
����������
�������

Citation: Liu, C.; Chen, L.; Yuan, Q.;

Wu, H.; Huang, W. Revealing

Dynamic Spatial Structures of Urban

Mobility Networks and the

Underlying Evolutionary Patterns.

ISPRS Int. J. Geo-Inf. 2022, 11, 237.

https://doi.org/10.3390/ijgi11040237

Academic Editor: Wolfgang Kainz

Received: 28 January 2022

Accepted: 3 April 2022

Published: 5 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Revealing Dynamic Spatial Structures of Urban Mobility
Networks and the Underlying Evolutionary Patterns
Chun Liu 1,2 , Li Chen 1, Quan Yuan 1,3, Hangbin Wu 1,2 and Wei Huang 2,4,*

1 Urban Mobility Institute, Tongji University, Shanghai 200092, China; liuchun@tongji.edu.cn (C.L.);
1931364@tongji.edu.cn (L.C.); quanyuan@tongji.edu.cn (Q.Y.); hb@tongji.edu.cn (H.W.)

2 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
3 College of Transportation Engineering, Tongji University, Shanghai 200092, China
4 Department of Civil Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
* Correspondence: wei_huang@tongji.edu.cn

Abstract: Urban space exhibits rich and diverse organizational structures, which is difficult to
characterize and interpret. Modelling urban spatial structures in the context of mobility and revealing
their underlying patterns in dynamic networks are key to understanding urban spatial structures and
how urban systems work. Most existing methods overlook its temporal dimension and oversimplify
its spatial heterogeneity, and it is challenging to address these complex properties using one single
method. Therefore, we propose a framework based on temporal networks for modeling dynamic
urban mobility structures. First, we cast aggregated traffic flows into a compact and informative
temporal network for structure representation. Then, we explore spatial cluster substructures and
temporal evolution patterns to acquire evolution regularities. Last, the capability of the proposed
framework is examined by an empirical analysis based on taxi mobility networks. The experiment
results enable to quantitatively depict urban space dynamics and effectively detect spatiotemporal
heterogeneity in mobility networks.

Keywords: dynamic spatial structures; spatio-temporal evolution; GPS trajectory; community detection

1. Introduction

Recently, the influx of massive population to urban areas has boosted urban spatial
development to accommodate citizens’ diverse needs, including various social activities,
consumer behaviors, etc., where mobility is an essential way of accessing such opportuni-
ties [1–3]. Particularly, in metropolitan areas, there is an exponential increase in terms of
cross-regional mobilities owing to their vast and complicated spatial layout and big popula-
tions [4,5]. This has resulted in a more pronounced heterogeneity of urban space and more
structured inter- and intro-city interactions [6–8]. With the advancement of ubiquitous com-
puting technologies and the widespread availability of geo-tagged data, researchers have
attempted to explore the spatial structures of cities by identifying the movement patterns
of massive travels, further enhancing the understanding of the operational mechanisms of
urban mega-systems [7,9–11].

For urban space, a considerable amount of research has shown that urban form
presents a high irregularity [12,13] and self-organization [14]. For example, the layout of
cities has a distinct clustering pattern as seen in remote sensing images [12,15,16]. To capture
this characteristic of urban spatial structure, both land use data and census data have
been used in traditional measurement to directly define and classify urban spaces [17,18].
However, the static dimension of urban built-up areas neglects the influence of human
activities on the shaping of urban spaces [14]. Mobility, as a measure of activities in a city,
is often used to perceive the organization of urban spaces by exploring the interactions
between various movement behaviors in urban spaces [7,11]. Spatial clustering algorithms
were usually applied to explore the spatial structure of cities by analyzing the spatial
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characteristics of mobility data [18,19]. For instance, Zhou and Zhang et al. extracted
the spatial distribution of six types of urban functions based on the spatial aggregation
distribution of travel hotspots [20]. Although the point density-based cluster analysis tool
was used to capture a static distribution pattern of urban spatial structure, it is difficult to
establish actual connections between urban areas.

Exploring the interactions between urban areas is key to the analysis of the operational
drivers of urban systems [21,22]. Research in this area, such as Wu’s study on the spatial
mismatch of occupational and residential separation common in the spatial structure of
cities, has been achieved by identifying the commuting flows between different functional
areas in the city [23]. As the focus of some urban studies has shifted to the interactions be-
tween different urban areas, mobility data with continuous spatio-temporal information is
being widely used to quantify these interactions [8]. At the same time, the graph theory has
been introduced into urban spatial studies to represent spatial structures of real phenomena
and to explore complex interactions in urban spaces [24]. Specifically, the representation of
urban complex spatial systems was achieved using the network conceptual framework,
where its components were denoted as geo-referenced nodes and the interactions between
the components are denoted as links. Meanwhile, the relationships between different urban
areas are quantitatively portrayed as a series of topological indicators, including degree [25],
betweenness centrality [26], PageRank [27], etc. [28]. These studies shed light on the way
urban space is organized and hierarchically structured and served as an effective tool for the
development and assessment of regional spatial structures. Inspired by them, we propose
a workflow that can explore the process of spatial interactions between urban areas using
spatio-temporal mobility data. Comparing to the aforementioned studies, in addition to
probing spatial regional connections in single temporal cross-sections, we focus on tracing
the evolution of such interactions between urban areas by exploring the interactions in
successive time periods.

Therefore, this study intends to explore how mobility networks can be employed
to explore the processes of spatio-temporal interaction between different urban areas.
Specifically, using mobility data to characterize the dynamic spatio-temporal organization
of urban clusters over geographic space and adopting valid measures to describe the
dynamic evolutionary processes. We propose a method for extracting spatial clusters of
urban neighboring spatial units using a temporal network structure constructed from
continuous trajectory data. Moreover, a method for quantitatively describing the evolution
patterns of urban clusters over time is developed. A case study of Shanghai, China is
conducted to validate the methods and to uncover the dynamic spatial structure of the city.
This study provides an innovative perspective for understanding the organization of urban
space and capturing urban dynamics, which can be utilized for decision-making in the
dynamic management of transport demand and urban spatial renewal as well as for better
understanding the process of urban spatial development.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces our proposed conceptual framework of temporal mobility networks for
revealing dynamic processes in urban spatial structures, where we detail all the components
of the framework and describe their formal representations, as well as the computational
methods for quantifying the dynamic processes. Section 4 presents study areas of the
experimental work and the results of our proposed methods. Section 5 presents conclusions
and future work.

2. Related Work

We first describe the concept of urban spatial structure, which is the focus of this
study. Then, an introduction to the necessity of investigating its dynamism and the current
research progress is reviewed, and how its structural characteristics and evolution can be
measured using mobility data is given. The relevant researches that provide the theoretical
and methodological basis for the workflow we proposed are discussed.
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2.1. Concept of Urban Spatial Structure and Its Dynamics

In the process of rapid urbanization, the spatial structure of cities has undergone
significant changes, for instance from a simple single-center form to a complex polycentric
agglomeration of urban areas [29–31]. In this context, the term spatial structure refers to
the urban form that is exhibited by the interaction amongst spatial elements [29,32]. It
may serve as an indicator of regional development, reflecting the way in which the city is
organized regarding its scale, function, and location within a given region. In traditional
urban studies, the measurement of urban spatial structure is usually characterized by
static indexes, such as the extent of the geographical landscape [33], the concentration
or dispersion of built-up areas [34,35], or the aggregated distribution of population [36].
The description of spatial structure is usually global spatial characteristics such as single-
center or multi-center, centralized or decentralized, etc. [29]. These studies of urban spatial
structure have assisted planners and policy makers in determining the spatial scale of
cities, which has contributed to understanding the process of shaping and monitoring the
development of urban space [37]. However, as the spatial interactions amongst the urban
elements are constantly changing, the spatial structure is not limited to a static view of the
spatial layout, but also requires a dynamic perspective.

With easy access to transport infrastructures and the increased diversity of human
activities, a growing body of research has argued that spatial structure greatly depends
on spatial interaction flows, manifested as traffic flows [38–40]. It promotes the shift of
various resources within urban spaces and enhances the interactivity of urban spaces [41].
Batty suggests that “to understand urban space, we must understand flows and networks
of relationships” [42]. Moreover, Schmitt suggests that “cities increasingly evolved into a
dynamic relational urban system” [43]. These theories have inspired researchers to explore
the organization of urban spatial structures in the context of urban mobility including static
spatial layout and dynamic spatial interactions. From a methodological perspective, most
studies adopted mathematical statistical methods or a simple spatial clustering [17,19,21].
For example, Hu et al. used commuting data from travel surveys to identify the dispersed
employment subcenters with a statistical method of geographically weighted regression,
revealing commuting patterns in different urban regions [44]. Zhu et al. applied the
density-based spatial clustering by application with noise (DBSCAN) algorithm to identify
urban regional clusters based on OD points of trajectory data, achieving a multi-level
characterization of spatial structure [45]. These studies have demonstrated that urban
spatial structures are in general characterized by dynamic layouts and blurred boundaries,
as well as various manifestations of human activity within urban sub-regions. Nevertheless,
urban space is more than a simple collection of urban sub-regions [41]. We should explore
the dynamics behind their formation, such as those areas that have denser internal spatial
interactions and how urban sub-regions interact dynamically with each other.

2.2. Mobility Networks and Network Community Detection

In the context of mobility, to further explore the interactions of urban spatial structures,
many researchers suggested to construct networks by embedding collective flows into
geographical spaces [4,24]. Based on the architecture of networks, the relationships between
interactions of urban areas are described by active traffic flows [46]. A range of network
approaches, such as both topological properties from a global perspective and community
detection of networks, have been widely used to describe the spatial structure of cities.
Specifically, Lee et al. constructed an urban mobility network using OD data on commuting
traffic flows across the city, achieving a classification of the hierarchy of centers of work areas
in the Seoul metropolitan areas through centrality indicators [5]. In a further way, many
studies demonstrated that detected mobility communities, which are distinct regions with
dense internal connections and sparse external connections, are able to better describe pre-
unknown mobility structures [6,47,48]. For example, Yildirimoglu et al. used a data set on
multiple modes of transport to investigate the structure of consistent mobile communities
in urban spaces, where each mobile community has similar travel characteristics [49].
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Owing to its good performance, mobility community detection has been widely applied
to describe the complete urban spatial structure beyond the traditional morphological
structure [6,38]. However, most of current studies still focus on the aggregated flows as a
frozen view on a time scale, and few discuss the dynamic evolution process of interactions
within mobility networks [1,50]. We argue that a shift from descriptive measurements of
urban spatial network structure to the study of evolving spatial networks will foster a
long-term interest in the investigation of the associations between urban spatial structures
and spatio-temporal dynamics [51].

On the other hand, for the construction of mobility networks, most studies focused on
topologies of nodes in a ‘network’ or ‘feature’ space, for example, by directly connecting the
origin and destination of a trip [52,53]. Such topological connections ignore the constraints
of geographic Euclidean spaces. According to the Tobler’s First Law, the analysis of
interactions between urban spaces through mobility networks should be based on the
premise that neighboring entities interact more frequently [38,40]. Further, these metrics
defined in network spaces are non-spatial and entirely non-geographic to a certain extent.
Indicators, such as the network diameter [28], which indicates the two most distant social
relations, are difficult to correspond to phenomena on real geographic spaces [4]. In addition
to the mapping relationship between the network space and geospatial space in which
the nodes are located, we also have to consider the interaction relationship between the
nodes. For example, in some studies of freight traffic network among cities, the interaction
relationship is represented as a function of the pairwise freight traffic volumes between
two cities without the routing information [54,55]. This direct conversion is referred to a
first-order dependency [56]. However, transportation routes, as typical spatial sequence
data, usually involve more than two transportation nodes. Singer et al. [57] explored
the implications of applying routing information in transportation networks. Lambiotte
et al. [56] further emphasized the dependency exhibited in spatial sequence data, where
the interactions between transportation nodes are not only related to the current one,
but also to non-contiguous surrounding nodes [58]. Such dependencies are described in
complex network theory as higher-order topological interactions [59]. Consequently, when
considering mobility networks embedded in geographic spaces, a reasonable representation
in the network cannot be ignored.

3. The Proposed Framework

In this section, we describe the proposed spatiotemporal framework for exploring the
structure of time-varying traffic flows and their evolutionary patterns over geographical
spaces. The detailed workflow is shown in Figure 1. Specifically, we first introduce the
notations and definitions used to formulate a dynamic representation of the mobility
network. We then extract the sub-structures in the time-varying network of the mobility
networks. Further, a dynamic graph-based quantification method to numerically extract
and understand the dynamics of the mobility network structure is developed.

3.1. Formulation of Temporal Mobility Network

Large-scale travel trajectory data involve rich spatiotemporal information. To explore
the meaningful spatiotemporal substructure of mobility, we abstract the traffic flows repre-
sented by the trajectory data to a temporal network over geographic space. Specifically,
in this study, we define a mobility network as a directed weighted temporal graph, of
which nodes denote the smallest geographical units and edges denote the amount of travels
between each pair of geographical units. The temporal mobility network is formulated
as below:

G = {gt(V, Et) | t = 1, 2, . . . , T} (1)

V = {v1, v2, . . . , vn} (2)

E = {Et | t = 1, 2, . . . , T} (3)
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where G represents the temporal mobility network constructed by trajectory data, and
gt(V, Et), where V denotes the set of n nodes and E R(n× n) is the set of edges, is a time
slice from the entire network. The detailed definitions of this formulation are:

1. Centers of geographical units in subdivisions of a city are extracted as nodes set V in
the mobility network;

2. For the construction of edges between graph nodes, a large connectivity matrix is
often used to denote the number of trips between each pair of geographical units.
Considering that the flows between geographical units of a city vary over time means
that the magnitude of connectivity from a node to a node is dynamic. We use a
time series of the connectivity matrices E to describe the topological structure of
time-varying mobility within T time slices according to a specific temporal resolution;

3. We use trajectories to measure the connectivity relationship Eij
t from the nodes vi

to vj in the graph at the time slice t. Specifically, instead of using only origin and
destination locations of a particular trajectory, we consider the geographical spaces
crossed by a trajectory. Like many generative models for human mobility [60,61], we
simplify the recording of a single trajectory into a set of geographical units and the
sequence of visiting them in a chronological order. This data can be described as:

Traj = List(s) = {uid, C1, C2, . . . , Cs}, (4)

Cs = ( vs, ArrTimes), (5)

E = {Et | t = 1, 2, . . . , T}, (6)

where Traj represents a simplified sequence for a trajectory, uid denotes a valid trajectory
id, and Cs consists of the nodes in the graph represented by the geographical units passed
and the arrival time.
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By aggregating the total number of flows passing between nodes to nodes at time slice t,
we can obtain the edge weight matrix Et of the dynamic interactions of the mobility network.

3.2. Extraction of Spatial Substructures

After obtaining the dynamic mobility network, we investigate the travel interactions
between geographical units to obtain mobility features. Based on the features derived,
we use spatial partitioning to further identify patterns of travel behavior on the dynamic
mobility network.

3.2.1. Topological Motifs of Mobility Network

More information is retained in the higher-order structure of the network, considering
the above-mentioned edge connectivity relationships of the mobility network. In other
words, a simplified sequence of trajectories may cover more than two adjacent spatial
geographic units, implying that connectivity also exists between higher-order neighboring
nodes in the network. In other words, a simplified spatial sequence of trajectories may
cover more than two continuous spatial geographic units, implying that the interaction
still exists on the geographical units through which the trajectory passes, even though
they are not directly connected. For example, a trajectory that follows the route 1→2→3 is
described as a pairwise interaction pattern containing 1→2 and 2→3 in our construction
way. In order to preserve the second-order interactions between geographic units 1 and 3,
we attempted to capture the characteristic of such multi-hop spatial proximity using the
higher-order model proposed in complex network theory [58].

A number of studies have used network motifs, a concept derived from the network
theory, represented as network subgraphs, to investigate how to describe and characterize
the higher-order structure of a network [62,63]. If these network subgraphs occur more
frequently than random samples of the whole network, then these network subgraphs of
the significant importance are called motifs. In the context of mobility research, network
scientists have demonstrated that motifs can help to understand higher-order organizations,
for example, by identifying important hub cities in an airline network, or by discovering
the themes of travel in a travel chain [62].

In this research, we employ motifs to capture multi-hop spatial connectivity patterns
and to uncover local structural interaction features of geospatial units. Particularly, we
adopt the topological motifs proposed by Benson et al. to deal with multi-order connectivity
relations for directed graphs [63]. Conceptually, a network motif is formed by

Mpq = {Vm, Em}, (7)

where Vm = { v1, v2, . . . , vm} V is a set of p nodes, and Em ∈ R(q× q) is a weight matrix
consisting of q edges. For example, Figure 2 depicts some examples of 3-vertex topological
motifs, which represent certain meaningful connectivity structures.
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It is notable that motifs are characterized as building blocks of the mobility network
topology, but not all of them are significant. We capture the higher-order proximity by
mining the frequent occurrence of motifs in mobility networks. For a given collection of
motifs M = { M1, M2, . . . , Mk} and a static mobility network snapshot gt,

1. We first calculate the number of occurrences of motif graph Mk in the mobility network
gt by means of an enumeration method. For the enumeration algorithm, by traversing
each node in network gt, a motif is considered to occur once if the sub-structure is
formed by this node and its higher order neighbors is the same as the topological
structure of the given motif Mk;

2. Based on the previous step, we obtain the number of occurrences of all motifs in the
temporal mobility network G and further select the most frequent mobility motifs.
Like most studies, we filter motifs collections M with a high average number of
occurrences across all static mobility network snapshots by setting a threshold Em,
which serves as typical higher-order organizations in mobility network G.

We capture the local neighborhood-level directed connectivity of the nodes of mobility
networks through frequent topological motif structures. Further, we use theses higher-order
structures to detect densely connected communities in mobility networks.

3.2.2. Motif-Based Communities of Mobility Network

Network communities are used as a common type of densely connected organization
to extract agglomerative patterns of networks. Meanwhile, some complex network scien-
tists have discussed the performance of motifs applied to community detection algorithms.
For example, Gao et al. proposed an asymmetric triangle enhancement method for network
clustering that addressed the fragmentation problem of networks [64]. Shang et al. pro-
posed a motif-based modularity function to extend local communities and achieved better
results on six real networks compared to five state-of-the-art algorithms [65]. Specifically,
we perceive the spatial agglomerative structures of urban clusters through the mobility
networks constructed by trajectories and the frequent motifs detected. In this subsection,
we elaborate on how to incorporate frequent higher-order motifs organization into the
original mobility network to better encode mobility communities.

Our approach involves three steps. First, the spatial proximity among nodes is rede-
fined. Then, a community detection is performed for the higher-order proximity-enhanced
mobility networks. Third, statistical tests are conducted for the detected mobility commu-
nity structure. The algorithm flowchart is shown in Figure 3.

First, we follow the definition of weight matrix W̃k or the higher-order topic adjacency
proposed by Benson et al. [63]. For a given frequent topological motifs Mk and mobility
network gt, we define the set of all occurrences of motif graph in the network as occ_gt(Mk),
where all nodes in the subgraph set compose the nodes Vm we mentioned before. For each
Eij

m Em, their higher-order adjacency, denoted by θ
ij
k , is defined as the number of occurrences

in the subgraph set occ_gt(Mk). Thus, we obtain a higher-order motif adjacency matrix W̃k
based on motif Mk.

W̃ij
k = θ

ij
k + θ

ji
k , (8)

After the higher-order proximity calculation, the mobility network can be augmented as

gt = (V, Et(Mk)), (9)

Et(M) = Et ∪ Et

(
W̃1

)
∪ . . . ∪ Et

(
W̃k

)
, (10)

In the second step, we perform statistical tests on the obtained higher-order proximity-
enhanced mobility network, checking whether the reconstructed network structure has
a significant community structure. We generate a set of random networks with the same
nodes and degrees as the mobility networks. Subsequently, the average modularity of the
random networks in the set and the reconstructed mobility networks are calculated several
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times by employing the Louvain method. According to the central limit theorem, the
average modularity generated by random networks should follow a normal distribution.
We compare the obtained Z-score of the mean modularity of the enhanced mobility network
with a threshold at the 1% significance level, thus implementing a test of significance of the
community structure.
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The third step is to apply the Leuven community detection method to the higher-order
proximity-enhanced mobility network gt with significant community structure features. To
reduce the randomness of the community structure, we perform multiple calculations on
this mobility network to obtain robust mobility network communities, that is, urban clusters.

3.3. Quantification of Spatiotemporal Evolutionary Patterns

As traffic demand for each geographical location can be different and varies over time
for a location, the spatial structure of the urban clusters perceived by movements may also
vary. It implies that the structure of communities in a temporal mobility network evolves
over time. In addition to detecting urban spatial clusters at different times, we focus on the
process of how urban spatial clusters evolves over time—-evolutionary tracking.
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Benefiting from the network format of spatial clusters, we are able to quantify this
evolutionary process by employing a series of network measures. Specifically, we compare
communities between consecutive time snapshots and introduce a metric to describe this
evolving behavior. Mathematically, for a pair of successive network snapshots gt and
gt−1 in temporal network G, let Ct

i and Ct−1
j be the communities of the corresponding

network, respectively.
Here, we compare similarities between communities by considering both qualitative

and quantitative indicators of community membership, and the community similarity
between Ci

t and Ct−1
j is defined as I

(
Ct

i , Ct−1
j

)
:

I
(

Ct
i , Ct−1

j

)
=

∣∣∣Ct
i ∩ Ct−1

j

∣∣∣∣∣Ct
i

∣∣ ·
∑v∈Ci∩Ct−1

j
NI
(
Ct

i (v)
)

∑v∈Ci∩Ct−1
j

NI
(
Ct

i (v)
) , (11)

where
∣∣Ct

i

∣∣ is the quantity of network nodes in community Ci
t, and

∣∣∣Ct
i ∩ Ct−1

j

∣∣∣ represents

the quantify of the overlapping network nodes in the two communities; NI
(
Ct

i (v)
)

is a
node indicator in a statistical matrix, including centrality, degree, betweenness, etc., that
accesses the importance of node v in community Ct

i . In this research, we select NI as the
betweenness of a node, which is a global metric that calculates the average shortest distance
between a node to all other nodes.

Further, to clarify this pattern of evolution, we employ an overarching concept pro-
posed by the GED (group evolution discovery) for representing the evolutionary behavior
of communities in a temporal network [66]. Specifically, this evolutionary behavior is
defined as a series of events, including birth, death, contraction, expansion, merging, and
splitting (see Figure 4). For the determination of events, there are two hyperparameters α
and β employed to formulate the classification rules for events, as shown in Table 1, where
the hyperparameters are used to adjust the number of event observations.
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Table 1. A summary table of definitions and judgement conditions for the evolutionary events of the
network community in a temporal network.

Community Evolution Events Definition Conditional Tags

birth a community occurs in t and does not
exist in t− 1

for Ci in t and each community Cj in t− 1,

I
(

Ct−1
j , Ct

i

)
< α, I

(
Ct

i , Ct−1
j

)
< β

death a community appears in t− 1 and does
not occur in t

for Cj in t− 1 and each community Ci in t,

I
(

Ct−1
j , Ct

i

)
< α, I

(
Ct

i , Ct−1
j

)
< β

expansion
additional members join the
community with initial
members unchanged

I
(

Ct−1
j , Ct

i

)
≥ α and I

(
Ct

i , Ct−1
j

)
< β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣ and there is only one matching

event between Ct−1
j and all communities in t, or

I
(

Ct−1
j , Ct

i

)
≥ α and I

(
Ct

i , Ct−1
j

)
≥ β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣

contraction initial members leave the community

I
(

Ct−1
j , Ct

i

)
< α and I

(
Ct

i , Ct−1
j

)
≥ β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣ and there is only one matching

event between Ct
i and all communities in t− 1, or

I
(

Ct−1
j , Ct

i

)
≥ α and I

(
Ct

i , Ct−1
j

)
≥ β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣
merging a community is formed by multiple

other community members

I
(

Ct−1
j , Ct

i

)
≥ α and I

(
Ct

i , Ct−1
j

)
< β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣ and there is more than one

matching event between Ct−1
j and all communities

in t

splitting a community is divided into two or
more communities

I
(

Ct−1
j , Ct

i

)
< α and I

(
Ct

i , Ct−1
j

)
≥ β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣ and there is more than one

matching event between Ct
i and all communities in

t− 1

continuing
no significant differences of the
community between two adjacent
snapshots

I
(

Ct−1
j , Ct

i

)
≥ α and I

(
Ct

i , Ct−1
j

)
≥ β and∣∣∣Ct−1

j

∣∣∣ ≤ ∣∣∣Ct
i

∣∣∣
Thus, for mobility network communities in each temporal snapshot, except the first

one, we can obtain the evolutionary events between the current community and its cor-
responding community in the previous temporal snapshot. Finally, the dynamic spatio-
temporal processes of urban clusters are described by the type and number of evolutionary
events varying in time and space.

4. Experiment and Results

In this section, the proposed framework is applied for a case study, evaluating the
applicability of capturing and quantifying the dynamic structure and evolutionary patterns
of mobility networks. First, we map the aggregated trajectories onto the geographic space,
and then construct a temporal mobility network in a chronological order. Second, we
conduct community detection for the higher-order proximity-enhanced temporal snapshot
network, acquiring heterogeneous urban spatial clusters. Third, we extract the interactions
between urban spatial clusters on continuous temporal snapshots, quantifying the urban
spatial evolution patterns in the context of mobility.
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4.1. Study Areas and Datasets

The study area is the inner city of Shanghai, China, located within the Outer Ring Road,
with a population of over 12 million people, which gathers the majority of traffic flows in
the metropolitan area. This area is a typical case of mixed-use development with 263 Traffic
Analysis Zones (TAZs) covering an area of approximately 680 square kilometers (Figure 5).
The TAZs were chosen as the analysis units to examine urban geospatial interactions, and
each unit is referred to a neighborhood with a spatial resolution of approximately 1.4 km.
The TAZ dataset is defined by the Shanghai transportation agency as the administrative
units for transportation management and planning.
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Figure 5. Datasets used in our case study: (a) The geographical location of the study area and its
extent. (b) The traffic analysis cell serves as the basic spatial units of our study area. (c) The sample of
taxi trajectory data we used is located on continuous urban roads.

Like most cities, taxis are seen as an important component of the transport system
in the city center of Shanghai, and they are used as a proxy for studying human mobility
patterns. The de-identified taxi GPS trajectory dataset used for this analysis was collected
from 1 September to 28 September 2016. The total number of regularly operating taxis was
16,032, covering approximately 70% of all taxi trips in Shanghai. GPS data points recorded
detailed information including device ID, longitude, latitude, status (empty and heavy
load), timestamp, speed, etc., where the data were sampled at a frequency of approximately
10–20 s. In order to obtain valid trajectories of trips for further data analysis, the following
processing procedure was developed to preprocess the raw dataset. We first filtered the
trajectory data within the study area and then identified valid trips based on the passenger
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load signs in the original records. We also eliminated GPS point data noise for speed
over 100 km/h based on the real-time speed record. Then, the outlier trajectory data was
removed according to the calculated travel time and distance based on the three-sigma rule.
After data pre-processing, we obtained a dataset of taxi trajectories for the construction
of urban mobility. The data consist of an average of 85,000 valid loading trips per day,
with an average of approximately 5.3 km per trip. Figure 5c plots the spatial distribution
of the trajectory data recorded over five minutes, covering most of the roads in the study
area. These trips form a representative sample of intra-urban mobilities, which reflect the
connectivity in the urban space. It is noted that the proposed framework is applicable to
other mobility datasets.

4.2. Overall Mobility Networks Description

Based on detailed trajectory records and spatial units from the TAZs, we constructed
a temporal mobility network. We first mapped the trajectories to a numbered sequence
of time-stamped traversed TAZs, and then these sequences were aggregated for network
construction. In a mobility network, the set of nodes is composed of 263 TAZs spatial units;
the edges are made up of the direction of flows between spatial units and the amount
of passing traffic. We divided all trip data into three-hour intervals based on their start
timestamps. Then, the trip data were aggregated within each time slice as a snapshot of the
entire temporal mobility network.

After processing the mobility data, we obtained a profile of the entire mobility network,
as shown in Figure 6. It contains 263 nodes and 2083 edges. Further, we calculated two
commonly used metrics of each node, namely degree and strength, for a quantitative global
description of the network structure. We also calculated these two metrics for higher-order
nodes. In the context of mobility, degree and strength, respectively, represent the extent
(mobility geographic coverage by taxi service) and intensity (mobility concentration of
trips) of the interactions between neighboring nodes.

In terms of overall spatial linkages, as shown in Figure 6a, on the one hand, there is
a strong spatial interaction between the core urban area and the peripheral urban areas,
while the interaction between the suburbs is relatively weak. On the other hand, the
network shows a noticeable distribution of clustering. As for the multi-order hierarchy
of connectivity based on statistical indicators, it can be seen that the two metrics show
significantly different distributions. For degree, its multi-orders show an approximately
bell-shaped normal distribution, implying a distinct randomly distributed geospatial struc-
ture of the mobility network. For strength, the overall trend looks like a hump with a thick
tail, implying obvious heterogeneity that a small number of nodes tend to involve more
traffic volume.

Overall, the statistics show that the spatial units in the mobility network have more
intensive interactions with the proximal area, exhibiting a spatial cluster. Additionally, the
higher-order connectivity preserves both the lower-order geographical proximity and the
preferential connectivity in the mobility network.

4.3. Communities of Temporal Mobility Network

The above exploratory analysis focuses on describing the overall spatial structural
characteristics of the mobility network. To further explore the characteristics of the aggre-
gated distribution of urban spatial organizations, we extend the analysis by applying our
proposed approach to introduce a temporal dimension on top of it.

First, in our mobility network, we chose three motifs as the fundamental organization,
which is a common generalization of neighboring information. The statistical characteristics
of these higher-order connectivity was discussed above. By counting the number of
occurrences of three different motifs on each time slice, we obtained the most frequent of
these triad graphs in the mobility network, covering M1, M2, and M6 in Figure 2. In our
proposed approach, they represent the recurring mobility patterns of taxi trips between
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neighboring regions in geographic spaces as well as the typical connectivity features in
network communities.
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Figure 6. Mobility network constructed from trajectory data located both in geographic space and
in cyberspace and its statistical characteristics: (a) Geographic visualization of a mobility network
constructed from the traffic passing between adjacent geographical units, where the thickness and
color of the edges are according to the weights of the network edges; (b) Topological visualization of
the mobility network in cyberspace; (c–e) log–log scatter plots of the frequency distribution of the
node degrees from first-order to third-order; (f–h) log–log scatter plots of the frequency distribution
of the node strengths from first-order to third-order, where the node strengths are divided by 3000 for
simplicity of visualization.
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The mobility communities derived from the enhancement of higher-order features of
traffic flows, also referred to as urban clusters, reveal the aggregation forms of the urban
spatial structure. As the network connectivity is indicated by traffic volumes from aggre-
gated trajectory sequences, the geographical units with roughly similar spatial coverage of
mobility activities are closely clustered together. Meanwhile, geospatial units with compa-
rable vibrancy of transport interactions are considered as the same mobility community in
the same time slice. We uncovered the evolution of the spatial structure of urban clusters
for each day of the week by aggregating the data from nearly a month by week. In Figure 7
(more detailed results can be found in Appendix A), by dividing every three hours as a time
slice, it shows a spatial visualization of the community division of the mobility network
within each time slice, where clusters in the same color belong to the mobility community
on the same space. It is worth noting that most of the community structures are statistically
significant at the 1% level, indicating that our acquired communities are relatively stable.
To a certain extent, the spatial visualization results reveal the rhythm of daily mobilities
at the mesoscopic scale within urban spaces. These results encompass both the spatial
hierarchy within the same time slice and the trends for the same neighbors over time.

To show the general conviction of our approach, we explored the similarities and
differences in the urban spatial structure of a typical weekday and weekends. Specifically,
among the communities we obtained, we selected the results of peak hours on Thursdays
and weekends, as shown in Figure 7, where peak hours include the morning peak (7 am to
9 am) and evening peak (5 pm to 7 pm) periods as defined by the Shanghai government.
In terms of the spatial distribution, the closer to the city center, the smaller the size of the
community, and bigger scale mobility communities surround the city at the periphery. It
is most likely that there are more accessible infrastructures in the central area resulting in
a relatively dense short trip. In contrast, there are more dispersed traffic demands in the
surrounding areas leading to more long trips. Further, perhaps there is a match between
the mixed land uses and the urban clusters in different geographical locations during the
planning period, which, to a certain extent, influences the size of the communities. A second
important finding is that the spatial boundaries of urban clusters are partly distinguished
from the administrative boundaries but are constrained by natural geographical boundaries.
Obviously, the Huangpu River forms a part of the spatial boundary of the community. This
finding can also confirm that the resulting urban clusters have meaningful geographical
boundaries and, thus, address spatial heterogeneity.

In terms of different time periods, the spatial structure of urban spaces on weekdays
and weekends differs relatively distinctly over space. Specifically, it seems that the spatial
clusters are smaller in spatial coverage and more numerous on weekends compared to
weekdays. Moreover, comparing the peak and off-peak hours, a similar pattern is captured,
where mobility communities during off-peaks are also relatively spatially dispersed and
small-scale concentrated. In a way, this dynamic change in spatial structure in time also
reveals that the structure of mobility space exhibits certain spatial scaling patterns at
different times.

Additionally, we adopted two widely used community quality metrics as measures
of community detection performance, without previously knowing the ground-truth of
communities. One of the metrics used in this paper is modularity, which measures the
density of edges in an intra-community compared to the edges in extra-communities. The
greater its value, the better the quality of the community. The other is the average cluster
coefficient, measuring the local connectivity, which is also related to the robustness of a
network’s partitioned structure. The results of the two metrics are shown in Figure 8. It
yields that the modularity remains a relatively high level over 0.68, and the average cluster
coefficient appears to be on the uptrend in the peak hours and reaches its lowest point
in the late night. With these commonly used community detection evaluation indicators,
our proposed approach is validated as stable and robust, in terms of partitioning mobility
networks into compact spatial clusters to reflect the spatial layout of urban areas in the
context of mobility.
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Figure 7. A spatial visualization of urban clusters distributions within each time slice, where each
colored block indicates an urban cluster. The color is used to specify the clusters and does not have a
specific meaning. It is noted that a very small proportion of color-blank spatial units are not attached
with any color, because they do not belong to any community.
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Figure 8. Plots of the modularity (a) and average clustering coefficients (b) of the results of the
community detection over time, where the results are calculated from communities that include a full
day (eight time slices) on Thursday, Friday, and Saturday.

4.4. Evolutionary Patterns of Urban Clusters

The evolution of urban clusters in space is captured by tracking changes in the struc-
ture of mobility communities. Based on the spatial distribution of the dynamic mobility
communities, their evolutions over time are discovered. As shown in Figure 9, there is an
intuitive demonstration of how the communities interact with each other and the evolving
trends of this interaction.
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Figure 9. The process of spatial evolution of urban spatial clusters over time in different time slices.
In the diagram, the mobility community on each time slice is represented as a color block; the length
of the block indicates the number of its spatial units, and its color corresponds to the color of the
spatial clusters in Figure 7; the curves attached to the mobility community connect the corresponding
communities in the next time slice at the spatial locations, and the width of the curve indicates the
number of changing spatial units.
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We further analyzed the evolution patterns of the network communities from the
perspective of dynamic community structure changing. First, we plotted a Sankey diagram
from 6 am to 12 pm on Thursday, which demonstrates how communities in the study area
interact with each other and how the interaction alters from one entity at snapshots. Such
changes are reflected in the affiliation of spatial units as members in different communities.
In Figure 9, with the geospatial distribution of mobility communities as a reference, the
width of the links between communities in continuous time indicates the number of
overlapping members in space.

As seen from Figure 9, in terms of the specific communities, the structural characteristic
of different communities presents different patterns: some communities have a steady trend
which gradually scales up or down. For example, the communities in the three darkest
colors in the bars gradually decrease in size, while they also happen to be concentrated in the
upper central part of the city. Contrastingly, the others tend to show frequent interactions
with each other, thus, generating transition events. This finding confirms the instability
of the internal mobility structure of certain urban regions and further characterizes the
spatially heterogeneous traffic patterns. Meanwhile, in terms of the specific time periods,
through the overlapping flow curves in the figure, the flow of spatial units within each
spatial agglomeration is shown to be more diverse. During the off-peak hours, the flow
is relatively stable. Such a pattern is also indicative to the frequent changes in the urban
spatial structure because of the more active activities in the city during the peak hours.
Further, the overall trend is that urban space gradually consolidates from loose and small-
scale clusters to large-scale clusters. In later periods, the integrated clusters are gradually
split into small-scale communities dispersed in the study area.

In addition, we applied the GED method introduced in the Section 3.3 and set the
commonly used parameter α = β = 20% to calculate the evolution events. After the calcu-
lation, we obtained a series of consecutive community events as characteristic measures
of dynamic mobility network evolution and demonstrate them in a thermal diagram in
Figure 10. In this figure, the value is the number of events occurring in every two adjacent
snapshots. Additionally, it is interesting to note that no clusters died or grew up. It is
presumably because the study area was fixed with no parcel changes, and, therefore, the
events detected do not include births and deaths.
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Figure 10. Spatial evolutionary events of community structure between successive time slices,
including the detected results from 6 am to 12 pm on Thursdays (a) and Saturdays (b). The number
in each square indicates the occurrence of the corresponding evolutionary event in the adjacent time
slice, where the darker colors indicate a higher frequency.

In the evolutionary process shown in Figure 10, the dynamic patterns of urban spatial
structures are depicted as specific spatial events. It is observed that contraction and
expansion events usually occur at the same time, and there are slightly more contraction
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events than expansion events during both weekday and weekend peaks. These events
reflect the dramatic changes in the activities that occur over urban spaces during this period.
In addition, comparing the evolutionary events in the morning peaks with that of in the
evening peaks on the same day, i.e., 2→ and 5→7 in the figure, it shows a relatively similar
distribution of the number of events. Contrasting weekdays and weekends side-by-side,
the slight difference is in the number of event types during off-peaks. In general, active
mobility generates dynamic changes in the spatial organization of urban spaces. The
spatio-temporal regularities in dynamic networks are, thus, verified and further described
in the evolutionary process, which also suggests that intermediate structures with spatio-
temporal properties (network communities) are an appropriate way to study dynamic
urban spatial structures.

5. Discussion and Conclusions
5.1. Methodological Discussion for Revealing the Dynamics of Urban Spatial Structures

Taking the spatial organizations and temporal associations of urban spatial structure
into consideration simultaneously, this paper proposes a novel framework for revealing
the dynamics of urban spatial structure by the three steps of modelling the urban spatial
network, identifying urban spatial sub-regions and characterizing the evolution of urban
spatial structure. The highlights of our study are threefold. First, we construct the urban
spatial network using continuous trajectory data as a proxy for human activity. The
spatially embedded network constructed based on continuous trajectory data takes into
account geospatial constraints and retains more detailed routing information. Different
from networks constructed with trajectory OD data, the network nodes in our proposed
method measure the through traffic between adjacent TAZ rather than direct traffic demand
spanning geographic space. Similar to the gravity model in the travel distribution model, it
takes explicit geospatial proximity into consideration and achieves a characterization of the
strength of spatial interactions between adjacent TAZ. Second, we integrate the higher-order
structure of the network in identifying urban mobility communities. A number of studies
have demonstrated that motifs can reveal the frequent connectivity patterns of networks,
thus we enhance the spatial connectivity of mobility networks by computing the motif
co-occurrence matrix. Further, for the identification of urban sub-regions, relative to other
unsupervised spatial clustering algorithms, the network community detection algorithm
focuses on the closeness of the connections among objects rather than the sparseness of
the distribution of individual objects. The obtained urban sub-areas are rich in metrics
(e.g., degree centrality) and retain the original connections in geospatial terms. As a result,
the mobility communities obtained are spatially heterogeneous urban sub-regions with
high intensity of internal interactions. Third, we propose indicators to quantify changes
in urban spatial structure and describe them as specific spatial events. Distinguishing
from other dynamic studies of urban spatial structure, we obtain not only simple statistical
characteristics, such as size, topology, and identified boundaries of urban clusters over
different time periods, but a more intuitive and comprehensive pattern of evolution.

5.2. Implication of Urban Spatial Structure Dynamics and Its Evolutionary Patterns

This study explores dynamic spatial interactions at the mesoscopic scale, providing
a tool to verify spatio-temporal properties of spatial structure dynamics from the lens of
traffic flows. From a spatial perspective, we obtained urban sub-regions as highly hetero-
geneous spatial clusters with dense internal connectivity and sparse external connections,
which shows the concentrated distribution of traffic flows. On the one hand, the clear
boundaries and divergent spatial extents exhibited by the sub-regional clusters can inform
the zoning of fine-grained urban management. Existing regional jurisdictional boundaries
are mostly fixed administrative or geographic boundaries, which, to a certain extent, limit
implementing reasonable and flexible solutions benefiting intra-city travels and land uses,
especially in highly dynamic and compact metropolitan areas such as Shanghai. On the
other hand, the detected mobility clusters still retain a network structure with interactions.
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Network metrics such as clustering coefficients characterize the divergent geographical
cohesion of the concentrated activity space, with intra-cluster interactions being more
intensive during daytime relative to late night.

From a temporal perspective, the empirical study based on the one-month mobility
data of Shanghai explores the fine-grained dynamics of the urban spatial structure, includ-
ing inter-regional interactions and changes in the regions themselves. Firstly, the change of
members in a cluster specifies the size and direction of dynamic mobility demand, which
can assist decision makers in coordinating regional resource allocation and in dynamic traf-
fic control. Further, this quantified interactions between sub-regions can be used to validate
some urban planning policies, for example regarding the delineation of commuting circles
for the separation of jobs and housing. Secondly, we obtained the time-series structural
characteristics of urban sub-regions. Their statistical characteristics are able to illustrate the
spatial stability of urban organizations and reveal the spatial vitality. Moreover, the urban
spatial dynamics are described as specific spatial evolutionary events (e.g., expansion and
contraction), providing a consistent assessment tool for theories that examine the coupling
of urban patterns and processes. By continuously identifying and tracking significant
changes in urban structure, short-term rhythms of life within urban space are revealed, and
the urban development can be further explored.

5.3. Innovations, Limitations, and Prospects

Our research renews knowledge about the dynamics of urban structure from the
perspective of mobility. Theoretically, it enriches the insights into the complex spatio-
temporal dynamics and the evolution of urban spatial layout by taking advantage of
mobility data, which combine both temporal and spatial attribute information. With
mobility data, two layers of associations of urban structure are constructed, including
spatial interactions among urban areas and temporal linkage of the urban areas on their
own. Methodologically, we propose an analytical framework for quantifying the dynamics
of urban spatial structure, including a method for urban spatial clusters extraction based on
continuous trajectory sequences and a quantitative measure for spatial clusters evolution.
Specifically, we constructed a temporal network of interactions among urban areas using
a spatial sequence of trajectories, which considered the mapping of network space to
geographic space as well as geographical proximity. Meanwhile, we extracted statistically
significant urban spatial regions with a modified community detection method based on
complex networks, and we preserved more connected relationships among sub-regions,
as distinguished from data distribution-based spatial clustering algorithms. Further, we
propose a quantitative measure to track changes in the structure and size of network
communities, enabling a dynamic assessment of the evolutionary process of urban spatial
clusters. Based on an extensive evaluation, the empirical study in Shanghai shows that our
analytical framework is novel and valid, which could be applied to urban spatial planning
and mobility management.

However, there exist limitations in this study. First, our experimental findings were
derived from taxi travel modes, which is one of the transport modes. Therefore, the
observed mobility patterns in our analysis cannot be overgeneralized. To fully reveal the
evolution of urban spatial clusters in the context of mobility, the subsequent study will
construct dynamic mobility networks by taking into account multiple modes of transport.
Second, our study duration spanned only one month owing to mobility data availability
constraints. An analysis of longer time series is preferable for understanding the dynamics
of spatial structure in the urbanization process. Third, we focused on the passing flow
between geospatial units as a proxy for inter-regional connections when constructing
mobility networks. However, trajectory also contains much valuable information, such as
the purpose of travel and traffic state, which can be further integrated into the framework
to provide insights into urban functions. For future work, we will combine the integration
of additional data, such as socio-demographic information and built environment data, to
further integrate this structural change characterization and evolutionary quantification
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framework into a predictive system for long time series urban development. Finally, the
proposed framework could be applied to a comparative analysis of several cities to explore
contextual differences at different levels of development.

Author Contributions: Conceptualization, Chun Liu and Li Chen; methodology, Chun Liu, Wei
Huang and Li Chen; formal analysis, Li Chen, Quan Yuan and Wei Huang; resources, Hangbin Wu;
writing—original draft preparation, Li Chen; writing—review and editing, Wei Huang and Chun Liu;
supervision, Chun Liu. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key R&D Program of China (2021YFB2501101),
the National Science Foundation of China (42171452), the “Science and Technology Innovation Action
Plan” project of the Science and Technology Commission of Shanghai Municipality (20XD1403800),
and the Fundamental Research Funds for the Central Universities (22120210196/22120210197).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental data after data masking and the code of the algo-
rithms that are needed to replicate the experiments are available at https://figshare.com/ (accessed
on 25 January 2022), which can be accessed via the link: https://doi.org/10.6084/m9.figshare.193865
27.v1 (accessed on 25 January 2022).

Acknowledgments: The authors thank the editors and reviewers for their comments with which its
quality was improved.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 21 of 23 
 

 

Appendix A 

 

Figure A1. Results of spatial visualization of urban clusters distribution within each three-hour time 

slice during the week. 

References 

1. Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; To-

masini, M. Human mobility: Models and applications. Phys. Rep. Rev. Sect. Phys. Lett. 2018, 734, 1–74. 

2. Chetty, R.; Hendren, N.; Kline, P.; Saez, E. Where is the Land of Opportunity? The Geography of Intergenerational Mobility in 

the United States. Q. J. Econ. 2014, 129, 1553–1623. 

3. Simini, F.; Gonzalez, M.C.; Maritan, A.; Barabasi, A.L. A universal model for mobility and migration patterns. Nature 2012, 484, 

96–100. 

4. Wang, Y.; Cullinane, K. Traffic consolidation in East Asian container ports: A network flow analysis. Transportation Research 

Part A: Policy and Practice 2014, 61, 152-163. 

5. Lee, J.; Seo, D. Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea. 

ISPRS Int. J. Geo-Inf. 2021, 10, 642. 

6. Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as proxy for global mobility 

patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271.  

7. Liu, X.; Gong, L.; Gong, Y.X.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 

78–90. 

8. Chaix, B.; Kestens, Y.; Perchoux, C.; Karusisi, N.; Merlo, J.; Labadi, K. An Interactive Mapping Tool to Assess Individual Mobility 

Patterns in Neighborhood Studies. Am. J. Prev. Med. 2012, 43, 440–450. 

9. Xu, Y.; Chen, D.C.; Zhang, X.H.; Tu, W.; Chen, Y.Y.; Shen, Y.; Ratti, C. Unravel the landscape and pulses of cycling activities 

from a dockless bike-sharing system. Comput. Environ. Urban Syst. 2019, 75, 184–203. 

10. Kang, K.; Xie, S.E.; Huang, L.J.; Han, Y.M.; Huang, P.Y.; Mak, K.F.; Kim, C.J.; Muller, D.; Park, J. High-mobility three-atom-thick 

semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.  

11. Guzman, L.A.; Oviedo, D.; Rivera, C. Assessing equity in transport accessibility to work and study: The Bogota region. J. Transp. 

Geogr. 2017, 58, 236–246. 

Figure A1. Results of spatial visualization of urban clusters distribution within each three-hour time
slice during the week.

https://figshare.com/
https://doi.org/10.6084/m9.figshare.19386527.v1
https://doi.org/10.6084/m9.figshare.19386527.v1


ISPRS Int. J. Geo-Inf. 2022, 11, 237 21 of 23

References
1. Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.;

Tomasini, M. Human mobility: Models and applications. Phys. Rep. Rev. Sect. Phys. Lett. 2018, 734, 1–74. [CrossRef]
2. Chetty, R.; Hendren, N.; Kline, P.; Saez, E. Where is the Land of Opportunity? The Geography of Intergenerational Mobility in the

United States. Q. J. Econ. 2014, 129, 1553–1623. [CrossRef]
3. Simini, F.; Gonzalez, M.C.; Maritan, A.; Barabasi, A.L. A universal model for mobility and migration patterns. Nature 2012, 484,

96–100. [CrossRef] [PubMed]
4. Wang, Y.; Cullinane, K. Traffic consolidation in East Asian container ports: A network flow analysis. Transp. Res. Part A Policy

Pract. 2014, 61, 152–163. [CrossRef]
5. Lee, J.; Seo, D. Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea.

ISPRS Int. J. Geo-Inf. 2021, 10, 642. [CrossRef]
6. Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as proxy for global mobility

patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [CrossRef] [PubMed]
7. Liu, X.; Gong, L.; Gong, Y.X.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43,

78–90. [CrossRef]
8. Chaix, B.; Kestens, Y.; Perchoux, C.; Karusisi, N.; Merlo, J.; Labadi, K. An Interactive Mapping Tool to Assess Individual Mobility

Patterns in Neighborhood Studies. Am. J. Prev. Med. 2012, 43, 440–450. [CrossRef]
9. Xu, Y.; Chen, D.C.; Zhang, X.H.; Tu, W.; Chen, Y.Y.; Shen, Y.; Ratti, C. Unravel the landscape and pulses of cycling activities from a

dockless bike-sharing system. Comput. Environ. Urban Syst. 2019, 75, 184–203. [CrossRef]
10. Kang, K.; Xie, S.E.; Huang, L.J.; Han, Y.M.; Huang, P.Y.; Mak, K.F.; Kim, C.J.; Muller, D.; Park, J. High-mobility three-atom-thick

semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660. [CrossRef]
11. Guzman, L.A.; Oviedo, D.; Rivera, C. Assessing equity in transport accessibility to work and study: The Bogota region. J. Transp.

Geogr. 2017, 58, 236–246. [CrossRef]
12. Fleischmann, M.; Romice, O.; Porta, S.J.E. Measuring urban form: Overcoming terminological inconsistencies for a quantitative

and comprehensive morphologic analysis of cities. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 2133–2150. [CrossRef]
13. Yang, T.; Jin, Y.; Yan, L.; Pei, P.J.E.; Analytics, P.B.U.; Science, C. Aspirations and realities of polycentric development: Insights

from multi-source data into the emerging urban form of Shanghai. Plan. B Urban Anal. City Sci. 2019, 46, 1264–1280. [CrossRef]
14. Long, Y.; Ye, Y.J.L.; Planning, U. Measuring human-scale urban form and its performance. Landsc. Urban Plan. 2019, 191, 103612.

[CrossRef]
15. Benguigui, L.; Czamanski, D. Simulation Analysis of the Fractality of Cities. Geogr. Anal. 2003, 36, 69–84. [CrossRef]
16. Frankhauser, P. Comparing the morphology of urban patterns in Europe—A fractal approach. Eur. Cities–Insights Outskirts Rep.

COST Action 2004, 10, 79–105.
17. Mashhoodi, B.; Pont, M.Y.B. Studying Land-Use Distribution and Mixed-Use Patterns in Relation to Density, Accessibility

and Urban Form. In Proceedings of the ISUF 2011: 18th International Seminar on Urban Form: Urban Morphology and the
Post-Carbon City, Montreal, QC, Canada, 26–29 August 2011.

18. Dembski, S.; Sykes, O.; Couch, C.; Desjardins, X.; Evers, D.; Osterhage, F.; Siedentop, S.; Zimmermann, K. Reurbanisation
and suburbia in Northwest Europe: A comparative perspective on spatial trends and policy approaches. Progress Plan. 2021,
150, 100462. [CrossRef]

19. Kim, K. Identifying the Structure of Cities by Clustering Using a New Similarity Measure Based on Smart Card Data. IEEE Trans.
Intell. Transp. Syst. 2020, 21, 2002–2011. [CrossRef]

20. Zhou, X.; Zhang, L. Crowdsourcing functions of the living city from Twitter and Foursquare data. Cartogr. Geogr. Inf. Sci. 2016, 43,
393–404. [CrossRef]

21. Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged
photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [CrossRef]

22. Hackl, J.; Dubernet, T.J. Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models. Future Internet 2019,
11, 92. [CrossRef]

23. Wu, C.; Smith, D.A.; Wang, M.J. Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity
under different scenarios. Comput. Environ. Urban Syst. 2021, 89, 101677. [CrossRef]

24. Barthelemy, M. Spatial networks. Phys. Rep.-Rev. Sect. Phys. Lett. 2011, 499, 1–101. [CrossRef]
25. Kang, C.; Jiang, Z.; Liu, Y. Measuring hub locations in time-evolving spatial interaction networks based on explicit spatiotemporal

coupling and group centrality. Int. J. Geogr. Inf. Sci. 2022, 36, 360–381. [CrossRef]
26. Curado, M.; Tortosa, L.; Vicent, J.F. Identifying mobility patterns by means of centrality algorithms in multiplex networks. Appl.

Math. Comput. 2021, 406, 126269. [CrossRef]
27. Wang, G.; Zhong, Y.; Teo, C.-P.; Liu, Q.J. Flow-based accessibility measurement: The Place Rank approach. Transp. Res. Part C

Emerg. Technol. 2015, 56, 335–345. [CrossRef]
28. Newman, M.E.J. Mathematics of networks. New Palgrave Encycl. Econ. 2008, 2, 1–12.
29. Anas, A.; Arnott, R.; Small, K.A. Urban spatial structure. J. Econ. Lit. 1997, 36, 1426–1464.
30. Zhong, C.; Schläpfer, M.; Arisona, S.M.; Ratti, C.; Batty, M.; Schmitt, G. Revealing centrality in the spatial structure of cities from

human activity patterns. Urban Stud. 2015, 54, 437–455. [CrossRef]

http://doi.org/10.1016/j.physrep.2018.01.001
http://doi.org/10.1093/qje/qju022
http://doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
http://doi.org/10.1016/j.tra.2014.01.007
http://doi.org/10.3390/ijgi10100642
http://doi.org/10.1080/15230406.2014.890072
http://www.ncbi.nlm.nih.gov/pubmed/27019645
http://doi.org/10.1016/j.jtrangeo.2015.01.016
http://doi.org/10.1016/j.amepre.2012.06.026
http://doi.org/10.1016/j.compenvurbsys.2019.02.002
http://doi.org/10.1038/nature14417
http://doi.org/10.1016/j.jtrangeo.2016.12.016
http://doi.org/10.1177/2399808320910444
http://doi.org/10.1177/2399808319864972
http://doi.org/10.1016/j.landurbplan.2019.103612
http://doi.org/10.1111/j.1538-4632.2004.tb01124.x
http://doi.org/10.1016/j.progress.2019.100462
http://doi.org/10.1109/TITS.2019.2910548
http://doi.org/10.1080/15230406.2015.1128852
http://doi.org/10.1016/j.compenvurbsys.2015.09.001
http://doi.org/10.3390/fi11040092
http://doi.org/10.1016/j.compenvurbsys.2021.101677
http://doi.org/10.1016/j.physrep.2010.11.002
http://doi.org/10.1080/13658816.2020.1863411
http://doi.org/10.1016/j.amc.2021.126269
http://doi.org/10.1016/j.trc.2015.04.017
http://doi.org/10.1177/0042098015601599


ISPRS Int. J. Geo-Inf. 2022, 11, 237 22 of 23

31. Krehl, A.J.R.S. Regional Science. Urban spatial structure: An interaction between employment and built-up volumes. Reg. Stud.
Reg. Sci. 2015, 2, 290–308.

32. Bertaud, A. The Spatial Organization of Cities: Deliberate Outcome or Unforeseen Consequence? Institute of Urban and Regional
Development University of California at Berkeley: Berkeley, CA, USA, 2004.

33. Cegielska, K.; Piotrowski, P.; Kukulska, A.; Szylar, M. Analysis of the spatial structure of urban antropogenic areas. Acta Sci. Pol.
Circumiectus 2018, 3, 39–54. [CrossRef]

34. Zhang, T.; Sun, B.; Li, W.J.C. The economic performance of urban structure: From the perspective of Polycentricity and
Monocentricity. Cities 2017, 68, 18–24. [CrossRef]

35. Grosvenor, M.; O’Neill, P.J. The Density Debate in Urban Research: An Alternative Approach to Representing Urban Structure
and Form. Geogr. Res. 2014, 52, 442–458. [CrossRef]

36. Li, Y.J. Towards concentration and decentralization: The evolution of urban spatial structure of Chinese cities, 2001–2016. Comput.
Environ. Urban Syst. 2020, 80, 101425. [CrossRef]

37. Sarkar, S.; Phibbs, P.; Simpson, R.; Wasnik, S.J. The scaling of income distribution in Australia: Possible relationships between
urban allometry, city size, and economic inequality. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 603–622. [CrossRef]

38. Pinho, P.; Silva, C. Mobility Patterns and Urban Structure; Ashgate Publishing, Ltd.: Farnham, UK, 2015.
39. Sarkar, S.; Chawla, S.; Ahmad, S.; Srivastava, J.; Hammady, H.M.; Filali, F.; Znaidi, W.; Borge-Holthoefer, J. Effective Urban

Structure Inference from Traffic Flow Dynamics. IEEE Trans. Big Data 2017, 3, 181–193. [CrossRef]
40. Zhu, H. Multilevel understanding dynamic changes in inbound tourist flow network (ITFN) structure: Topology, collaboration,

and competitiveness. Curr. Issues Tour. 2020, 24, 2059–2077. [CrossRef]
41. Crecine, J.P. A Dynamic Model of Urban Structure; Rand Corp: Santa Monica, CA, USA, 1968.
42. Batty, M. The New Science of Cities; The MIT Press: Cambridge, MA, USA, 2013.
43. Schmitt, G. Spatial modeling issues in future smart cities. Geo-Spatial Inf. Sci. 2013, 16, 12–17. [CrossRef]
44. Hu, L.; Sun, T.; Wang, L. Evolving urban spatial structure and commuting patterns: A case study of Beijing, China. Transp. Res.

Part D Transp. Environ. 2018, 59, 11–22. [CrossRef]
45. Liu, X.; Yan, X.; Wang, W.; Titheridge, H.; Wang, R.; Liu, Y. Characterizing the polycentric spatial structure of Beijing Metropolitan

Region using carpooling big data. Cities 2021, 109, 103040. [CrossRef]
46. Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network

analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [CrossRef]
47. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99,

7821–7826. [CrossRef] [PubMed]
48. Newman, M.E.J.; Girvan, M.J. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]

[PubMed]
49. Yildirimoglu, M.; Kim, J. Identification of communities in urban mobility networks using multi-layer graphs of network traffic.

Transp. Res. Procedia 2017, 27, 1034–1041. [CrossRef]
50. Charu, V.; Zeger, S.L.; Gog, J.R.; Bjørnstad, O.N.; Kissler, S.M.; Simonsen, L.; Grenfell, B.T.; Viboud, C. Human mobility and the

spatial transmission of influenza in the United States. PLoS Comput. Biol. 2017, 13, e1005382. [CrossRef] [PubMed]
51. Anderson, T.; Dragi evj, S.J. Representing Complex Evolving Spatial Networks: Geographic Network Automata. ISPRS Int. J.

Geo-Inf. 2020, 9, 270. [CrossRef]
52. Sarkar, D.; Andris, C.; Chapman, C.A.; Sengupta, R.R.J. Metrics for characterizing network structure and node importance in

Spatial Social Networks. Int. J. Geogr. Inf. Sci. 2019, 33, 1017–1039. [CrossRef]
53. Shaw, S.-L.; Sui, D. Editorial: GIScience for human dynamics research in a changing world. Trans. GIS 2018, 22, 891–899.

[CrossRef]
54. Kaluza, P.; Kölzsch, A.; Gastner, M.T.; Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 2010, 7,

1093–1103. [CrossRef]
55. Behiri, W.; Belmokhtar-Berraf, S.; Chu, C. Urban freight transport using passenger rail network: Scientific issues and quantitative

analysis. Transp. Res. Part E Logist. Transp. Rev. 2018, 115, 227–245. [CrossRef]
56. Lambiotte, R.; Rosvall, M.; Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 2019, 15,

313–320. [CrossRef] [PubMed]
57. Singer, P.; Helic, D.; Taraghi, B.; Strohmaier, M. Detecting Memory and Structure in Human Navigation Patterns Using Markov

Chain Models of Varying Order. PLoS ONE 2014, 9, e102070. [CrossRef] [PubMed]
58. Xu, J.; Wickramarathne, T.L.; Chawla, N.V. Representing Higher Order Dependencies in Networks. Sci. Adv. 2016, 2, e1600028.

[CrossRef] [PubMed]
59. Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G. Networks beyond pairwise

interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [CrossRef]
60. Kulkarni, V.; Tagasovska, N.; Vatter, T.; Garbinato, B.J.A. Generative Models for Simulating Mobility Trajectories. arXiv 2018,

arXiv:1811.12801.
61. Pappalardo, L.; Simini, F. Data-driven generation of spatio-temporal routines in human mobility. Data Min. Knowl. Disc. 2018, 32,

787–829. [CrossRef]

http://doi.org/10.15576/ASP.FC/2018.17.3.39
http://doi.org/10.1016/j.cities.2017.05.002
http://doi.org/10.1111/1745-5871.12084
http://doi.org/10.1016/j.compenvurbsys.2019.101425
http://doi.org/10.1177/0265813516676488
http://doi.org/10.1109/TBDATA.2016.2641003
http://doi.org/10.1080/13683500.2020.1842341
http://doi.org/10.1080/10095020.2013.774107
http://doi.org/10.1016/j.trd.2017.12.007
http://doi.org/10.1016/j.cities.2020.103040
http://doi.org/10.1080/13658816.2014.914521
http://doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
http://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://doi.org/10.1016/j.trpro.2017.12.070
http://doi.org/10.1371/journal.pcbi.1005382
http://www.ncbi.nlm.nih.gov/pubmed/28187123
http://doi.org/10.3390/ijgi9040270
http://doi.org/10.1080/13658816.2019.1567736
http://doi.org/10.1111/tgis.12474
http://doi.org/10.1098/rsif.2009.0495
http://doi.org/10.1016/j.tre.2018.05.002
http://doi.org/10.1038/s41567-019-0459-y
http://www.ncbi.nlm.nih.gov/pubmed/30956684
http://doi.org/10.1371/journal.pone.0102070
http://www.ncbi.nlm.nih.gov/pubmed/25013937
http://doi.org/10.1126/sciadv.1600028
http://www.ncbi.nlm.nih.gov/pubmed/27386539
http://doi.org/10.1016/j.physrep.2020.05.004
http://doi.org/10.1007/s10618-017-0548-4


ISPRS Int. J. Geo-Inf. 2022, 11, 237 23 of 23

62. Milo, R.; Shen-Orr, S.S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.B.; Alon, U.J.S. Network motifs: Simple building blocks of
complex networks. Science 2002, 298, 824–827. [CrossRef]

63. Benson, A.R.; Gleich, D.F.; Leskovec, J.J.S. Higher-order organization of complex networks. Science 2016, 353, 163–166. [CrossRef]
64. Gao, Y.; Yu, X.; Zhang, H. Graph clustering using triangle-aware measures in large networks. Inf. Sci. 2022, 584, 618–632.

[CrossRef]
65. Shang, R.; Zhang, W.; Zhang, J.; Feng, J.; Jiao, L. Local community detection based on higher-order structure and edge information.

Phys. A Stat. Mech. Its Appl. 2022, 587, 126513. [CrossRef]
66. Bródka, P.; Saganowski, S.; Kazienko, P.J. GED: The method for group evolution discovery in social networks. Soc. Netw. Anal.

Min. 2012, 3, 1–14. [CrossRef]

http://doi.org/10.1126/science.298.5594.824
http://doi.org/10.1126/science.aad9029
http://doi.org/10.1016/j.ins.2021.11.008
http://doi.org/10.1016/j.physa.2021.126513
http://doi.org/10.1007/s13278-012-0058-8

	Introduction 
	Related Work 
	Concept of Urban Spatial Structure and Its Dynamics 
	Mobility Networks and Network Community Detection 

	The Proposed Framework 
	Formulation of Temporal Mobility Network 
	Extraction of Spatial Substructures 
	Topological Motifs of Mobility Network 
	Motif-Based Communities of Mobility Network 

	Quantification of Spatiotemporal Evolutionary Patterns 

	Experiment and Results 
	Study Areas and Datasets 
	Overall Mobility Networks Description 
	Communities of Temporal Mobility Network 
	Evolutionary Patterns of Urban Clusters 

	Discussion and Conclusions 
	Methodological Discussion for Revealing the Dynamics of Urban Spatial Structures 
	Implication of Urban Spatial Structure Dynamics and Its Evolutionary Patterns 
	Innovations, Limitations, and Prospects 

	Appendix A
	References

