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Abstract: Historical villages represent a highly vulnerable cultural heritage; their preservation can
be ensured thanks to technological innovations in the field of geomatics and information systems.
Among these, Geographical Information Systems (GISs) allow exploiting heterogeneous data for
efficient vulnerability assessment, in terms of both time and usability. Geometric attributes, which cur-
rently are mainly inferred by visual inspections, can be extrapolated from data obtained by geomatic
technologies. Furthermore, the integration with non-metric data ensures a more complete description
of the post-seismic risk thematic mapping. In this paper, a high-performance information system for
small urban realities, such as historical villages, is described, starting from the 3D survey obtained
through the integrated management of recent innovative geomatic sensors, such as Unmanned
Aerial Vehicles (UAVs), Terrestrial Laser Scanners (TLSs), and 360º images. The results show that the
proposed strategy of the automatic extraction of the parameters from the GIS can be generalized to
other case studies, thus representing a straightforward method to enhance the decision-making of
public administrations. Moreover, this work confirms the importance of managing heterogeneous
geospatial data to speed up the vulnerability assessment process. The final result, in fact, is an
information system that can be used for every village where data have been acquired in a similar way.
This information could be used in the field by means of a GIS app that allows updating the geospatial
database, improving the work of technicians. This approach was validated in Gabbiano(Pieve Torina),
a village in Central Italy affected by earthquakes in 2016 and 2017.

Keywords: historical villages; geomatic techniques; GIS; multi-data management; seismic assessment;
preservation

1. Introduction

Historical villages, which often represent a tourist attraction thanks to their cultural
and architectural value [1], are not immutable due to their inherent vulnerabilities, often
being threatened by natural disasters. This is the reason why humans are investing heavily
in preserving this artistic and cultural heritage. Preserving such places means, first and
foremost, documentation and knowledge; the means to achieve this ambitious objective
involves mapping and digitization of the existing buildings and implementing interventions
and projects aimed to safeguard them [2,3]. In the case of historical villages, this cultural
heritage is highly vulnerable, and their preservation is a race against time; there is, thus, a
need to make this process as efficient and fast as possible. Recent technological innovations
can boost this process, through geomatic techniques [4] and information systems [5].
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It is no coincidence that themes, such as safe and resilient urban settlements, as well as
risk prevention measures related to natural disasters are included in the list of Sustainable
Development Goals of the 2030 Agenda signed by the UN member countries, indicated,
respectively, by SDG Nos. 11 and 13 [6]. This implies that this is not an approach linked to a
specific area, but also concerns other countries, and, therefore, this process of safeguarding
can and should be replicated for all vulnerable realities, such as the historic Italian villages
threatened by earthquakes.

Over the last 70 years, there have been more than 10,000 victims of hydrogeological
and seismic phenomena have been recorded in Italy; the economic damage over the same
period is estimated to be about EUR 290 billion, with an annual average of about EUR
4 billion, increasing over time [7]. To this end, in September 2016, the government launched
the Casa Italia mission [8], a multi-year plan to promote the country’s safety in the face of
natural hazards. Intervening to promote safety, moreover, means reducing the potential
damage of future events. From an environmental point of view, by working on the quality
of the often outdated building stock, it is possible to improve the overall safety of urban
systems at the same time. From a cultural point of view, seismic, landslide, and flooding
phenomena not only destroy people and things, but also parts of cultural heritage that
is unique in the world. From an economic point of view, a vast plan of measures in the
housing sector would have a multiplier effect on other sectors such as construction, which
is structurally in crisis.

Thanks to the joint work of Italian public bodies, such as Istituto Nazionale di Statistica
(ISTAT), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Istituto Superiore per la
Protezione e la Ricerca Ambientale (ISPRA), and Ministero per i Beni e le Attività Culturali
(MiBAC), a first map of the risks of Italian municipalities (updated in 2018) has been drawn
with the aim of providing an updated picture of Italian municipalities on the basis of quality
variables and indicators, which allow an overview of the risks of exposure to natural events
through the integration of data from different institutional sources [9]. This map is drawn
on an open-source Geographic Information System (GIS) platform, an information system
that manages and stores data and information related to the various areas exposed to
different natural hazards.

In addition, in recent years, in Italy, there has been a substantial updating of the
Technical Regulations (NTC 2018 [10]) of civil engineering works, which are in line with
the European Technical Regulations (Eurocodes), and the progress made by science and
technology, during recent national and international tragedies, has placed in designers’
hands cognitive tools of great reliability. These are regulations governing the design,
execution, and testing of buildings in order to guarantee public safety at the established
safety levels. These regulations are also constantly updated thanks to the use of a special
technical sheet, the Agibilità e Danno nell’Emergenza Sismica (AeDES) sheet [11], which is
compiled by the Civil Protection Department for the detection of damage, the definition
of emergency measures, and the post-seismic assessment, and therefore vulnerability,
of buildings. In this approach, the post-earthquake damage area is analysed by visual
inspections by skilled specialists, including an expert evaluation of the damages, their
extent, and the associated possibility for repair and reconstruction [12].

Given the above, the following gaps and research challenges are highlighted:

• The open-source GIS platform that is used for the risk maps of Italian municipalities’
archive data refers only to the municipal scale; therefore, it does not go into the
details of each building that composes the single urban reality. In order to guarantee a
more detailed representation of the built environment, each municipal technical office,
especially those of small historical villages, must be able to prepare a GIS map that
can then be linked to the national map;

• Such GIS mapping of the risks of Italian municipalities is only represented on the
two-dimensional plane. The three-dimensional representation of the individual urban
realities provides a better overview of the buildings’ volumes, allowing more accurate
information. This can be ensured through the use of geomatic survey tools, which
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allow the generation of 3D models of buildings (Digital Surface Models (DSMs)) and
the territory (Digital Terrain Models (DTMs));

• AeDES data sheets are documents that are compiled during in situ surveys of build-
ings, mainly entrusted on visual inspections. Once compiled, they are then stored in a
database managed by the Civil Protection and shared with the municipalities. The
latter are often not provided with a municipal GIS map. The insertion or connection
of these documents to a GIS system would further enrich the information useful to
obtain a more detailed and precise urban mapping (always taking into account the
issue of privacy for the protection of private property of buildings) and thus offer a
better representation of vulnerabilities.

In this light, the aim of this research work is to tackle the above-mentioned challenges,
by developing a high-performance information system for small urban realities, such as
historical villages, starting from the 3D survey obtained through the integrated manage-
ment of recently innovative geomatic sensors such as the Unmanned Aerial Vehicle (UAV),
the Terrestrial Laser Scanner (TLS), and the 360º images. In other words, this study is
aimed at exploiting heterogeneous geomatics data in an efficient way, in terms of time
and usability by using the open-source software Quantum GIS (QGIS). Complementary
to this, this article develops a new methodology that allow to extract, in an automatic
way, part of those parameters required for evaluating the vulnerability of the buildings,
in this case for post-earthquake assessment. The results show that the proposed strategy
of automatic extraction of parameters from the GIS can be generalized to other case study,
thus representing a straightforward method for enhancing the decision making by the
public administrations. Moreover, this work confirms the importance of managing hetero-
geneous geospatial data to speed up the vulnerability assessment. Finally, the proposed
approach outperforms the visual inspection one, as it makes data more reliable and based
on quantitative analyses.

The reminder of the paper is structured as follows: Section 2 illustrates a general
overview about the use of GIS tools for emergency management applied to urban environ-
ment and shows how the data for the building assessment after seismic events are collected.
Section 3 introduces the case study and describes the steps of methodology of work, start-
ing from the data acquisition through geomatic techniques integration to the multi-data
management in an open-source GIS tool. Section 4 highlights the results obtained, whose
are discussed in Section 5, where also conclusions and future works are outlined.

2. Related Works

GIS platforms are containers for spatial information which, when properly man-
aged, lead to the creation of query-able data systems, up to the creation of cartographic
products at different territorial scales (e.g., geo-environmental maps) and for different
purposes (e.g., thematic maps). The literature presents a plethora of works exploiting GIS
for several domains, including private/public gardens [13], spatial analysis [14], decision
making [15], and photovoltaic plants [16,17]. In other words, GIS allows visualising, com-
bining, and managing heterogeneous data from different acquisition techniques sensor
network sources, insomuch warranting data sharing and interoperability [18]. Nowadays,
emergency management plans or conservation actions at building level are entrusted on
3D data, high-resolution photogrammetric images, cadastral data, urban planning data,
building mapping (just to mention some), hitherto performed largely manually. Example of
this interoperability, within the field of heritage conservation, could be found in the work
carried out by Sánchez-Aparicio et al. [19] on which it is developed a GIS platform able to
integrate 3D point clouds, 360º images, inspection forms, and a wireless sensor network to
manage the preventive conservation of heritage places.

At urban level, the management of emergency plans could be considered as a priority
since they provide the necessary information for the designing of prevention and mitigation
actions. In the field of urban safety, seismic, fire and flood risks, which can cause serious
consequences, must inevitably be taken into account in order to plan prevention actions
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and adopt protection measures for the population [20]. The integration of risk plans into a
GIS platform represents an efficient and effective solution towards risk mitigation at the
urban scale, allowing administrative authorities to define interventions for a more accurate
and comprehensive emergency planning strategies. Ortiz et al. in their studies on the
historical centre of Seville (Spain) use a GIS framework for designing risk maps through
the spatial analysis of hazards (structural, environmental, anthropogenic), vulnerability
maps and test of characterization [21,22]. The integration of all this information allows to
create a suitable strategy for prioritising preservation efforts. In the same line, Saha et al.
uses the GIS platform for generating a multi-hazard susceptibility mapping for evaluating
a cultural heritage site in the Himalayan region (India) [23].

With regard to seismic risk, many applications of data management through a GIS
platform can be found in the literature, motivated by its versatility, and especially due to
the open-source way of sharing information (e.g., QGIS, WebGIS). The evaluation of seismic
vulnerability, urban resilience, and recovery strategies has been largely performed with
GIS, in order to to obtain the typological characterization of the surveyed buildings. As an
example, in [24], authors proposed a methodology to create the seismic map identifying the
building assessments and vulnerability. Moreover, a seismic risk evaluation method in a
district level is proposed by [25]. The model assesses the seismic vulnerability using GIS for
the definition of a vulnerability map. Furthermore, a geographical information system to
study the seismic vulnerability of Tehran to an earthquake by taking into account different
categories of information is proposed by [26] and a GIS-oriented procedure using geological
and geotechnical parameters and also the vulnerability of buildings and the effects of their
collapsing, is suggested by [27]. An interested reader can find similar experiments in [28],
where the authors defined a cross-mapping about vulnerability, damage scenarios and
buildings exposure based on a multi-level procedure for earthquake disaster prevention.
The same approach was adopted by Salazar and Ferreira which confirmed the multiple
components of seismic risk to be managed within the GIS tool [29]. GIS platform is also
suitable and useful for planning safety interventions and optimal routes for the accessibility
of a certain area; the main novelty in this case was the assignment of priorities [30]. In
the specific case of seismic analysis of buildings, there are several studies that address the
issue of seismic vulnerability on a number of parameters describing individual building
properties [31,32]. These studies are typically addressed by the structural engineering
sector that perform specific analyses of building stability. The results obtained from these
analyses are useful for mapping the seismic assessment of buildings in an urban settlement
and only in few cases are GIS tools used to draw thematic maps [33]. It is worthwhile
to mention the works carried out by Indirli et al. in which they propose the use of a GIS
approach supported by the laser scanning technology and in-field works (AeDES forms) as
a quick survey tool for pre/post-earthquake building inventories in the Italian region of
Abruzzo [34,35].

In comparison with these previous works, the present work aims at improving at
different levels:

1. The integration of additional geomatic techniques, such as the use of Structure from
Motion (SfM) approach for the creation of high-resolution 3D point clouds of the roofs
or the use of 360º images for the generation of quick virtual environments to support
the inspections;

2. The automatic extraction of geometrical parameters and attributes required for the
seismic risk assessment;

3. The use of GIS app to support the in situ data acquisition.

3. Materials and Methods

The aim of this work is to implement a GIS-based approach combining data from
geomatic surveys and other non-metric data for the building assessment of a historical
village after seismic events. In particular, point clouds are obtained from LIDAR (Light
Detection and Ranging) and photogrammetric surveys from UAVs (Unmanned Aerial
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Vehicles). They are georeferenced using GCPs (Ground Control Points), obtained from
GNSS (Global Navigation Satellite System) surveys, and combined. The laser scanner used
is equipped with a digital camera which provides 360° images. As outputs of the data
processing phase, the orthophoto is generated from the photogrammetric data, while DSM
(Digital Surface Model), DTM (Digital Terrain Model), and building contours are extracted
from the unified point cloud. Then, orthophotos, DSM, DTM, building contours, unified
point cloud, 360° images and AeDES sheets are together collected and included in an open
source GIS (QGIS). Finally, DSM, DTM and building contours are exploited to automate
the extraction of information related to geometric parameters concerning the buildings,
through Python scripts developed by the authors that interact with the data and objects
in QGIS.

This methodological pipeline, described above, is summarized in Figure 1.

Figure 1. Methodology workflow.

3.1. Case Study

The seismic crater defined following the recent earthquakes that hit Central Italy
(2016, 2017) covers a very large area including 140 municipalities in four Italian regions,
an area classified with a high seismic risk index (Figure 2). This area is characterized by
a predominantly hilly and mountainous context of great landscape value and the urban
realities present are mainly represented by small villages that are an example of tangible
heritage for their historical, architectural and traditional-popular richness. To see these
small towns lost and abandoned would be a great loss for the country, not only in terms of
tourism, but also in cultural and economic terms.

The village Gabbiano (Pieve Torina), located within the earthquake crater in the
Marche region (Figure 2), was identified as a case study for this research project on the
implementation of a multi-data GIS system for building assessment. The village stands on
a small hillside and consists in a small urban core, of about 21 building units in 12 clusters,
of two-three storey buildings. These buildings are made up by two-three leaf irregular
masonry covered by a timber structure with ceramic tiles.

After the seismic events the village has suffered significant damages on which part of
the structures have collapsed, showing in-plane and out-of-plane mechanisms (Figure 3)
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and is still an area at risk and, therefore, uninhabited, being necessary the use of remote
sensing strategies for generating the data required for the post-earthquake evaluation.

Figure 2. Map of the seismic crater in Central Italy after earthquakes 2016–2017 (source: report
curated by Ufficio Speciale Ricostruzione, January 2020) and identification of the site of interest
Gabbiano (Pieve Torina, Italy).

(a) (b)

(c) (d)

Figure 3. Damaged buildings in Gabbiano (Pieve Torina, Italy) on which is possible to observe
different typologies of collapse. (a) Example of collapses stone Façade, (b) example of roof collapsed
in stone buildings, (c) example of small urban area with cracks and (d) example of more recent
building with cracks.
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3.2. Technical Documentation

In Italy, inspection campaigns made by the Civil Protection are carried out with the
aid of the first level damage detection, emergency intervention and usability assessment
form for ordinary buildings in post-seismic emergencies (AeDES) [11,36]. The AeDES
sheets were used for the first time by the Marche region in its original version during
the 1997 Umbria-Marche earthquake. It was therefore used during the 2009 Abruzzo
earthquake and subsequently in the 2012 Emilia earthquake and therefore became not
only de facto but also an official reference tool for the expeditious survey of damages,
the definition of damage, the definition of emergency measures and the post-seismic
assessment of ordinary buildings [11].

This technical data sheet is used to provide an assessment of the building’s condition
state and is composed of 8 sections which are structured as follows:

1. Building identification. In this section the building is found by its geographical
coordinates and cadastral information. Moreover, a map of the structural aggregate is
required and the building identification;

2. Building description. Floor numbers, average floor height, average square meters
for each floor, approximate date of construction, type of use, etc., are required in
Section 2;

3. Structural typology. Description of vertical structural parts and horizontal struc-
tural parts;

4. Damage to structural elements and emergency measures already carried out. This
section must include the level of damage for each structural element and which kind
of measures has already been taken;

5. Damage to non-structural elements and emergency measures already carried out;
6. External hazard due to other constructions, networks, slopes and emergency measures

carried out;
7. Soil and foundation. In this section must be reported if there are slopes and damages

to foundation;
8. Assessment of accessibility. By assessing the risks, the technician should be able to

decide if the building is accessible or not.

As can be seen, all these data are entered through an on-site visual inspection by
qualified operators. They are mostly non-metric data, but some of this required information
can be documented with the support of geomatics tools and collected to create mappings
on information systems, such as GIS.

3.3. Data Acquisition and Processing

As it was stated in the previous section, part of the parameters used by the AeDES
methodology implies the necessity of having geometrical data (i.e., measurements) of the
buildings. In accordance with that, we propose an efficient strategy for virtualizing the
village by using the approaches suggested by the European preventive conservation project
HeritageCARE [37], namely:

1. Photogrammetry with UAV for the digitisation of building roofs;
2. Terrestrial laser scanning and spherical images for the digitisation of the vertical

envelop of the buildings.

All these methodologies are complemented by the use of GNSS points in order to
georeference the products obtained. For the GNSS survey, a “Zenith35 Pro TAG” from
GeoMax was used to acquire the coordinates of 10 points on roads and outdoor pavements,
to be used as Ground Control Points (GCP), in about 15 min (Figure 4). In RTK (Real Time
Kinematic) mode, the receiver has a horizontal accuracy of 8 mm ± 1 ppm (rms) and a
vertical accuracy of 15 mm ± 1 ppm (rms) [38]. All the points captured by the GNSS were
placed in the coordinate system WGS 84/UTM zone 33N (EPSG:32633).
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Figure 4. Ground control point example.

The aerial photogrammetry was carried out by using the “SR-SF6” VTOL UAV by
Skyrobotic [39] with a Sony “DSC-QX100” camera mounted as payload. This camera is
equipped with a 13.37 × 8.91 mm sensor with 20.2 MPix [40] and a lens with a focal length
setting of 10.4 mm. Using the Skydirector app [39], the flight of the UAV was planned to
execute 7 photogrammetric strips in nadiral direction at progressive altitudes following the
course of the terrain, which presented a difference in height of about 30 m, to maintain a
distance of at least 50 m from the objects to be surveyed, with 65% overlap and 60% side
lap on an area of about 30,000 m2 (Figure 5). A total of 108 aerial photos were captured,
covering the whole area of the survey and the 10 reference points. The average GSD of this
flight was about 1.54 cm and the time spent for this flight was about 14 min.
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Figure 5. SkyDirector app used for UAV flight plan.

The photos acquired during the aerial photogrammetric survey were processed by
using a SfM approach [41]. This approach allows us to obtain a 3D point cloud model and
an orthophoto of the surveyed area. The inner orientation of the camera was carried out by
using a self-calibration approach, considering a Fraser camera model (Table 1) [42]. The
external orientation of the cameras was performed by using the self-calibration approach,
as well as a bundle adjustment. During this stage the coordinates of the GNSS points were
used as Ground Control Points (GCP). As a result, a photogrammetric model with an RMS
error of 4.82 cm was obtained (Table 2). Then, a Semi-global Matching stage was performed
with the aim of obtaining the dense point cloud [43]. This point cloud was made up by
75,027,126 points, allowing to obtain a true orthophoto with a GSD of 1.54 cm (Figure 6).
The total processing time of this phase was about 3 h and 30 min.

Table 1. Inner parameters of the camera before and after the self-calibration.

Parameter Initial Value Calibrated Value

Focal length (mm) 10.40 Data
Format size (height × width) (mm) 13.37 × 8.91 13.37 × 8.91

Principal point (X/Y) (px) 0/0 −17.61/20.59
K1 value (mm−2) 0 6.3 × 10−3

K2 value (mm−4) 0 −3.3 × 10−3

P1 value (mm−1) 0 −8.2 × 10−4

P2 value (mm−1) 0 8.4 × 10−4
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Table 2. GCP residual errors (X—Easting, Y—Northing, Z—Altitude, Image—Reprojection Error).

Point X Error (cm) Y Error (cm) Z Error (cm) Total (cm) Image (pix)

100 −0.81 −0.46 1.99 2.19 0.158
101 2.41 −3.56 4.82 6.46 0.258
102 1.74 −6.22 0.27 6.47 0.463
103 0.86 1.61 0.83 2.01 0.309
104 1.16 −1.05 −1.47 2.15 0.191
106 −0.77 1.79 −0.72 2.07 0.200
107 −1.37 1.88 −1.41 2.72 0.164
109 −2.57 1.66 −2.25 3.80 0.418
110 −0.20 0.29 5.58 5.59 0.240
111 −0.37 3.99 −7.89 8.85 0.198

Total 1.44 2.84 3.62 4.82 0.284

Figure 6. Orthophoto of the surveyed area with GCP locations, Z error represented by ellipse colour
and X, Y errors represented by the ellipse shape.

On the other hand, the terrestrial digitisation of the buildings was performed by using
the light-weight laser scanner Faro Focuss 70. This laser scanner is based on the phase shift
physical principle with a measurement range from 0.6 to 70 m, a capture rate from 122,000
to 976,000 points per second and a nominal accuracy of 1 mm at 25 m in normal conditions
of illumination and reflectivity. A total of 151 scans along the streets of the village, for a
total acquisition campaign of about 3 days in an area of about 10,000 m2, were required in
order to obtain a full 3D point cloud of the site (Figure 7).
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Figure 7. 360° images linked in QGIS.

All the scan stations were registered in a local coordinate system by using the Iterative
Closest Point (ICP) algorithm [44], obtaining a 3D point cloud made up by 673,355,488 points.
(Figure 8). In parallel to each scan, it was captured a spherical image by using the integrated
camera of the laser scanner. This image allows us to colourise the point cloud, as well as
to create a simple virtual environment to support the on-site inspection (Figure 7). The
3D point cloud obtained by the laser scanner was georeferenced with the GNSS points by
using a 6 parameter Helmert transformation, which resulted in an RMS of 6.82 cm (Table 3).
The whole processing of the LIDAR scans required approximately one day.

Figure 8. Point cloud obtained from the terrestrial LIDAR survey (top view).
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Table 3. Residual error of the reference points in the terrestrial LIDAR survey.

Point Residual Error (cm)

101 9.45
102 6.25
103 4.70
104 9.08
106 3.81
107 2.75
109 9.85
110 4.55

The point cloud from the aerial photogrammetric survey was then exported and
combined with the point cloud from the terrestrial LIDAR survey, resulting in a unified
point cloud of 748,362,614 points (Figure 9). Using the Cloud Compare software, from
the unified point cloud, the Digital Terrain Model (DTM) and the Digital Surface Model
(DSM) in raster format were generated. These data will be used for the computation of the
buildings’ parameters explained in Section 3.4.

(a) (b)

Figure 9. Unified point cloud: (a) Aerial view and (b) Street view.

3.4. Data Integration and Management

Once the survey and processing of the point cloud and spherical images is complete,
it becomes clear which information can be extracted from the data. Since the aim of this
work is to develop a pipeline for helping an expedited seismic evaluation at urban scale,
only the exterior of the village was surveyed. Additionally, many of the buildings were
severely damaged by the last seismic events in the area and it was not possible to access
safely to their interior.

The idea is to satisfy the demand for a complete model by collecting and linking all
geometric and non-geometric data in a geo-database. In this case, the open-source software
Quantum GIS (QGIS) was used.

The data collected into QGIS were:

• Orthophoto as a raster layer;
• DSM (Digital Surface Model) as a raster layer;
• DTM (Digital Terrain Model) as a raster layer;
• Building contours as a vectorial polygon layers;
• AeDES sheets as a table with no geometry data;
• Spherical images from LiDAR scans as a vectorial points layer;
• Unified point cloud (currently implemented only for visualization purposes).
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This software allowed us to develop Python scripts to both improve the user experience
and allow the automatic extraction of some parameters concerning the characteristics of
the buildings.

Some of these layers are related to each other simply by spatial coordinates and
reference systems (raster and vectorial layers with geometry data), while other data are
linked via table attributes.

For instance, the AeDES datasheets are related to the buildings with both tables
containing the fields “Sheets” and “Parcels”, with the possibility that a single AeDES sheet
may relate to multiple parcels and that multiple AeDES sheets may have been produced
for a parcel during the life of the building. Therefore, a function has been implemented
using a script, which allows to filter the AeDES table by selecting a building in the map or
in the building’s table. This filter will show the AeDES sheets with the same sheet and at
least one of the parcels of the selected building. Then, to open the file of each AeDES sheet
(usually in PDF format) from the table, a simple QGIS action was implemented.

Similarly, for 360° images has been implemented a python script to allow to open them
using an external viewer, by simply clicking on them on the map or in their table. In this
case the viewer used is the open-source software FSP viewer [45].

The different information sources captured during the digitisation campaign allow
us to automatise the computation of four parameters that are often used, together with
other input parameters, for performing expedient seismic vulnerability assessments. This
represents only a starting point, future work may attempt to automate the calculation of
the other necessary parameters.

A crucial aspect is that the developed scripts work in any kind of urban scenario, obvi-
ously assuming that the validity of these parameters for the seismic assessment depends
on the constructive typology of the buildings. These parameters are:

1. Number of floors of each building;
2. Shape regularity in plan;
3. Planimetric position of the building in relation to the cluster;
4. Presence of adjacent buildings with different heights in the cluster, in relation to the

examined building.

3.4.1. Number of Floors

The first of the parameters extracted is the number of floors in each building. Us-
ing the raster layers (orthophoto, DTM, and DSM), it is simply estimated through the
following steps.

1. Extraction of the median of the DSM values and the minimum of the DTM values,
falling within the contours of each building. This can be done thanks to the QGIS
“zonal statistics” algorithm, which, for each zone of a polygonal vector layer, can
perform different statistics about the values of the pixels of a raster layer lying in
that zone.

2. Calculation of the the floor number as the difference between DSM median and DTM
minimum, divided by the expected floor height and approximated to the nearest integer.

3.4.2. Shape Regularity in Plan

The second parameter is the shape regularity in plan. The script checks that two of the
conditions prescribed by NTC 2018 [10] for regularity in plan (Paragraph 7.2.1) are checked
(Figure 10).

1. The contour of the building is convex or the areas between the contour and the
circumscribed convex line are less than 5% of the contour area.

2. The ratio of the sides of the rectangle circumscribed around the contour of the building
is <4.
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(a) (b)

Figure 10. Shape regularity in plan conditions: (a) Convex hull in blue. Red area <5% of green area.
(b) Minimum circumscribed rectangle in blue. Ratio of the rectangle sides <4.

To verify these conditions, the script uses only the contours of the buildings (vectorial
polygon layer) and, exploiting the QGIS “convex hull” and “oriented minimum bounding
box” algorithms, creates the polygons described by the two conditions, respectively, and
checks them.

3.4.3. Planimetric Position into the Cluster

The two remaining parameters concern the clustered buildings only. One is the
planimetric position of the building in relation to the cluster (“Centre”, “Angle”, or “End”,
Figure 11). Using only the building contour layer, it is computed for each building with the
following steps.

1. Identification of adjacent buildings exploiting the selection rule “extract by location”.
This rule creates a new vector layer that only contains features from the first vectorial
input layer, that matches the selected relative position conditions with regard to the
features of the second vectorial input layer. It is worth to mention that if there are
not buildings adjacent to the examined one, the script move on to the next building
without performing further processing;

2. Computation of the centroid of the examined building using the QGIS algorithm with
the same name. The centroid is the barycentre of the polygon;

3. Extraction of the boundaries of the examined building and the adjacent ones, using the
QGIS “boundary” algorithm, which transform the polygon layers in polylines layer;

4. Identification of the common boundaries between the examined building and the
adjacent ones, exploiting the QGIS “intersection” algorithms which, in the case of two
layers of polylines as input, returns only the overlapping polylines as output;

5. Separation of the contact segments through the QGIS algorithm “explode lines”,
which allow to divide the polylines of the common boundaries into single lines;

6. Examination of each contact segment to establish its contact direction and its validity.
The contact direction is perpendicular to the segment, towards the examined building.
The validity is based on the position of the centroid of the examined building in
relation to the contact segment. The contact segment is valid if the centroid lies on
the side facing the examined building and is between the perpendicular lines passing
through the start and end of the segment;

7. Recovery of pairs of segments with similar contact directions (within a certain toler-
ance) for which the centroid was on the side facing the examined building but not
between the mentioned perpendicular lines. The pair of segments is recovered if the
centroid was on different sides with respect to the lines perpendicular to the two
segments. In this case the average of the two contact directions is considered valid;

8. Computation of the maximum angle difference between all possible pairs of valid
contact directions (≤180°);

9. Determination of the plan position of the building in the cluster based on the calculated
maximum angle difference. “Centre” if angle > (180°—tolerance), “Angle” if (180°—
tolerance) ≥ angle > (90°—tolerance) or “End” if (90°—tolerance) ≥ angle.
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(a) (b) (c)

Figure 11. Examples of planimetric positions into the cluster: (a) “Centre”, (b) “Angle”, (c) “End”.
Examined building in green, adjacent buildings in cyan, centroid as a red point, contact segments as
red lines.

3.4.4. Presence of Adjacent Buildings with Different Heights

The last parameter determines whether there are buildings with a different height ad-
jacent to the one under examination, considering a certain tolerance (Figure 12). The script
uses the building contour layer and the DSM layer to determine it with the following steps.

1. Same steps 1, 3, 4, and 5 (skipping step 2) as for the previous parameter in Section 3.4.3,
to extract the contact segments with the adjacent buildings;

2. Creation of two buffers for each segment, one on the side of the examined building
and one on the side of the adjacent building, exploiting the QGIS algorithm “single
sided buffer”, which extrude the lines of the input layer for a selected distance towards
the chosen side, and return a polygonal vectorial layer;

3. Calculation of the two medians of the DSM values falling into the two buffers, exploit-
ing the same “zonal statistics” algorithm described in the step 1 of Section 3.4.1;

4. If the difference between the two medians is too great, considering a certain tol-
erance, for at least one contact segment, it means that there are buildings with a
different height.

Figure 12. Determination of the presence of adjacent buildings with different heights: examined
building as a green line, adjacent buildings as blue lines, contact segments as red lines, buffer towards
the examined building as green zones and buffer towards the adjacent buildings as blue zones.

4. Results

This section will present the outcomes of this work. In particular, in Section 4.1
the integration within the GIS of all the data previously described will be illustrated,
while Section 4.2 will present the results of the geometric parameters of the buildings
that have been automatically extracted using the developed Python script, that is openly
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available in Zenodo at https://doi.org/10.5281/zenodo.6398968 and in GitHub at https:
//github.com/FabioPiccinini/pyvulnerability (last access 25 April 2022.)

4.1. Integration of Information

As it was stated in Section 3.4, the QGIS framework developed by this work should be
able to integrate different type of information (i.e., raster, vectorial, 3D point clouds, and
360º images) (Figures 13 and 14).

(a) (b)

Figure 13. Data in QGIS: (a) Polygons of buildings and points of 360° images on the orthophoto
(b) Point cloud visualisation in a 3D map.

(a) (b)

Figure 14. Data in QGIS: (a) DSM and (b) DTM, with a spectral false colour scale.

The raster information was directly integrated into the platform. The first information
source was the orthophoto created by the aerial photogrammetry. Then, 360º images were
introduced into the QGIS project as a point vectorial layer, stored in a shapefile, visible
above the aerial orthophoto. This shapefile has direct links to each panorama. Thanks to
this, if the user wants to virtually consult one building it can be done by just clicking on
the point, the project will run FSP viewer to open the associated panorama. This type of
information allows to evaluate the type of collapse mechanism of the building, as well
as the different constructive solution adopted during its construction. Figure 3a shows

https://doi.org/10.5281/zenodo.6398968
https://github.com/FabioPiccinini/pyvulnerability
https://github.com/FabioPiccinini/pyvulnerability
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an example of collapsed building made up by a two-leaf masonry wall with a timber
structure. At the first floor the building shows some iron ties that prevent the out-of-plane
deformation of part of the structure. However, the upper part of the structure has collapse
due to the formation of an out-of-plane mechanism. Concerning the 3D point cloud, in the
current version of QGIS (3.22) only its visualisation in both 2D and 3D map is supported
(Figure 13b).

Additionally to this geometrical information, the geospatial database links each build-
ing with its associated AeDES sheet (Figure 15). The table displays the files path and,
thanks to a simple QGIS action, it is possible to open them with the O.S. default application.

Figure 15. Attribute table of the AeDES sheets.

The office work was complemented by the app Qfield [46], allowing to edit and
manage the different shapefiles of the project by using an Android smartphone or tablet
(Figure 16). This application could be used in field with the aim of improving the work
carried out by the technicians.

(a) (b) (c) (d)

Figure 16. Screenshots of the Qfield application with the data generated inside the QGIS project:
(a) General view of the cadastral layer, the orthophoto and the point layer that represents the different
scan stations; (b) View of the project tree; (c) Appearance of the app when the user consult the data
contained in a shapefile; and (d) Appearance of the app when the user edits a field.
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4.2. Automatic Extraction of Parameters

Once all the geometrical data were uploaded to the QGIS platform it was possible to
automatically calculate the four geometrical parameters defined in Section 3.4. All these
parameters are stored within the geospatial database, as is shown in Figure 17.

Figure 17. Attribute table of the buildings, showing the calculated parameters.

As mentioned in Section 3.4.1, the process to extract the first parameter also automati-
cally computes the median value of the DSM and the minimum value of the DTM for each
building and store them in the attribute table, as can be seen in Figure 17. The output of the
floor parameter calculation is shown by the thematic map in Figure 18a.
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(a) (b)

(c) (d)

Figure 18. Thematic maps of the four extracted parameters of the buildings, shown in QGIS: (a)
Number of floors (b) Shape regularity in plan (c) Planimetric location in the cluster (d) Presence of
adjacent buildings with different height.

The results of the second parameter, concerning the shape regularity in plan of the
building, are displayed by the thematic map in Figure 18b. There are 7 buildings out of
22 with no regularity in shape. These buildings are coloured in red, while all the buildings
which fulfils the geometrical conditions for shape regularity from the Italian regulation
NTC 2018 [10] are coloured in green.



ISPRS Int. J. Geo-Inf. 2022, 11, 291 20 of 23

Another parameter extracted, useful for studying the vulnerability of a building is
the planimetric position of the building related to its adjacent buildings. The classifica-
tion shows four different scenarios, classified as “centre”, “angle”, “end”, and “isolated”
building. The algorithm calculates how the buildings must be classified so in the thematic
map in Figure 18c they are visible, respectively, in green, yellow, red, and cyan colour.
The general overview from the top shows that there is not a specific criterion used for the
building structures of village Gabbiano. Thanks to this automation it can be highlighted
how buildings are classified. Apart from the five “isolated” buildings, only one is classified
as “centre” and one is classified as “angle”. All the others are considered as “end” in their
respective cluster.

The last parameter automatically calculated concerned the adjacent building height
difference. Two pairs of buildings have a considerable difference in height. They are all
displayed with the letter Y (yes) in the attribute table and in red colour in the dedicated
thematic map in Figure 18d. All the 13 buildings in green may be considered with almost
no height difference. The five isolated buildings, in cyan, cannot be considered in this
calculation as there are no adjacent buildings to be compared with.

5. Discussion and Conclusions

This work aims at improving the methodology presented by Indirli et al. [34,35] for
the integration of the AeDES inspection forms (used for quick post-seismic evaluations)
into a GIS framework. It will help the management of historic centres after an earthquake,
since the AeDES datasheets are produced only after the buildings have been damaged. This
approach is suitable for historic villages affected by earthquakes and which are threatened
by new earthquakes in the future as they are located in a high-risk territory. The collected
information are suitable for prevention of such villages thanks to the fact that such data
can help for example for the vulnerability index determination. These improvements
were the following ones: (i) the use of additional geomatic tools; (ii) the automatization
of some geometrical parameters; and (iii) the use of the Qfield app for improving the
in-field work of the technicians. Regarding the first one, we propose the use of aerial
photogrammetry (SfM and UAV) for the generation of aerial orthophotos, as well as for
capturing the information of the roofs. Additionally, we have introduced the use of 360º
images as a quick virtual resource for evaluating the collapse mechanism and construction
system of the buildings. This virtual resource is integrated directly into the QGIS platform
allowing to load directly the 360º image by means of the FSP viewer. The information
generated by the aerial photogrammetry, namely 3D point cloud, is integrated with a TLS
point cloud allowing to obtain a complete digitisation of the village. This digitisation
required a total of 4 days, 3 h, and 34 min. Concerning the second improvement, we
have developed several Python scripts that calculates in a automatic way four different
parameters, enhancing the performance of the traditional AeDES approach. Finally, we
propose the use of the Qfield app which allow to modify and manage all the information in
situ. This aspect is considered critical since the AeDES approach is mainly based on visual
inspection in field. The aspect we have mainly focused on is related to seismic vulnerability
indexes, but the explained approach can be extended to other architectural or engineering
purposes. The work described can be applied also for other parameters in function of the
requirements, for instance focusing on ground parameters or system installations. As a
concluding remark, it is worthwhile to note that the proposed methodology fulfils with the
European SENDAI framework for disaster risk reduction [47] in at least two of four basic
principles: (i) Understanding disaster risk and (iv) enhancing disaster preparedness for
effective response, and to “Build Back Better” in recovery, rehabilitation and reconstruction.
This is not trivial, and the introduction of Geomatic integrated survey as a current practice
for increasing the knowledge of villages represents a fundamental step forwards. In this
sense, we propose the use of panoramic images, terrestrial laser scanning, and aerial
photogrammetry by means of the SfM approach. These combination of strategy proves
to be the best combination in terms of efficiency/data acquired. Future works will be
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focused on different topics: (i) the development of new algorithms for the automatic
extraction of additional geometrical parameters; (ii) the use of the geometrical data for
generating simplified BIM models; and (iii) the development of a Spatial Data Infrastructure.
Regarding the first and second topic, we have planned to improve the automatic extraction
of geometrical parameters by exploiting the 3D point cloud obtained by the TLS. In this
sense, it will be used the RANSAC Shape Detector approach [48] for extracting the different
vertical walls and roof planes. Then, this segmentation will be compared with the original
planes, allowing to evaluate the presence of out-of-plane mechanism, as well as deflections
of the structure, as well as to serve as the base for 3D modelling (BIM). This question will
allow to combine the GIS and BIM approaches in a unique framework. With respect to
the Spatial Data Infrastructure we have planned to scale up the approach developed in
this work to a manage model on internet. This model will be a Spatial Data Infrastructure
within the INSPIRE framework. In this tool we have planned to maintain the main data
sources (AeDES sheets, 360º images, orthophotos, DSM) in order to facilitate the work of
the technicians without using 3D models.
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