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Abstract: Visualizing vector data on 3D terrain surfaces is a basic and essential function in 3D GIS.
However, due to the complexity of vector data structures, efficient and effective organization of the
vector data is a key issue for the efficient display of vector data in 3D. In this paper, we present a new
Vector Tiled Pyramid Model to organize and manage vector data so that they can be visualized on 3D
terrain surfaces more effectively. In the Vector Tiled Pyramid Model, vector data at different scales
within the same geographical extent are stored as separate levels. Each vector level in our proposed
model is divided into vector tiles of fixed sizes organized in a grid index. This improves the efficiency
of visualizing vector data on 3D terrain surfaces. Preliminary experimental results suggest that the
proposed Vector tiled Pyramid Model, compared with the traditional vector database scheme, can
help us to visualize vector data on 3D terrain surfaces more efficiently. In addition, this advantage
is more evident when a vector tile at a lower level (large-scale) is requested and visualized on 3D
terrain surfaces.

Keywords: vector data; Vector Tiled Pyramid Model; global; 3D visualization; multi-scale

1. Introduction

With the development of 3D GIS, massive vector data need to be displayed in 3D
scenes [1,2]. A suitable vector data organization scheme is critical to improving the effi-
ciency of data access, thereby enhancing the efficiency of expression vector data, especially
when visualizing large vector maps on 3D terrain surfaces.

Currently, there are two main schemes for organizing and visualizing vector data on 3D
terrain surfaces. The first scheme is the traditional vector database. In this scheme, vector
data are stored in GIS databases but with data structures that are often vendor-specific,
such as ArcSDE by ESRI, Inc. or Oracle Spatial by Oracle. Generally, multi-resolution
techniques are adopted when displaying vector data in 3D. The original vector data are
simplified to form a multi-resolution vector map [3–5] with spatial indexes [6]. This
data organization scheme stores vector data in a database in the form of coordinates and
their topological relationships and can be combined with a variety of rendering methods
(texture-based methods and geometry-based methods) to visualize vector data. This data
organization scheme accesses vector data objects from the database in real-time when the
displayed vector objects are queried. Thus, it is inefficient when processing large volumes
of vector data.

The second data organization scheme is the texture tiled pyramid as discussed by
Kersting et al [7]. In a texture tiled pyramid, vector data are first rasterized to raster
levels at different resolutions. Each raster level is partitioned into many blocks, which
can also be called texture tiles. When rendering the data, based on the tile-map technique,
texture tiles are used for efficient and high-quality image visualizations. This scheme is
efficient for rendering vector data and used for visualizing large volumes of vector data
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over large geographic extents, such as the Web Map Tile Service of Open GIS Consortium.
However, this data organization scheme adopts the form of raster data to organize the
vector data, which will lose the specific details found in vector data during the process of
rasterization [8].

In this paper, we propose a new Vector Tiled Pyramid Model to organize and manage
vector data at a global scale that enhances rendering efficiency when visualizing vector
data in 3D. Similar to the texture tiled pyramid, the different levels in the Vector Tiled
Pyramid Model are different scales. Each vector data level is partitioned into many blocks.
These blocks are also called vector tiles and are stored as a grid index. Together, they form
a hierarchical data model for storing vector data with different details.

The Vector Tiled Pyramid Model accelerates access to vector data by bypassing irrele-
vant data entities at each data level. This is achieved by locating the vector tile that contains
the location of interest so that none of the other vector tiles need to be processed or searched.
The block structure of our proposed model makes it possible to access a data entity by only
processing those vector tiles containing the entities of interest found at different levels to
the same extent.

The layout of this article is as follows: Section 2 introduces the tiled pyramids and the
associated methods for rendering vector data on 3D terrain. Sections 3 and 4 describe the
definition of the Vector Tiled Pyramid Model and how to organize the vector data using
the Vector Tiled Pyramid Model. Section 5 introduces a series of experiments and analyses
of their results. Finally, Section 6 draws a conclusion about this paper.

2. Related Work
2.1. Tiled Pyramids

Image Pyramids are a hierarchy of fine to coarse resolution versions of an image [9,10].
It is an important concept for image filtering and analysis at multiple scales. Using a
compression scheme for images, a multi-level structure based on the original image is
constructed in an Image Pyramid [11]. The bottom level of an Image Pyramid is comprised
of the original images [12]. From the bottom level to the top level of an Image Pyramid,
the resolution levels are smaller and smaller. Image Pyramids are a space for time strategy,
which can speed up image processing operations.

With the development of remote sensing technology, there has been a huge increase in
the resolution of image data. This creates some data processing problems in the transmis-
sion and visualization of images. Tiled Pyramids [13,14], are variations of Image Pyramids
and an effective strategy to deal with these issues. Terrain data [15,16] and satellite im-
ages [17,18], when coded like images, can be built into a hierarchical multi-resolution
representation as Tiled Pyramids. Tiled Pyramids are a kind of multi-resolution hierarchical
model, whose structure flows from the bottom level to the top level of the Tiled Pyramid at
a lower and lower resolution for the same geographic area [19,20].

As an application of the Tiled Pyramids, map tile technology [21], which produces
a number of square pictures cut by the map with coordinates according to a fixed set of
scales (tile level) and specified image size, has been widely used in the application based on
maps, such as OpenStreetMap, Google Maps [22]. Map tiles are a set of pre-generated map
images based on geographic vector data, such as the Web Map Tile Service of the Open GIS
Consortium [23].

2.2. The Methods for Rendering Vector Data on 3D Terrain

At present, there are two kinds of methods used to render vector data on 3D terrain
surfaces: the geometry-based and texture-based methods. Geometry-based methods [24,25],
using elevation interpolation, process vector data to obtain 3D coordinates. Using 3D ren-
dering techniques such as OpenGL, vector data are visualized on 3D terrain surfaces. The
visualization resulting from the geometry-based methods is often detailed and aesthetically
pleasing. For example, the geometry-based methods were adopted in Google Earth, a
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virtual globe, map, and geographical information program, to render the boundary line
vector data.

In texture-based methods [26,27], vector data are rasterized into texture data and
mapped to a 3D terrain surface using texture mapping technology. This is a highly efficient
method for expression vector data. For example, in some large vector map processing
applications, texture-based methods are often used to visualize the polygon vector data.
Although currently, geometry-based methods can achieve 3D visualization of the polygon
vector data, using triangulation [28,29] or the stencil shadow volume algorithm [8], these
are inefficient and cannot meet the needs of large scene rendering the 3D scene.

Taking into account the characteristics of the two different schemes, based on our
proposed Vector Tiled Pyramid Model, the geometry-based and texture-based methods are
adopted in this paper, respectively, handling different types of vector data.

In addition to the above two rendering schemes, data simplification also facilitates
rendering. In vector data simplification, a subset of the original vector data is produced
from the original vector data under a set tolerance. The Douglas-Peucker algorithm [30]
is a classic line simplification algorithm that maintains the geometric characteristics of
the original data [31]; however, it may produce inconsistent topological relations. For
example, it is possible that two disjointed lines intersect after simplification with the
Douglas-Peucker algorithm.

3. The Vector Tiled Pyramid Model

Our proposed Vector Tiled Pyramid Model (VTPM) is a data model that organizes
and manages vector data. As seen in Figure 1, it consists of a sequence of vector data
levels that are copies of original data but at decreasing levels of geographic detail from the
bottom level to the top level of the model. Zoom levels are stratified, each level represents
a corresponding map scale. In Figure 1, vector data at the same level is partitioned into
several data blocks at a fixed size. Each data block in the VTPM is considered a vector tile.
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For a vector tile, an effective mechanism for spatial indexing needs to be established.
Because the division of a vector tile follows a fixed rule, we use the row number and column
number of the vector tile in the model to code the vector tiles. Each vector tile is coded
using the level, row, and column number. Level numbers increase from top to bottom,
starting with zero. Row numbers increase from up and down, starting with zero. Column
numbers increase from left to right, also starting at zero. By coding the vector tiles, we can
use their index numbers to compute and identify the spatial range of any vector tile, which
in turn supports efficient spatial queries
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The VTPM stores vector data at different levels with different details. As shown in
Figure 1, in the VTPM, the top level of the model, which has only one vector tile, is defined
as level zero. The level number of each level in the VTPM sequentially increases until the
bottom level of the VTPM. There are more and more detailed vector data at each increasing
level, forming a collection of multi-scale vector data. The following four definitions provide
the parameters for our VTPM:

Definition 1. The spatial range of the VTPM (S) is the spatial extent corresponding to the vector
tiles of each level.

Generally, the spatial range of the VTPM depends on the spatial extent of the original
vector data. For example, if we want to deal with global vector data, we can use the global
geographic scope as the spatial range of the VTPM. If we want to deal with the vector data
of a country or a city, we take the spatial range of the country or a city as the spatial range
for the VTPM.

Definition 2. The number of levels of the VTPM (N) refers to the number of replications based on
the original data.

The number of levels of the VTPM depends on how many different levels of the data
we want to show when the vector tile is displayed on the 3D terrain.

Definition 3. The ratio between the vector tiles at adjacent levels (R) refers to the proportional
relationship in the geographical scope of the vector tiles between adjacent levels.

As shown in Figure 1, a vector tile at the higher level was divided into r*r equal parts
at the lower level; meanwhile, the geographic scope of the vector tile at the higher level is
equal to the geographic scope of the r*r vector tiles at the lower level. In contrast to the
vector tile at the higher level, there is more detailed vector data at the vector tiles at the
lower level.

Definition 4. The simplification threshold of the VTPM (T) refers to the compression threshold in
vector data simplification when the vector tiles of different levels are produced based on the original
vector data.

The simplification threshold of the VTPM is a crucial parameter for the VTPM. It
determines how many details the vector data contains at each level of the VTPM. Generally
speaking, from the top level to the bottom level of the VTPM, the simplification threshold
for vector data simplification corresponding to the same level of the VTPM becomes smaller
and smaller. This ensures that the level of detail varies continuously at different levels of
the VTPM, thereby forming a pyramid structure. The choice of the simplification threshold
is determined by a specific VTPM application. In the experimental part of this paper, we
propose a method to determine the simplification threshold at different levels in the VTPM.
This will be elaborated on in Section 4.1.

4. Construction of Vector Tiled Pyramid Model

Construction of the Vector Tiled Pyramid Model is a dynamic procedure that processes
vector data into vector tiles. It includes two steps: stratification and partition. Stratification
is the step that generates a level from the original vector data by simplification. Partitioning
is the step that splits vector data into separate vector tiles.

As shown in Figure 2, vector tiles are produced level-by-level according to the level
number in the VTPM. Vector data at each level is partitioned as tiles.
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4.1. Vector Data Simplification

When vector data are visualized on a 3D terrain surface, redundant data do not play
an active role in rendering since they increase the amount of data transmitted and slow
down the process. Excessive redundant data leads to the repeated rendering of portions of
the data on a terrain surface, reducing rendering efficiency. For example, a boundary line
that contains dense node points creates excessive time costs when rendered in a 3D display.
It is unnecessary to process all the node points for each level since many details will not be
visible at this geographic scale. Therefore, simplification is essential to express vector data
at different levels of detail.

Mantler proposed the concept of Safe Sets to handle complex, line vector data, to
preserve the topological relations of vector data [32]. Based on this idea, Mustafa presented
an algorithm that performs simplification on large geographical maps through a novel use
of graphics hardware [33]. This algorithm uses the ε-Voronoi diagram to process vector
data, which ensures that the two lines do not intersect after simplification. However, it
cannot avoid the problem of self-intersection. Yang introduced the concept of monotone
polylines to solve the problem of self-intersection [34]. Mustafa and Yang solved the
problem of inconsistent topological relations before and after simplification; so, in this
paper, we adopted their algorithms to simplify vector data. Specifically, a monotonous
check pre-treatment is applied to ensure that all polylines are monotone and a simplification
algorithm based on the ε-Voronoi diagram is adopted to simplify the vector data.

The simplification threshold is a key factor for the production of vector titles of
different levels. At a given level of the VTPM, using an appropriate simplification threshold,
a minimal subset, simultaneously without losing important feature information when the
subset is visualized at the corresponding scales, can be produced from the original data.

Generally, the human eye cannot distinguish two points within the distance of one
pixel on the screen. Therefore, in our experiment, the geographical distance corresponding
to one pixel of the vector tile at different levels was selected as the simplification threshold
for each level of the VTPM. Regardless of the rendering methods (texture-based methods
and geometry-based methods), each vector tile is visualized on the screen with fixed size
pixels, such as 256 × 256 or 512 × 512. The 256 × 256 sized pixels were adopted in our
experiment. Thus the simplification threshold can be expressed as Equation (1).{

T = {t1, t2, . . . , tN}
tn =

√
S

256∗ Rn (n = 1, 2, . . . , N)
(1)

where S represents the spatial range of the VTPM (Definition 1), N represents the number
of levels of the VTPM (Definition 2), and R represents the ratio between the vector tiles
at adjacent levels (Definition 3). T represents the simplification threshold for a VTPM
(Definition 4). The tn is the geographical distance corresponding to one pixel of the vector
tile at level n of the VTPM and is the simplification threshold we adopted in our experiment.

4.2. Partition for Vector Data

In order to achieve block storage of vector data, vector data at each level are divided
and stored in vector tiles. Each vector tile has a corresponding spatial extent. Point vector
data can be stored into vector tiles by a simple overlay analysis using the coordinate ranges
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of the vector tiles. Polyline and polygon vector data must be partitioned so that they can be
stored in their respective vector tiles.

4.2.1. Segmentation of Polylines

In order to segment a polyline, we propose a point tracking method. As shown in
Figure 3, starting with the beginning point of a polyline, the correspondence between each
node of the polyline and vector tile is calculated. Vector data within the spatial range
corresponding to the vector tile will be saved to the current vector tile.
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The specific algorithm for the point tracking method is as follows:

Step 1. For a polyline at a given level, first, find the coordinates of the starting point. Then,
calculate the index number of the vector tile that includes the starting point.
Step 2. Find the next point of the polyline, check if it still falls within the current vector tile.
If so, then store the point in the current vector tile and continue the process with successive
points until the next point is found to be out of the spatial extent of the current vector tile.
Go to Step 3, if the next point does not fall inside the current vector tile.
Step 3. Calculate the intersection point between the spatial extent of the current vector tile
and the line segment formed by the current point and the last point. Save the coordinates
of the intersection point to the current vector tile. Search among other vector tiles to find
one that includes the intersection point and the successive points. Save the index number
of this new vector tile and regard it as the current vector tile.
Step 4. Take the intersection point as a new starting point and use the newly updated current
vector tile, and repeat Steps 2 and 3 until all of the points of the vector line are processed.

The pseudocode for the point tracking algorithm is shown in Algorithm 1.

Algorithm 1: Segmentation Algorithm For Line
Input: A Line l = {P1, . . . ,Pn}
Output: VectorTile

1 Current_VectorTile = CaculateVectorTile(P1)
2 Current_Segment = {P1}
3 foreach Pi (i > 1) in l do
4 if Pi in Current_VectorTile then
5 Current_Segment.Append(Pi)
6 else
7 P = CaculateIntersection()
8 Current_Segment.Append(P)
9 SaveVectorTile(Current_VectorTile, Current_Segment)
10 Current_VectorTile = CaculateVectorTile(P)
11 Current_Segment = {P}
12 end
13 end
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4.2.2. Segmentation of Polygons

The visualization of polygon vector data includes the interior fill and contour drawing
approaches. In order to express polygon vector data completely, as shown in Figure 4,
polygon vector data are divided into two parts (contour line and internal polygon), and
these two parts are split and stored separately in a VTPM. The polyline segmentation
algorithm (Algorithm 1) can be applied to the contour line segmentation, as shown in the
upper half of Figure 4.
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For internal polygon segmentation, we designed a tile tracking method, as shown
in the lower half of Figure 4. There are two cases for the relationships between a vector
tile and a polygon that we identify as cases one and two. In case one, there are edges of
polygons in a vector tile, such as vector tiles A and B in Figure 4. In case two, there are no
edges of polygons in a vector tile, such as vector tiles C and D. In case one, a vector tile
is divided into two (vector tile A) or more portions (vector tile B); therefore, we need to
individually determine the relationship between each portion and polygon. In case two,
we need to determine if the spatial range corresponding to the vector tile belongs to the
polygon (vector tile C) or the spatial range corresponding to the vector tile does not belong
to the polygon (vector tile D).

Specifically, first, the intersection of an edge of a polygon and vector tile boundaries
are calculated, and each vector tile was divided into one or several portions by these
intersections and polygon nodes. Then, the relationship between each portion and the
polygon was calculated. If a portion belongs to the polygon, then the portion is saved
in the current vector tile. Eventually, polygons are split and stored in the corresponding
vector tiles.

5. Experiment and Analysis

A prototype for the construction and 3D visualization for the VTPM was implemented
in the way described in Figure 5. In the data pre-processing stage, we used the proposed
VTPM construction algorithm to simplify and divide vector data as vector tiles. When
displayed in 3D, the vector tiles are requested according to their index numbers at each level
of the VTPM. After parsing vector tiles, either a geometry-based method or texture-based
method can be used to render the vector data in 3D.

The MongoDB database was adopted to store the vector tiles in this experiment for
two reasons. On the one hand, vector tiles store data objects in the form of key-value. The
row and column number of each vector tile can be treated as the key, and then the vector
data in the vector tile are the value corresponding to each key. The storage format of files in
MongoDB is BSON, which supports key-value indexing. On the other hand, MongoDB is
based on distributed file storage, which supports the expansion of data. The number of
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global vector data is very large, and it constantly increases; therefore, MongoDB was used
to store the vector tiles.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

polygon (vector tile C) or the spatial range corresponding to the vector tile does not belong 
to the polygon (vector tile D). 

Specifically, first, the intersection of an edge of a polygon and vector tile boundaries 
are calculated, and each vector tile was divided into one or several portions by these in-
tersections and polygon nodes. Then, the relationship between each portion and the pol-
ygon was calculated. If a portion belongs to the polygon, then the portion is saved in the 
current vector tile. Eventually, polygons are split and stored in the corresponding vector 
tiles. 

5. Experiment and Analysis 
A prototype for the construction and 3D visualization for the VTPM was imple-

mented in the way described in Figure 5. In the data pre-processing stage, we used the 
proposed VTPM construction algorithm to simplify and divide vector data as vector tiles. 
When displayed in 3D, the vector tiles are requested according to their index numbers at 
each level of the VTPM. After parsing vector tiles, either a geometry-based method or 
texture-based method can be used to render the vector data in 3D. 

 
Figure 5. The construction and 3D visualization for the VTPM. 

The MongoDB database was adopted to store the vector tiles in this experiment for 
two reasons. On the one hand, vector tiles store data objects in the form of key-value. The 
row and column number of each vector tile can be treated as the key, and then the vector 
data in the vector tile are the value corresponding to each key. The storage format of files 
in MongoDB is BSON, which supports key-value indexing. On the other hand, MongoDB 
is based on distributed file storage, which supports the expansion of data. The number of 
global vector data is very large, and it constantly increases; therefore, MongoDB was used 
to store the vector tiles. 

There are two important processes in our prototype system. One is the production of 
vector tiles based on the VTPM, and the other is the visualization of vector tiles on a 3D 
terrain surface. 

5.1. Production of Vector Tiles Based on the VTPM 
We used four types of vector maps as our experimental data: the open source global 

administrative map, global rail polyline vector data, global road polyline vector data, and 
the lakes and woods polygon vector data for Wuhan, a large city in the inland central area 
of China, from the OpenStreetMap. The number of objects and vertices of each vector data 
are shown in Table 1. 

Table 1. Tested vector datasets. 

Dataset Type  The Number of Objects The Number of Vertices 
global administrative map 746,615 43,597,863 

global rail 1,204,816 14,346,928 
global road 8,286,836 137,310,566 

lakes and woods for Wuhan 730 46,826 
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There are two important processes in our prototype system. One is the production of
vector tiles based on the VTPM, and the other is the visualization of vector tiles on a 3D
terrain surface.

5.1. Production of Vector Tiles Based on the VTPM

We used four types of vector maps as our experimental data: the open source global
administrative map, global rail polyline vector data, global road polyline vector data, and
the lakes and woods polygon vector data for Wuhan, a large city in the inland central area
of China, from the OpenStreetMap. The number of objects and vertices of each vector data
are shown in Table 1.

Table 1. Tested vector datasets.

Dataset Type The Number of Objects The Number of Vertices

global administrative map 746,615 43,597,863
global rail 1,204,816 14,346,928

global road 8,286,836 137,310,566
lakes and woods for Wuhan 730 46,826

A VTPM was described as followings for our experiment: since the experimental data
are global, the global geographic scope was adopted as the spatial range of the VTPM
(Definition 1); according to the experiment and formula 1, the number of levels of the
VTPM is selected as seventeen, which is the most appropriate and can show more levels
with different details (Definition 2); two was selected as the ratio between the vector tiles at
adjacent levels (Definition 3); the Equation(1) mentioned in Section 4.1 was adopted as the
simplification threshold of the VTPM (Definition 4). Based on the method mentioned in
Section 4, we completed the construction of the VTPM for the experimental data.

Figure 6a–c show the global administrative map at different levels. The numbers
below each successive image represent the level number and the number of vertices of the
vector tiles at that level of the VTPM.

From Figure 6, we can find that, based on the simplification scheme we adopted, the
geometric features of the vector data at different levels are consistent and the details of the
vector data change with the levels of the VTPM. The number of vertices in the vector tiles
at different levels becomes larger with an increasing level number. Additionally, from the
red rectangle in each subfigure, there are more and more details in the vector tiles with an
increase in the level number.

Table 2 shows the number of vertices in the vector tiles at different levels of the VTPM
for the global rail and global road. Table 3 shows the number of vertices in the vector tiles
at different levels of the VTPM for the lakes and woods for Wuhan. The geographical scope
of the city, such as Wuhan, is almost as large as the geographical scope of the vector tile at
level eight of the VTPM in our experiment. So, we construct the vector tiles for the lakes
and woods for Wuhan from level eight, not level zero.
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Figure 6. Vector tiles at different levels of the VTPM for global administrative map. (a) Map contains
1,493,504 vertices when level is 0. (b) Map contains 5,625,152 vertices when level is 8. (c) Map contains
32,576,542 vertices when level is 16.

Table 2. The number of vertices at different levels for global rail and global road.

Dataset Type Level = 0 Level = 4 Level = 8 Level = 12 Level = 16

global rail 2,409,632 2,455,047 2,845,108 5,469,357 10,990,919

global road 16,573,675 16,883,297 20,636,291 41,489,263 106,503,532

Table 3. The number of vertices at different levels for the lakes and woods for Wuhan.

Dataset Type Level = 8 Level = 10 Level = 12 Level = 14 Level = 16

The lakes and
woods for Wuhan 6692 11,359 18,279 27,486 42,222

5.2. Visualization of Vector Tiles on a 3D Terrain Surface

When displayed in 3D, vector tiles are requested according to the index number. After
parsing vector tiles, either a geometry-based or texture-based method can be used to render
the vector data in 3D. When a geometry-based approach is adopted to display the vector tile,
elevation interpolation methods can be used to process the vector data into 3D coordinates.
Further, 3D rendering techniques can then be used to visualize the vector data on a 3D
terrain surface. When a texture-based approach is used to visualize the vector tiles, the
vector tiles must be rasterized into texture vector tiles; texture mapping technology is used
to map these texture vector tiles onto a 3D terrain surface.

Supported by Geoglobal, a commercial software platform such as Google Earth, ren-
dered vector data are shown in Figure 7. Figure 7a was created using a geometry-based
method to visualize a global administrative map onto a global 3D terrain surface. In
Figure 7b, a texture-based method was used to render the global rail data. Figure 7c shows
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vector data rendered using a combination of the two methods: a texture-based method for
the global rail data, and a geometry-based method for global roads. Figure 7d,e show a
visualization of the Wuhan lakes and woods polygon in 3D.
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In our prototype system, when a texture-based approach is adopted to visualize the
vector tiles, conventional map symbols can be combined with the rasterized vector data.
For example, as shown in Figure 7b, conventional railway symbols are used to express the
global rail vector data. Although there are no major technical problems when using the
geometry-based method to express these simple map symbols, the low rendering efficiency
detracts from the user experience, especially when dealing with global vector map data. So,
in our experiment, we adopted a texture-based method to deal with the vector tiles when
combining vector data with traditional map symbols.

Figure 8 shows the 3D visualization of the vector tiles at different levels of the VTPM.
When the perspective of the 3D scene is fixed, as shown in Figure 8a, the vector tiles within
the current 3D scene will be requested and displayed. When a user zooms in, as shown in
Figure 8b, the corresponding vector tiles at the lower levels of the VTPM will be requested
and displayed on the 3D terrain surface. When zooming in further, as shown in Figure 8c,
the vector tiles with more detail are requested. Figure 8a–c show the vector tiles at different
levels of the VTPM.
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5.3. Performance Analysis

The 3D visualization of vector data consists of two processes: obtaining requested data
and rendering vector data. Therefore, the efficiency of obtaining requested data and the
efficiency of rendering vector data are the two aspects of efficiency in the 3D representation
of vector data. The efficiency when obtaining requested data depends on the organization
and management of vector data.
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In order to validate the efficiency of obtaining requested data based on the VTPM
when rendering vector objects in 3D, a traditional vector database scheme and a VTPM for
vector data were tested and compared. We used a PC with a 3.1 GHz Intel Core 3 CPU,
8 Gbytes of RAM for these tests of the two organizational schemes on the same vector
data. We compared the performance time when obtaining requested data with the two
organization schemes. If the time was short, then the efficiency of obtaining the requested
data was higher.

In the VTPM, the size of vector tiles at different levels is not the same. Table 4 shows
the size of vector tiles corresponding to each level in the VTPM in our experiment. Since
the ratio between the vector tiles at adjacent levels (Definition 3) of the VTPM was two, as
shown in Table 4, the size of the vector tile at the higher level is four times the size of the
vector tile at the lower level.

Table 4. The size of vector tiles corresponding to each level in the VTPM.

Level 0 1 2 3 4 ...

Size (latitude ×
Longitude) 360 × 360 180 × 180 90 × 90 45 × 45 22.5 × 22.5 ...

In order to ensure that we obtained the same vector data objects at the same requested
geographical scope in the two different organization schemes, we adopted a geographical
scope corresponding to the vector tile in the VTPM as the geographical scope of the
experimental request. From level zero to level nine of the VTPM, we successively selected
a vector tile randomly and treated the geographical scope of the selected vector tile as the
geographical scope of the experimental request, and we repeated this process 10,000 times.
Table 5 illustrates our experimental results. The first column in the table shows different
levels. The second and third columns in the table show the average number of objects of
the acquired vector data per request based on the two schemes when the geographical
scope corresponding to the vector tile at different levels of the VTPM was requested. The
fourth and fifth columns show the average number of nodes of the acquired vector data per
request based on the two schemes. The last three columns in the table show the average
time per request based on the two schemes and the ratio of the average time of obtaining
requested data between the two schemes.

Table 5. Comparing the two schemes for obtaining requested data.

The Average Number of
Objects per Request

The Average Number of
Nodes per Request The Average Time per Request (seconds)

Level Traditional VTPM Traditional VTPM Traditional VTPM Ratio

0 746,651 746,651 43,597,863 1,493,498 15.8465 4.8173 3.28954

1 373,527 373,527 21,818,059 747,605 8.0957 2.3192 3.49068

2 102,367 102,367 6180,539 205,458 2.5555 0.6478 3.94471

3 40,028 40,028 2,242,651 81,065 1.1598 0.2489 4.65937

4 11,604 11,604 872,314 24,550 0.5683 0.0727 7.81463

5 2783 2783 265233 6819 0.3568 0.0179 19.941

6 1101 1101 94150 3248 0.5216 0.0077 68.0407

7 499 499 57105 1750 0.4176 0.0038 110.761

8 368 368 53738 1398 0.4333 0.0029 151.837

9 105 105 23646 668 0.2831 0.0014 205.586

As shown in Table 5, with an increasing number of levels, the number of objects and
nodes of the vector data becomes less when the geographical scope corresponding to the
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vector tile at this level is requested. Accordingly, the time spent when obtaining requested
data become less with increasing the number of the level.

The last column in Table 5 shows the ratio of the time of obtaining requested data
based on the two schemes when the geographical scope corresponding to the vector tile at
different levels of the VTPM was requested. It reflects the contrast in the efficiency between
the two schemes. Overall, the efficiency of the VTPM is higher than the traditional vector
database scheme. In addition, when the geographical scope of the vector tile at the lower
levels of the VTPM was requested, the efficiency of the VTPM was significantly improved
over the traditional vector database scheme, even up to hundreds of times. This reflects the
block structure of the VTPM, which gradually plays a role in the efficiency of obtaining
requested data with the increasing number of levels.

Therefore, using the VTPM to organize and manage vector data can improve the
efficiency when visualizing vector data on 3D terrain surfaces by improving efficiency
when obtaining requested data.

6. Conclusions

In this paper, we propose the VTPM for organizing and managing vector data. In the
VTPM, vector data are stored at different levels with different details. These vector data at
each level are divided into different blocks, and each block is considered a vector tile. This
strategy will enhance the efficiency of visualizing vector data on 3D terrain surfaces.

In order to validate the utility of the VTPM, we designed and built a prototype system
for visualizing vector data on 3D terrain surfaces based on the VTPM. The experimental
results show that when compared with a traditional vector database, the VTPM enables
fast access to vector data. This ensures efficiency when obtaining requested data for
visualization on a 3D terrain. In addition, unlike the texture vector tiled pyramid, vector
tiles in the VTPM are easily combined using a geometry-based approach or texture-based
approach. We can even combine the two approaches to achieve a rich rendering effect.
Therefore, the VTPM is a compromise solution that effectively visualizes vector data on 3D
terrain surfaces, achieving a better balance between efficiency and effect.

It should be noted, however, that in the VTPM, the topology of the vector data is
undermined due to the partitioning so spatial analysis of the vector data in VTPM is a
problem. This problem will be addressed in our future work, possibly by building and
incorporating a more extensive indexing structure to keep the topological relationships
among vector objects.
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