposition type. If the six
threads are in the same part of the Algorithm 1 where they use three threads to solve that
part (e.g., Step 6 of Algorithm 1), the total number of threads would exceed the maximal
number of threads that are able to run in parallel on the test computer. Figure 12 shows
the processing times for the third decomposition type. The light blue reference point of the
first decomposition type (all in one) have been calculated with eight threads in Step 6 of
Algorithm 1.

The reciprocal speed up itself has not been calculated. Only the processing times of
each thread were summed up to estimate the sequential processing times. The sequential
processing time may be faster since writing into the same spatial access method may cause
delay times, which should not be considered when measuring the speed-up. However, this
is only the case when each thread writes its results into the final spatial access method of
tetrahedron complexes. Nevertheless, the overall processing times shown in the bottom left
diagram show slightly higher times than 16.6% which would be the best result when using
six threads. The parallelization stays most of the time under 17%. The parallel processing
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times of Step 6 of Algorithm 1 with three threads were included in both overall processing
time measurements.
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Figure 11. Results with six threads for the set of groups and three threads for each group of the city
centre of Erfurt, grouping each building with its parts into separate groups (x-axis: angular precision
ζ, different colours for each precision ε = ε = σ = λ value).
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Figure 12. Results with six threads for the set of groups and three threads for each group of the city
centre of Erfurt for grouping each building or building parts into separate groups (x-axis: angular
precision ζ, different colours for each precision ε = ε = σ = λ value).

The best reciprocal speed up of Step 6 of Algorithm 1 with three treads would be 33.3%.
The third decomposition type is relatively close to the best value. The measured values are
twice as high when using the second decomposition type. The light blue counterpart has
nearly a perfect reciprocal speed-up with a value of 12.5% with 8 threads. The values are
not comparable since larger groups seem to cause more tetrahedralisation failures (see the
solid volume diagram in combination with the shared solid volume diagram), which have
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a strong influence on the processing times since it is unknown which part of Algorithm 1
fails and breaks its processing.

4.2. The Influence of the Decomposition

The combinatorial Euler characteristics (see Definition 2 in Section 3.3) are calculated
for the three different decomposition types of a city model and their calculable topological
inconsistencies in order to analyse the topological differences of those three decomposi-
tion types.

We chose the values of ε = ε = σ = λ = 10−2 and ζ = 10−9, which produced the
highest number of successful tetrahedralisations. The combinatorial Euler characteristics of
each tetrahedralised tetrahedron complex, of each tetrahedron complex of their interior
overlays and of each simplicial complex of their border interior overlays are calculated. The
combinatorial Euler characteristics are also calculated for each set of simplicial complexes
as the topological sum, which represent the whole tetrahedralised set of tetrahedron
complexes or one intersection of only two tetrahedralised tetrahedron complexes or their
border complexes. We will refer to those sets or topological sums in the following as
∗3DNet objects. The tetrahedralisation method was applied with the pre-processing step
of splitting non-planar triangle complexes which were triangulated from the “planar”
polygons (represented as B-Reps) of the input CityGML dataset. The input CityGML dataset
is the same as in the last section.

The combinatorial Euler characteristics are calculated for each decomposition type
presented as a distribution over the number of spatial objects which share the same combi-
natorial Euler characteristic. The first group of distributions are the distributions for the
tetrahedralised tetrahedron complexes (see the last section, Figure 8 yellow box) of all three
decomposition types. The second group of distributions shows the distributions of their
topological sum, the Tetrahedron3DNet objects (see the last section Figure 8 second row
middle box), which has only one member, trivially.

The spatial objects for the next two groups of distributions are created by the interior
overlays of the tetrahedron complexes (see the last section, Figure 8 pipeline yellow to
green box). Where the first group of those two groups of distributions consists of the
distributions for the shared tetrahedron complexes and the second group consists of the
distributions of the topological sums, the Tetrahedron3DNet objects, retrieved from the
interior overlay of only two tetrahedron complexes. Each tetrahedron complex of each
of Tetrahedron3DNet object counts also into the previously created general distributions of
tetrahedron complexes. The spatial objects for the rest of the second group of distributions
are created by the border interior overlays of each tetrahedron complex (see the last
section Figure 8 pipeline yellow to blue box) grouped by their dimension. The groups of
distributions for each dimension are also divided into two groups of distributions, one for
the general d-dimensional simplicial complex distributions and one for the distributions
of the topological sums, the ∗3DNet objects, retrieved from the border interior overlay
of only two tetrahedron complexes. Each d-dimensional simplicial complex of each of
∗3DNet object also counts into the previously created general distributions of d-dimensional
simplicial complexes.

As described in Section 3.3, the combinatorial Euler characteristic depends on the com-
putational precision and may be wrong for the spatial objects. The following presentation
of the results is a matter of inaccuracy.

Tables 1–5 show the distributions. Table 1 shows the distributions of the tetrahedron
complexes of each decomposition type. Each tetrahedron complex seems to not be the
border of a 3-dimensional sphere since there seems to be no tetrahedron complexes with
an Euler characteristic of zero (see Section 3.3 Euler’s polyhedron formula of Theorem 1).
Table 2 shows the distributions for the Tetrahedron3DNet objects of all decomposition types.
Because each tetrahedron complex seems to have a combinatorial Euler characteristic of
one (see Table 1), the combinatorial Euler characteristic could represent the number of
tetrahedron complexes within the Tetrahedron3DNet objects.
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4.2.1. Resulting Tetrahedron Complexes of the Interior Overlay of Each
Tetrahedron Complex

Table 3 shows the distributions of tetrahedron complexes created by the interior
overlay of each tetrahedron complex. There seem to be no tetrahedron complexes found by
the first decomposition type. The other decomposition types show that each tetrahedron
complex, created by the interior overlay, seems to not be a border of a 3-dimensional sphere
since there seems to be no tetrahedron complexes with a combinatorial Euler characteristic
of zero (see Section 3.3 Euler’s polyhedron formula of Theorem 1). Table 4 shows the
distribution of Tetrahedron3DNet objects of the second decomposition type, and Table 5
shows the distribution of Tetrahedron3DNet objects of the third decomposition type. Because
every tetrahedron complex seems to show a combinatorial Euler characteristic of one (see
Table 3), the combinatorial Euler characteristic could represent the number of tetrahedron
complexes within the Tetrahedron3DNet objects. There are Tetrahedron3DNet objects with
many tetrahedron complexes. Figure 13 shows one of those Tetrahedron3DNet objects.
Some tetrahedrons resulting from the interior overlay are not valid (e.g., too sharp or too
small) and are cut out of the final result. The result should be a tetrahedron complex, but
due to so many invalid tetrahedrons, the result is a Tetrahedron3DNet object with many
tetrahedron complexes.

4.2.2. Resulting Triangle Complexes of the Border Interior Overlay of Each
Tetrahedron Complex

Table 6 shows the first, second and third decomposition types with the distributions of
triangle complexes. The first decomposition type shows that there should not be any hulls
(2-dimensional sphere) since there seem to be no triangle complexes with a combinatorial
Euler characteristic of two (see Section 3.3 Euler’s polyhedron formula of Theorem 1). The
other two decomposition types show that most of the triangle complexes seem to have a
combinatorial Euler characteristic of one. Some could shape hulls (2-dimensional sphere),
which seem to show a combinatorial Euler characteristic of two (see Section 3.3 Euler’s
polyhedron formula of Theorem 1). Table 7 shows the distribution of Triangle3DNet objects
of the first decomposition type. Because it is known that the contained triangle complexes
within each Triangle3DNet object seem to show a combinatorial Euler characteristic of one
(see Table 6), the combinatorial Euler characteristics could represent the number of triangle
complexes of the Triangle3DNet objects. Table 8 shows the distribution of Triangle3DNet
objects of the second decomposition type, and Table 9 shows the distribution of Trian-
gle3DNet objects of the third decomposition type. Because each of the contained triangle
complexes within each Triangle3DNet object may not have a value of one (see Table 6), the
combinatorial Euler characteristics should not represent the number of triangle complexes
contained by each Triangle3DNet object. However, a Triangle3DNet object with higher Euler
characteristics may indicate numerical errors due to the double precision arithmetic.

4.2.3. Resulting Segment Complexes of the Border Interior Overlay of Each
Tetrahedron Complex

Table 10 shows the distributions of segment complexes created by the border interior
overlay of each tetrahedron complex of the first, second and third decomposition type.
The first decomposition type shows that there should not be any polygon boundaries
(1-dimensional sphere), since there seems to be no segment complexes with a combinatorial
Euler characteristic of zero (see Section 3.3 Euler’s polyhedron formula of Theorem 1). The
other two decomposition types show that nearly one quarter of segment complexes seem to
have a combinatorial Euler characteristic of zero, and the other two quarters seem to have a
combinatorial Euler characteristic of one. The first decomposition type consists of only one
Segment3DNet object. Because it is known that the contained segment complexes within the
Segment3DNet object seem to show a combinatorial Euler characteristic of one (see Table 10),
the combinatorial Euler characteristics should represent the number of segment complexes
contained by this Segment3DNet object. Table 11 shows the distribution of Segment3DNet
objects of the second decomposition type, and Table 12 shows the distribution of Seg-
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ment3DNet objects of the third decomposition type. Because there seems to be one quarter
with a combinatorial Euler characteristic of zero and three quarters with a combinatorial
Euler characteristic of one (see Table 10), the combinatorial Euler characteristics most likely
underestimates the number of segment complexes within the Segment3DNet objects.

4.2.4. Resulting Point Complexes of the Border Interior Overlay of Each
Tetrahedron Complex

Table 13 shows the distribution of point complexes created by the border interior
overlay of each tetrahedron complex of the first decomposition type. Only one point
intersection exists within the first decomposition type. Table 14 shows the distribution of
point complexes of the second decomposition type, and Table 15 shows the distribution of
point complexes of the third decomposition type. The border of the tetrahedron complexes
touch each other with a peak of 24, respectively 90, times. This may result from the failures
in creating the overlay, as seen in Figure 13.

Table 1. First, second and third decomposition types (from left to right)—distributions of combinato-
rial Euler characteristics of tetrahedron complexes.

Euler 1 1 1
Count 3212 6703 7660

Table 2. First, second and third decomposition types (from left to right)—distributions of combinato-
rial Euler characteristics of Tetrahedron3DNet objects.

Euler 3212 6703 7660
Count 1 1 1

Table 3. First, second and third decomposition types (from left to right)—distributions of combinato-
rial Euler characteristics of tetrahedron complexes from interior overlay.

Euler - 1 1
Count - 518 2476

Table 4. Second decomposition type—distribution of combinatorial Euler characteristics of Tetrahe-
dron3DNet objects from interior overlay.

Euler 2 3 4 5 7 8 9 10 14 16 17 18 23
Count 55 9 2 1 1 1 1 1 1 1 1 1 1

Table 5. Third decomposition type—distribution of combinatorial Euler characteristics of Tetrahe-
dron3DNet objects from interior overlay.

Euler 2 3 4 5 6 7 8 9 10 11
Count 69 17 3 7 2 6 4 2 3 2

Euler 12 14 15 16 17 18 20 23 24 27
Count 1 3 2 1 2 1 3 1 1 1

Euler 28 30 36 37 40 41 42 45 105 1088
Count 1 1 1 1 1 1 1 1 1 1

Table 6. First, second and third decomposition types (from left to right)—distributions of combinato-
rial Euler characteristics of triangle complexes from border interior overlay.

Euler 1 0 1 2 −1 0 1 2
Count 843 8 6040 6 1 10 7418 4
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Table 7. First decomposition type—distribution of combinatorial Euler characteristics of Trian-
gle3DNet objects from border interior overlay.

Euler 1 2
Count 2 1

Table 8. Second decomposition type—distribution of combinatorial Euler characteristics of Trian-
gle3DNet objects from border interior overlay.

Euler 2 3 4 5 6 7 10
Count 498 96 20 13 1 1 1

Table 9. Third decomposition type—distribution of combinatorial Euler characteristics of Trian-
gle3DNet objects from border interior overlay.

Euler 2 3 4 5 6 7 9 11 13 16
Count 608 126 25 13 3 1 1 1 1 1

Table 10. First, second and third decomposition type (from left to right)—distributions of combinato-
rial Euler characteristics of segment complexes from border interior overlay.

Euler 1 0 1 0 1
Count 49 687 1841 842 2384

Table 11. Second decomposition type—distribution of combinatorial Euler characteristics of Seg-
ment3DNet objects from border interior overlay.

Euler 1 2 3 4 5
Count 30 265 47 4 2

Table 12. Third decomposition type—distribution of combinatorial Euler characteristics of Seg-
ment3DNet objects from border interior overlay.

Euler 0 1 2 3 4 5 6 7
Count 1 39 348 60 12 2 2 1

Table 13. First decomposition type—distribution of combinatorial Euler characteristics of point
complexes from border interior overlay.

Euler 1
Count 1

Table 14. Second decomposition type—distribution of combinatorial Euler characteristics of point
complexes from border interior overlay.

Euler 1 2 3 4 5 6 7 8 9 10 11
Count 57 42 51 18 11 9 10 7 6 1 1

Euler 12 13 14 15 16 17 18 20 21 22 24
Count 6 1 1 2 2 3 3 1 1 1 3

Table 15. Third decomposition type—distribution of combinatorial Euler characteristics of point
complexes from border interior overlay.

Euler 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count 85 80 74 38 22 22 16 20 12 25 5 13 5 5

Euler 15 16 17 18 19 20 21 22 23 24 25 26 33 34 90
Count 3 7 4 13 2 1 1 1 1 1 1 1 1 1 2
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Figure 13. Result of an interior overlay as a Tetrahedron3DNet object (red) of two building parts
tetrahedralised to two tetrahedron complexes (yellow) in the shape of cylinders. This is an example
of a Tetrahedron3DNet object with many tetrahedron complexes of Table 5.

5. Discussion

The classical definitions on topological consistency found in the literature deal with
the correct modelling of objects. What these definitions usually lack is the correct modelling
of the incidence relationships. This is addressed in the ISO 191907 standard, which is
equivalent to the definition used in this present work. Taking this into account allows one
(in theory) to produce geometric and topological volume models with our methods that are
suitable for simulation purposes. The remaining practical issues are the numerical problems
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when dealing with computational geometry. There exist several approaches to address
those numerical problems by introducing different arithmetics or exact computational
geometry [21]. However, topological invariants, such as the Euler characteristic, allow one
to identify regions in the model which are problematic. However, due to the topological
inconsistency, the easily computed combinatorial Euler characteristic using the object
counts differs in general from the topological one using Betti numbers. So, the former
is also an approximation of the topological Euler characteristic, as it is very likely to be
inefficient to calculate Betti numbers of finite T0-spaces.

The experiments show that there exists a good robustness range for topological and
geometrical parameters with respect to angular precision, which seems to be the most
important numerical sensitivity parameter. Simulations on CityGML models will still not be
able to capture flows on the whole model, but only after the successfully rendering of large
parts of the model. If we assume that the found solids are correct, then for good choices of
the sensitivity parameters, more than 80% of the buildings or building parts can be used to
create a topologically consistent solid model. The combinatorial Euler distribution helps to
identify unusual geometrical and topological settings that need to be explored manually.

Concerning the topology of the volumetric models, the findings about the Euler
characteristics indicate that there is a dependence of the resulting topology on the selected
decomposition type. Trivially, the fact that Algorithm 1 returns inner disjoint solids always
leads to a different global topology when used for different decomposition types. This is due
to different intersection qualities of the decompositions and the computational geometry
problems of intersection calculations within Algorithm 1 when applied to different sets of
input data.

Concerning processing time, probably at the moment, the results point in the direction
that a large-scale rendering can be performed in acceptable time only if the complicated
parts of the model are left out. Large-scale rendering should in the future be able to produce
data which are useful for simulation studies. This is potentially good news, as city models
can then be used not only for visualization purposes but also for calculating various future
scenarios under different environmental settings at different spatial scales. Future research
should investigate the differences in the resulting topology depending on the uncertainty
parameters, and more optimal parallelization methods for the rendering process in order
to have a better handling of the more complex parts of a city model.
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18. Sekulić, M.; Marinković, M.; Ivković, I. Spatial Multi-Criteria Evaluation Method for Planning of Optimal Roads Alignments,
with Emphasize on Robustness Analysis. Int. J. Traffic Transp. Eng. 2021, 11, 424–441.

19. Crosetto, M.; Tarantola, S. Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. Int. J. Geogr. Inf. Sci.
2001, 15, 415–437. [CrossRef]

20. Schirra, S. Precision and robustness in geometric computations. In Algorithmic Foundations of Geographic Information Systems.
CISM School 1996; van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 1997; Volume 1340.

21. Vetter, J.; Huhnt, W. Accuracy Aspects when Transforming a Boundary Representation of Solids into a Tetrahedral Space Partition.
In Proceedings of the EG-ICE, Hybrid, Berlin, Germany, 30 June–2 July 2021; Abualdenien, J., Borrmann, A., Ungureanu, L.,
Hartmann, T., Eds.; Universitätsverlag TU: Berlin, Germany, 2021; pp. 320–329.

22. Biljecki, F.; Ledoux, H.; Stoter, J. Error propagation in the computation of volumes in 3D city models with the Monte Carlo
method. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 31–39. [CrossRef]

23. Hatcher, A. Algebraic Topology; Cambridge University Press: Cambridge, MA, USA, 2002.
24. Renders, J. Finite Topological Spaces in Algebraic Topology. Master’s Thesis, Ghent University, Belgium, Brussel, 2019.

http://dx.doi.org/10.1093/comjnl/bxn054
http://dx.doi.org/10.1016/j.isprsjprs.2015.12.006
http://dx.doi.org/10.3390/ijgi9020095
http://dx.doi.org/10.5194/isprs-annals-IV-4-W5-65-2017
http://dx.doi.org/10.2298/SPAT0411077J
http://dx.doi.org/10.1007/s10601-006-6847-9
http://dx.doi.org/10.5194/isprs-annals-IV-2-W1-13-2016
http://dx.doi.org/10.5194/isprs-annals-III-2-29-2016
http://dx.doi.org/10.1080/13658810110053125
http://dx.doi.org/10.5194/isprsannals-II-2-31-2014

	Introduction
	Related Work
	Methodology
	Epsilon Heuristic
	Geometrically Induced Topology
	Euler Characteristic
	Algorithms
	Decomposition Types

	Experiments
	The Influence of Double Precision Arithmetic
	The Influence of the Decomposition
	Resulting Tetrahedron Complexes of the Interior Overlay of Each Tetrahedron Complex
	Resulting Triangle Complexes of the Border Interior Overlay of Each Tetrahedron Complex
	Resulting Segment Complexes of the Border Interior Overlay of Each Tetrahedron Complex
	Resulting Point Complexes of the Border Interior Overlay of Each Tetrahedron Complex


	Discussion
	References

