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Abstract: Digital soil mapping has emerged as a new method to describe the spatial distribution of 
soils economically and efficiently. In this study, a lightweight soil organic matter (SOM) mapping 
method based on a deep residual network, which we call LSM-ResNet, is proposed to make accurate 
predictions with background covariates. ResNet not only integrates spatial background information 
around the observed environmental covariates, but also reduces problems such as information loss, 
which undermines the integrity of information and reduces prediction uncertainty. To train the 
model, rectified linear units, mean squared error, and adaptive momentum estimation were used 
as the activation function, loss/cost function, and optimizer, respectively. The method was tested 
with Landsat5, the meteorological data from WorldClim, and the 1602 sampling points set from 
Xinxiang, China. The performance of the proposed LSM-ResNet was compared to a traditional ma-
chine learning algorithm, the random forest (RF) algorithm, and a training set (80%) and a test set 
(20%) were created to test both models. The results showed that the LSM-ResNet (RMSE = 6.40, R2 
= 0.51) model outperformed the RF model in both the roots mean square error (RMSE) and coeffi-
cient of determination (R2), and the training accuracy was significantly improved compared to RF 
(RMSE = 6.81, R2 = 0.46). The trained LSM-ResNet model was used for SOM prediction in Xinxiang, 
a district of plain terrain in China. The prediction maps can be deemed an accurate reflection of the 
spatial variability of the SOM distribution. 

Keywords: digital soil mapping (DSM); soil organic matter (SOM); deep learning (DL); resnet;  
remote sensing 
 

1. Introduction 
Soil is the living skin of the earth, and it is the vehicle that sustains human activity 

and the growth of plants and animals [1]. The accurate understanding and rational inter-
pretation of soil properties and spatial distribution patterns are the basis for the sustaina-
ble development of soil resources. Precise mapping of soil properties is in urgent demand 
in fields such as precision agriculture [2,3], land use planning [4], and environment pro-
tection [5]. Digital soil mapping (DSM) is an emerging, efficient mapping method widely 
used to predict soil classes and properties [6,7]. 

DSM reflects the patterns and characteristics of soil formation and development pro-
cesses, using spatial analysis and mathematical methods as a technical means of predict-
ing soil properties and mapping methods. In most cases, soil sample points are obtained 
using field collection, which is the main source of information on the spatial autocorrela-
tion of soil properties and knowledge of the relationship between soil and environmental 
variables [1]. The current common method of soil mapping based on the collection of sam-
ple points utilizes the relationship between soil properties and environmental covariates 
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for quantitative mapping. The formalization of the DSM methodology was completed by 
the publication of McBratney et al. [8]. Following Dokuchaev [9] and Jenny [10], they mod-
eled scorpan as the empirical quantitative relationship between a soil attribute and its spa-
tially implied forming factors [11]. The relationship between soil attribute data and geo-
graphic environmental data where the soil undergoes related or synergistic changes is 
often used to predict the spatial distribution of soil. Such methods draw on linear regres-
sion analysis or nonlinear regression analysis algorithms, which include artificial neural 
networks (ANN) [12–14], augmented regression tree models [15], and SVM [13]. Among 
these, random forest (RF) has become one of the most popular techniques in DSM predic-
tion [16–18]. 

Researchers have found that, in predicting soil properties with the help of the scorpan 
paradigm, soil properties are not only related to the variations in environmental indices 
between the sampling points and the set of covariates represented by the points, but also 
the spatial information implied therein needs to be considered. Scientists have conducted 
experiments with methods that simultaneously consider environmental variables and 
spatial information at sampling points. A co-kriging interpolation method that builds on 
the theory of collaborative regionalized variables (spatial correlation) and uses the syner-
gistic correlation between the target and environmental variables to create a cross-covar-
iance function for local estimation of the target variables has been proposed [19]. Others 
uses regression kriging, where the residual terms of the regression kriging model are 
kriged to regionalized variables by regressing soil attributes on environmental variables, 
and finally added to the predicted values of the regression model to produce the final 
spatial distribution of soil attributes [20]. Geographically weighted regressions are local 
linear regressions that model nonparametric local spatial regressions based on the dis-
tance between sample points from the regression centroid and determine the weights of 
the model parameter estimates. The regression coefficients of the sample points in the 
model vary with spatial location, thus reflecting the spatial variation in the contribution 
of sample points and environmental variables to the regression equation [21–23]. How-
ever, these methods have certain requirements over the size and the distribution of the 
data, and modelling nonlinear relationships between soil properties or classes and numer-
ous interrelated covariates is not concise, and therefore comes with additional challenges 
(e.g., too many parameters to be estimated) [24]. Challenges include if the samples do not 
meet the assumption of second-order smoothness, the model is computationally demand-
ing, or requires a cumbersome data pre-processing process, which is often difficult to 
achieve in practical applications [25–27]. 

With the rapid development of big data, deep learning (DL) has proven to be a new 
tool of analysis in many fields. Unlike other physical models that rely heavily on prior 
knowledge of parameters, DL methods utilize feature representations derived from data 
alone [28]. These methods better represent nonlinear relationships, especially complex 
nonlinear relationships between different environmental attributes, through a large num-
ber of process features generated during model training, while having higher prediction 
accuracy compared to geostatistics and other traditional machine learning (ML) methods 
[29,30]. 

Convolutional neural networks (CNNs) [31] in deep learning have gained much at-
tention, specifically as a multilayer interconnected neural network that has yielded good 
results in different computer vision domains. The algorithm discovers a distributed fea-
ture representation of the data by using a sliding window approach in combination with 
the underlying features to form a more abstract high-level feature representation. It uses 
the sliding window approach to extract local and spatially distributed features of envi-
ronmental covariates from spatial sources and coordinated soil observations to make spa-
tial estimates of soil properties [7]. Thus, CNNs resolve a rather major issue of machine 
learning (ML) methods because the networks use the spatial structure of the input, rather 
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than just the covariate information of the sampled points, making better use of back-
ground covariate information, while the algorithm adds a large number of distributional 
features. 

CNNs are mostly used for classification problems in computer vision and remote 
sensing studies, e.g., with the Land Use/Land Cover Area Framework Survey (LUCAS) 
dataset by Veres et al. [32], CNNs were used for soil spectral classification. Volpi et al. [33] 
used CNNs for land cover classification using high-resolution remote sensing imagery. 
While for spatial estimation of soil properties, the potential of deep learning in multi-scale 
terrain feature construction and its relative effectiveness in digital soil mapping was first 
outlined in the work of Behrens et al. [34]. Padarian et al. and Wadoux et al. proposed 
using CNNs to predict the content of SOC [11,35]. They report that CNNs have an ad-
vantage over standard ML algorithms in terms of prediction error. Tsakiridis et al. devel-
oped a new framework using a local multichannel 1D CNN to continuously estimate dif-
ferent soil properties (e.g., SOC) [36]. The CNNs architecture consistently outperformed 
RF models in predicting the soil particle size fraction (PSF) [37]. 

ResNet, as a branch architecture of CNNs, has received more attention in the past 
few years. The expressive power of deep neural networks and the ability to extract fea-
tures increase with the depth of the network, but the model accuracy decreases rapidly 
when the number of network layers increases to a certain number [38,39]. To solve the 
problem of network degradation due to the increased depth, He et al. proposed the Res-
Net deep learning framework [40], which introduces the concept of constant mapping in 
the network and redefines each layer as a residual learning function due to input through 
the reference layer instead of learning the unreferenced function, thus simplifying the 
training of the network, increasing the number of information transfer paths, and greatly 
improving the system’s accuracy. Due to the good performance of ResNet, it has been 
applied to many fields of computer science, such as image recognition [41] and semantic 
segmentation [42]. Song et al. [43] designed a residual network for sea ice classification, 
called SI-ResNet, which achieved good classification accuracy. Zhang et al. [44] combined 
ResNet-V2 to design a small ResNet for remote sensing classification recognition, and the 
accuracy outperformed the classical classifier. ResNet is one of the most effective deep 
learning network frameworks for image detection and classification to date. 

Based on the above analysis, deep learning methods are proposed to be used for 
DSM. This study proposes an innovative lightweight deep learning architecture (LSM-
ResNet) based on ResNet, which implements an end-to-end process for SOM regression 
prediction using multiple sources of data. To train the network, we constructed a soil co-
variate dataset based on RGB images based on image fusion. The effect of pre-frame size 
on model error was analyzed. We selected SOM as a predicted soil attribute, which is an 
important indicator of soil quality index, soil fertility, and soil health.  A detailed and 
high-quality SOM map can provide important basic data for ecosystem modeling and cli-
mate policy development [5,45–48]. Accurate information on spatial changes in SOM is 
useful for land use planning and other activities related to forestry, agriculture, environ-
mental protection, and land degradation management [5]. The performance of the LSM-
ResNet proposed in this study was compared with RF, as the RF algorithm is often used 
for DSM, and therefore is a logical comparison. 

2. Methodology 
2.1. Study Area 

Xinxiang is located at the southwest of the North China Plain, approximately be-
tween 34°55′ N–35°50′ N and 113°30′ E–115°30′ E (Figure 1b), with an area of about 6434 
km2 of plain, accounting for 77.36% of the total area of the region. It is dominated by a 
warm temperate continental monsoon climate with a mean annual temperature of 13–15 
°C and an average annual precipitation of 573.4 mm. The Feng-huang Mountain area be-
longs to the northern hilly area. From NW to SE, the landforms transition from mountains 
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to hills and then to plains. It is a transition zone between the alluvial plain of the Yellow 
River and the pre-mountain alluvial plain. The Haihe River and the Yellow River are the 
two main water systems. According to the Chinese Soil Taxonomy [49], there is a small 
amount of yellow sandy soil in the center, and brown soil and cinnamon soil are the two 
main soil types [50,51]. 

 
Figure 1. The geographic location of Henan in China (a), the study area in Henan (b), and the spatial 
distribution of the soil samples overlaid on a true color composite of Landsat 8 images (c). 

2.2. Soil Samples 
The study utilized soil samples from the 2006 to 2008 cropland productivity evalua-

tion project. The location, sampling depth, parent material, soil type, land use pattern, and 
other relevant information for each sample were recorded in detail. 

All soil samples were air-dried and passed through a 0.25 mm sieve and then ana-
lyzed for SOM using the potassium dichromate volumetric method [52]. A total of 1602 
soil samples were divided into three separate datasets, of which 80% were used to train 
and validate the model, and the rest were used for testing purposes. 

2.3. Dataset and Pre-Processing 
SOM content is controlled by multiple environmental and ecological factors and their 

interactions [5]. Based on a review of the literature [5,15,22,45,46,53], a set of 13 covariates 
representing climate, topography, and remote sensing were selected as potential predictor 
variables to predict SOM (Table 1). These variables were resampled to a spatial resolution 
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of 30 m × 30 m, consistent with that of Landsat5 data. For each variable, its values were 
extracted in the 30 m × 30 m pixels where each soil sample was located. Four examples of 
selectable covariate data are shown in Figure 2. 

  
(a) (b) 

  
(c) (d) 

Figure 2. Four examples of selectable covariate data, including NDVI (a), band4 (b), MAP (c), and 
DEM(d). NDVI: normalized vegetation index; MAP: mean annual precipitation; band4: Landsat5 
Band4 (NIR); DEM: digital elevation model. 

In general, climatic factors determine the general pattern of SOM content [5,54]. Mean 
annual precipitation (MAP) is one of the most widely used climate factors in SOM predic-
tions. To obtain the MAP, ArcGIS was used to derive the MAP based on information pro-
vided by WorldClim 2.1 [55], which were spatially resolved to 1 km and resampled to 30 
m using the cubic interpolation method. Four topographic factors were derived from the 
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) at a resolution 
of 30 m (https://gdex.cr.usgs.gov/gdex/ (accessed on 14 August 2021)), including eleva-
tion, slope, aspect (aspect is a circular measure that cannot be used directly in modelling, 
and therefore was converted to northness and eastness), and the topographic wetness in-
dex (TWI) [56]. 

For the RS data, we used five spectral bands from Landsat5 
(https://gdex.cr.usgs.gov/gdex/ (accessed on 17 August 2021)), and three RS indices [2] as 
potential predictors. The five RS-based spectral bands and RS data were derived by filter-
ing 38 Landsat5 images of Xinxiang City taken from June to August of each year (annual 
sampling time) from 2006 to 2008, and the average value was calculated. 
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Pre-processing of the RS data (e.g., radiometric correction and atmospheric correc-
tion) was done with ENVI 5.3. In our study, we used Landsat5 images to extract reflec-
tance values of five bands: b1 (Band1, Blue), b2 (Band2, Green), b3 (Band3, Red), b4 (Band 
4, NIR), and b5 (Band 5, SWIR). Remote sensing indices were also calculated using Land-
sat5 reflectance products: normalized difference vegetation index (NDVI) [57], enhanced 
vegetation index (EVI) [58], and difference vegetation index (DVI) [59]. The average of the 
three remotely sensed indices was calculated as a predictor. 

Table 1. The list of 13 selectable covariates for SOM mapping. 

Explanatory Variable Acronym Resolution Formula Reference 
* Mean annual precipitation ** MAP 1000 m − [55] 

Elevation ** 
Slope ** 

DEM 30 m − SRTM 
slope 30 m − Calculated from DEM 

Aspect ** aspect 30 m − Calculated from DEM 

Topographic wetness index ** TWI 30 m ln ( 𝛼𝑡𝑎𝑛𝛽) [56] 

Landsat5 Band1 (Blue) b1 30 m − Calculated from Landsat5 
Landsat5 Band 2 (Green) b2 30 m − Calculated from Landsat5 
Landsat5 Band 3 (Red) b3 30 m − Calculated from Landsat5 

* Landsat5 Band 4 (NIR) ** b4 30 m − Calculated from Landsat5 
Landsat5 Band 5 (SWIR) ** b5 30 m − Calculated from Landsat5 

* Normalized difference vegetation 
index ** 

NDVI 30 m 
𝑏ଶ − 𝑏ଵ𝑏ଶ + 𝑏ଵ [57] 

Mean enhanced vegetation index EVI 30 m 2.5 ∗ 𝑏ଶ − 𝑏ଵ𝑏ଶ + 6𝑏ଵ − 7.5𝑏ଷ + 1 [58] 

Mean difference vegetation index DVI 30 m 𝑏ଶ − 𝑏ଵ [59] 
* Selection of covariates in LSM-ResNet; ** Selection of covariates in RF; the covariates of RS were 
collected in 2006–2008. 

Stepwise regression and correlation coefficient were used to select the most im-
portant environmental covariables to model SOM content. Finally, Landsat5 b4 (band 4, 
NIR), MAP, and NDVI consisting of RGB three-channel images (which is the number of 
image channels commonly used in computer vision) were selected to predict the SOM 
content of the study area. This is because these covariates have distinct feature expressions 
and a high correlation SOM. As image datasets, the selected covariates were normalized 
to a 30 m grid size by aggregation (mean resampling) or decomposition (bilinear 
resampling). 

To allow for a fairer comparison between RF and LSM-ResNet, we used mean filters 
with different neighborhood sizes (radii of 1, 3, 5, 7, 9, 15, 21, 29, and 50 pixels) for effective 
multi-scale covariate information extraction [60]. This approach acts on night covariates: 
aspect (aspect to northness and eastness), MAP, slope, elevation, Landsat b4 (NIR), TWI, 
Landsat5 Band 5 (SWIR), and normalized vegetation index (NDVI), generating a total of 
(9 × 9) 81 new covariates as independent variables (using a bilinear approach to extract 
covariate data) to build the RF model. The mean filter is the most common method used 
in DSM studies for DEM multiscale mapping, and to filter the new covariates, the ANOVA 
method was used [18,60,61]. Figure 3 represents the methodology of the present study. 
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Figure 3. Flowchart of methodology for digital soil mapping in this study. SOM: soil organic matter 
content log (g/kg) at the topsoil. 

3. Deep Learning 
Deep learning is a research method derived from artificial neural networks that can 

learn the representation of data through powerful multi-layer architectures. The residual 
network (ResNet) has achieved good results in many areas of imaging. Examples include 
face recognition, target detection, and semantic segmentation. ResNet and some related 
methods used in the model are introduced in this section. 
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3.1. ResNet 
In this article, the context information we use is to represent the model’s covariates 

as a square format image around the soil measurements. Covariates may describe the dis-
tribution of SOM through a particular shape of the terrain or temperature and precipita-
tion characteristics. With several alternative settings, the goal is to extract the most rele-
vant features from the entire auxiliary dataset. In this case, CNNs are better to adapt than 
ANNs. ResNet is based on the deep residual network proposed by He et al. of Microsoft 
Research Asia in 2015 [40]. The core of ResNet is a residual block structure, as shown in 
Figure 4. It uses a shortcut connection called the cross-layer connection between input X 
and F(x) obtained through stacked weight layers, outputing F(x) =  H(x) + x .  F(x) = H(x) − x as the residual. The formula is as follows: F = 𝑊ଶ𝜎(𝑊ଵx) (1) 

where F is the residual function, 𝜎 is the rectified linear units (ReLU) nonlinear activation 
function, and 𝑊ଵ and 𝑊ଶ are the weight layer. Assuming that Y is the output earth 4D 
feature matrix of the residual block, when the residual is connected with equal-dimen-
sional mapping, as shown in Equation (2), X performs the convolution operation and the 
residual F(x, 𝑊௜) plus x gives Y. Y = F(x, 𝑊௜) + x  (2)

If the dimensions of the two are different, then a linear mapping of the input x is 
needed to match the dimensions as shown in Equation (3). Y = F(x, 𝑊௜) + 𝑀ௌx (3) 

where 𝑊௜ denotes the weight layer and 𝑀ௌ denotes the linear mapping function. 
Thus, the cross-layer connection of ResNet residual blocks is achieved by using the 

output of the previous layer directly as an input to the result of the next layer. After the 
cross-layer connection operation, it becomes learning and optimization of the residuals  F(x) =  H(x) − x. In this way, the gradient does not disappear as the depth of the network 
increases and always maintains a significant variation in the backpropagation process, 
facilitating the optimization. Thus, the network can achieve better results. 

 
Figure 4. ResNet residual block structure. 

3.2. Data Augmentation 
In addition to the dropout layer, data augmentation techniques are used to further 

avoid overfitting and improve the universality of the model. Data augmentation [31] is a 
process that uses several random transformations to generate more training samples from 
the existing training data. It is known that there are many ways of data enhancement, and 
soil covariate features as pixel-level features can change the information of the images 
themselves if they are enhanced by panning, stretching, etc. This experiment rotates the 
existing training data by 90°, 180°, and 270° to increase the number of training samples. 
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The main purpose is to allow the model to explore more aspects of the training samples 
and thus improve the universality ability of the network. 

3.3. Using Soil Sample Data for Modelling in ResNet 
In classification or regression prediction in computer vision, ResNet uses image clas-

sification datasets for annotation, modeling, and analysis. Most of the datasets in the com-
puter vision domain are used for classification or regression of one object or several classes 
of objects in a single image. In this experiment, we use the whole image as a learning 
sample. The RGB three-channel image dataset is generated by combining multiple covari-
ates (e.g., terrain attributes or climate data). Therefore, the spatial attribute information of 
covariates is no longer considered by pre-processing, for example, by multi-scale fusion 
of covariate data. Rather, soil sample data are used directly in ResNet, making direct use 
of spatial contextual information through a background or patch-based approach. These 
images are then equivalent to the common input images. For each sample, the square area 
around the sample is cropped out of the covariate dataset. These images are used as input 
images for ResNet. However, in addition to the usual ResNet hyperparameters, this re-
quires optimizing the size of the patches. 

3.4. Model Definition 
In this study, we constructed a deep neural network structure called LSM-ResNet for 

predicting SOM content by fusing NDVI, band 4(NIR), and MAP data. The SOM covariate 
dataset was randomly assigned between the training and validation set (80%) and the test 
set (20%). All soil measurements were normalized between 0 and 1 using the minimum 
and maximum values of the calibration set. In addition, all covariates were centered and 
scaled with mean of 0 and standard deviation of 1. The structure is based on AlexNet [31] 
and ResNet [40], with modifications and tuning of the original network to allow for a 
small number of categories in the dataset images as input data. In the field of machine 
learning, different patch sizes of inputs can have an impact on the regression results. It is 
important to explore the impact of different patch sizes on performance based on LSM-
ResNet. For the evaluation of models, the root mean squared error (RMSE), mean absolute 
error (MAE), and coefficient of determination (R2) are commonly used. To further evaluate 
the LSM-ResNet regression results, the LSM-ResNet was also compared with those ob-
tained using the random forest (RF) model. The details of LSM-ResNet structure, param-
eter estimation, and evaluation functions commonly used in regression analysis are pre-
sented in Sections 3.4.1, 3.4.2, and 3.4.3, respectively. 

3.4.1. LSM-ResNet for SOM Mapping 
Neural networks can establish intrinsic connections between input–target pairs when 

they are well correlated [62]. The architecture consists of two parts: the first part is convo-
lutional filtering for hierarchical feature extraction, and the second part is a fully con-
nected layer, consisting of layers of fully connected neurons with multiple input values. 
The convolutional layer (Conv) acts as a feature extractor by convolving with the input 
data, usually using multiple kernels of a specific size. The convolved features are then 
nonlinearized by the activation layer to produce a feature mapping. The pooling layer 
compresses the feature mappings to reduce redundancy and converts the output to vec-
tors in a final pooling process. The fully connected (Fc) layer combines all the features 
learned in the previous layer to determine the desired pattern. 

Deep learning models have been widely used in image regression [11,37,63,64]. 
Among different models, deep residual neural network models, especially ResNet mod-
els, can solve the problem of gradient explosion and gradient disappearance by using the 
“shortcut connection” method of cross-layer connection. Therefore, based on the charac-
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teristics of Landsat TM images and the principle of the ResNet model, we designed a light-
weight pixel-based deep residual neural network model, the LSM-ResNet, to predict SOM 
content (Figure 5), and the detailed configuration is shown in Table 2. 

The LSM-ResNet model starts with a set of convolutional layers with filter sizes of 3 
× 3 and 3 × 3, where the ReLU activation function is used [65]. They are used to obtain the 
large neighborhood features of the model and image denoising. The convolutional layers 
are followed by a lower sample feature mapping layer with a maximum pool size of 2 × 2 
(e.g., reducing the height and width of the features) and a dropout layer, while discon-
necting the randomly connected half to prevent overfitting [66,67]. Two residual modules 
are then used, each of which is initially divided into the main path and a shortcut. The 
main path has two convolutional layers to extract deep features of the soil feature map, 
while the shortcut has only one convolutional layer to facilitate the upward propagation 
of residuals during training. The features obtained by the main path and the shortcut are 
reconstructed at the end of the residual module. As mentioned above, the blocks in the 
LSM-ResNet model are shown in Figure 5b. Each block consists of three layers: a weight 
layer (parameters of the convolution), a ReLU activation layer, and a batch normalization 
(BN) layer. BN on top of the residual blocks themselves prevents gradients from disap-
pearing and exploding in each residual block, which can effectively improve the training 
efficiency. Afterward, using Global Average Pooling instead of flattening can minimize 
the number of parameters. The architecture used in this paper has three fully connected 
layers that receive information and produce predictions based on the previous layer. 

To compare the prediction results of LSM-ResNet and the reference method, we also 
calibrated the RF model. Machine learning in DSM is well known for its excellent perfor-
mance, and RF outperforms multiple linear regression and even other machine learning 
techniques in most studies [66–69]. In this experiment, a Bayesian optimization procedure 
regulating the optimal number of decision trees (n_estimators) and the number of input 
covariates in each random subset (m_estimators) was designed for RF-based SOM predic-
tion. The n_estimators values ranged from 50 to 1000, and the number of different subsets 
ranged from 2 to 30. Based on Bayesian optimization, the number of decision trees was 
eventually determined to 700, and the number of input covariates was set to 5. According 
to the RandomForestRegressor function in the scikit-learn library, the other parameters in 
the RF were left as default values. To make fair comparisons among several models, we 
used the same calibration and test set with standardized SOM measurements and stand-
ardized covariates as inputs. 
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Figure 5. In this study, a lightweight deep residual neural network model, LSM-ResNet, based on 
deep learning is proposed. (a) shows the overall structure of the LSM-ResNet, and (b) shows the 
structure of the residual module of the LSM-ResNet. (Fc: fully connected layer; ReLU: rectified linear 
unit; GAP: Global Average Pooling). 

3.4.2. Parameter Estimation 
Once the LSM-ResNet model is determined, the minimum MSE is used as the objec-

tive function to estimate the parameters, and an Adaptive Momentum Estimation (Adam) 
optimizer is used for this experiment. The model was trained with different window sizes 
of input images. We compared models of input covariable pixels with window sizes of 3, 
5, 7, 9, 15, 21, 29, and 50. The comparison was based on the average RMSE on the valida-
tion set. The proposed network was implemented in Python using the Keras package ver-
sion 2.1.0 [68] and Google’s TensorFlow library [69]. Once the input window size was 
selected, Bayesian optimization was applied to optimize the hyperparameters of the 
model architecture [70]. Bayesian optimization finds optimal values for machine learning 
hyperparameters in fewer iterations than random search. In this work, we optimized the 
filter number, the number of neurons, the batch size, and the learning rate using 63 itera-
tions. 

Table 2. Layers used in the sequential model built for SOM prediction. A graphical representation 
is given in Figure 5. 

Layer Type Kernel Size Filter Activation 
Convolutional 3 × 3 32 ReLU 
Convolutional 3 × 3 64 ReLU 
Max pooling 2 × 2 - - 

ResNet block1 - - ReLU 
ResNet block2 - - ReLU 

Global Average Pooling - -  
Fully connected - 64 ReLU 

Dropout (0.2) - - - 
Fully connected - 8 ReLU 

Dropout (0.3) - - - 
Fully connected - 1 Linear 

3.4.3. Validation Indices 
Five common indices, namely the root mean squared error (RMSE), mean absolute 

error (MAE), Lin’s concordance correlation coefficient (CCC), mean error (ME), and coef-
ficient of determination (R2) were used for validation. RMSE indicates the accuracy of the 
model prediction. MAE is a measure of model accuracy, but it is less sensitive to outliers 
than RMSE. R2 varies between 0 and 1 and indicates the closeness of the predicted values 
to the fitted regression line between predicted and observed values or the proportion of 
variance explained by the independent predictors. The bias is assessed by the mean error 
(ME). 

MAE = 1𝑛 ෍|𝑜௜ − 𝑝௜|௡
௜ୀଵ  (4) 

RMSE = ඨ∑ (𝑜௜ − 𝑝௜)ଶ௡௜ୀଵ 𝑛  (5) 

Rଶ = 1 − ∑ (𝑝௜ − 𝑜௜)ଶ௡௜ୀଵ∑ (𝑜௜ − �̅�)ଶ௡௜ୀଵ  (6) 
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ME = ∑ ൫(𝑝௜ − 𝑜௜)൯ே௜ୀଵ 𝑁  (7) 

where 𝑝௜ and 𝑜௜ are the predicted and actual values of the validation sample points, re-
spectively, and �̅� is the actual value of the mean value. 

CCC [71] is a reliability measure based on covariance and correspondence, with the 
Lin’s correlation line through the origin, assessing the agreement between measured and 
predicted values for a 1:1 line with a slope of 1.0. CCC = 2𝜌𝜎௉𝜎ை𝜎௉ଶ + 𝜎ைଶ + (𝜇௉ − 𝜇ை)ଶ (8) 

where 𝜇 and σ are mean and variance for either the vector of true measurements 𝑝 or 
the vector of predicted values 𝑜, respectively. The value 𝜌 represents the correlation be-
tween 𝜇௉ and 𝜇ை. 

4. Results 
Figure 6 shows the RMSE of the SOM for different peripheral dimensions of the input 

image for the LSM-ResNet model. The background information is considered by repre-
senting the input data as a square format image around the soil measurement point. Each 
pixel has a resolution of 30 m × 30 m, so a window size of 3 × 3 pixels contains the contex-
tual information of approximately 45 m. When using a window size of 5 × 5 pixels, the 
RMSE becomes significantly smaller. The lowest average RMSE is found with a window 
size of 15 × 15 pixels (contextual information of about 245 m). The data show that the 
model calibration does not benefit from using larger window sizes, as the RMSE values 
are increasing for window sizes of 29 × 29 pixels and 50 × 50 pixels. When using the LSM-
ResNet for prediction, the model does not allow for the use of multiple input window 
sizes, so all the results presented later use an input window size of 15 × 15 pixels. 

 
Figure 6. The effect of the vicinity size of the input image. The RMSE corresponds to the error be-
tween the predicted and measured values in the test set. 

Figure 7a,b show the scatter plot of predicted and observed SOM values for the test 
data from the LSM-ResNet and RF models, respectively. Most predictions are collected on 
a 1:1 line. In general, both LSM-ResNet and RF models tend to overestimate SOM obser-
vations between 0 and 10 g/kg and underestimate SOM observations above 30 g/kg, with 
most observations concentrated between 10 g/kg and 30 g/kg. Compared to the LSM-Res-
Net, the predictions using RF were more scattered, with several overpredictions in the 
low range of the measured SOM values. The visual inspection in Figure 7 shows that the 
LSM-ResNet predicted more accurately than the RF. 

To confirm this qualitative assessment, model performance metrics were generated 
(Table 3) and compared for both models. LSM-ResNet accuracy measures were on average 



ISPRS Int. J. Geo-Inf. 2022, 11, 299 13 of 20 
 

 

equal to or better than RF. Based on RMSE and R2 values, LSM-ResNet (R2 = 0.51) outper-
formed RF (R2 = 0.46). CCC indicates that the reliability of LSM-ResNet (CCC = 0.71) based 
on covariates and correspondences is better than RF (CCC = 0.64). ME (in g/kg) showed 
that the predictions of both models are relatively unbiased. The LSM-ResNet model pro-
vides a small measure of accuracy (RMSE of 6.40 against 6.81 for the RF model) while 
providing a greater degree of prediction like falling on the 1:1 line past the origin. 

Table 3. Evaluation of prediction accuracy on the independent test set (R2—coefficient of determi-
nation; MAE—mean absolute error, in g/kg; RMSE—root mean square error, in g/kg; CCC: Lin’s 
Concordance Coefficient; ME—mean error, in g/kg). 

 R2 RMSE MAE CCC ME 
LSM-ResNet 0.51 6.40 4.98 0.71 0.73 

RF 0.46 6.81 5.19 0.64 −0.20 
 

  
(a) (b) 

Figure 7. Scatterplot of the measured against predicted SOM for the LSM-ResNet (a) and RF (b), 
along with the 1:1 line. 

Figure 8a,b shows the prediction plots of SOM based on LSM-ResNet and based on 
RF. The prediction results of the deep learning models are shown in a smooth but detailed 
plot. The prediction map gives a good indication of the spatial variation trend of surface 
SOM content. The high-value areas on the prediction map appear in the southeastern and 
central parts of the study area, and the prediction map accurately reflects the variation 
characteristics of SOM in the study area to a certain extent. From the Figure 8, it can be 
seen that the high-value and low-value areas in the study area are obvious and have ob-
vious spatial distribution characteristics, the SOM map (Figure 8b) generated from the RF 
model was found to rely heavily on the MAP covariate, and as such, the spatial patterns 
of MAP are evident in the SOM map. The low-value zone (5–9 g/kg) appearing in the 
central part is well reflected in the LSM-ResNet (Figure 8a) prediction map, with obvious 
differences from the surrounding SOM content. 
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(a) (b) 

Figure 8. Maps of the prediction of SOM. The values are expressed in g/kg. (a): based on LSM-
ResNet; (b): based on RF. 

5. Discussion 
5.1. Effect of the Input Window Size 

The effect of the window size of the input image on the accuracy of the prediction is 
shown in Figure 6, and when using images with different window sizes, the optimal im-
age size is 15 pixels, which corresponds to a contextual information of about 225 m for this 
study, and the RMSE for this image size is also the lowest. This suggests that the contex-
tual information of the auxiliary data within 225 m is more useful for predicting SOM than 
the local information of a specific point where only a single soil property measurement is 
available. This is also the expected result reported by Padarian et al. [11]. The window size 
is closely related to the contextual information provided to the model. The model inte-
grates the spatial context by considering the covariate pixels near the sampling locations. 
More additional background can improve the predictive power of the model, but too 
much background information will certainly generate noise. Padarian et al. [11] found an 
optimal range of window sizes in the case studies where topographic attributes were de-
rived from the DEM used in the soil survey. However, it is worth noting that the optimal 
window size in DSM analysis varies from case study to case study depending on the spa-
tial resolution of the input data and the characteristics of the landscape. Some authors 
have provided equivalent values of spatially relevant range for the SOM. Kumhalova et 
al. [72] reported values for the spatial correlation range of organic matter between 240 and 
270 m using data from an experimental site in the Czech Republic. Similarly, Jian-Bing et 
al. [73] found a spatial correlation range of 309 m for a small watershed in northeastern 
China. For our study, we tested this hypothesis by fitting the spherical semi-variogram 
function to the experimental variogram of SOM. The fitted value for the range is 216 m, 
close to the window size we found. However, it is difficult to draw conclusions based on 
the predicted results. The relationship between the correlation range of the window size 
and the autocorrelation distance of the SOM needs to be further explored. 

In our study, we found that a window size between 13 × 13 pixels and 18 × 18 pixels 
was optimal. DEM, as one of the important factors affecting SOM, was chosen by several 
other authors as a covariate to compose the RGB images [11,35]. However, in this experi-
ment, the plain area occupied 78% of the total area. The topographic attributes of the plain 
area were less variated, and the expression of topographic attributes such as elevation was 
not obvious. It is known that the prediction of soil attributes in plain areas has been a 
difficult problem, and a good prediction accuracy was achieved in this experiment with-
out selecting topographic attributes as covariates. Outside this range, the prediction accu-
racy may be 6% lower than the highest accuracy value. Therefore, it can be assumed that 
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there is a spatial autocorrelation between a certain range of contextual information and 
the SOM of plain areas. However, further research is needed to draw general conclusions 
about the relationship between the range of autocorrelation of soil properties and window 
size [60]. Investigation of this issue would certainly make a valuable extension to future 
DSM studies. 

5.2. Data Augmentation 
To generalize and improve the LSM-ResNet, we created new data by rotating the 

original image input and using only the information from the training data. The data aug-
mentation was effective in reducing the model error (Figure 9), and a 3% reduction in 
model error was observed. Studies have generally shown that data “augmentation” can 
improve the accuracy of classification tasks [74]. It is assumed that by increasing the 
amount of training data, we can reduce the overfitting phenomenon of LSM-ResNet. In 
terms of data spatial autocorrelation, we need to consider that in the case of data augmen-
tation, we have four sampling points at the same location with the same SOM content at 
the sampling points, so assuming that the distance is equal to 0 makes no difference if we 
consider the distance to be exactly equal to 0 [35]. However, it did not substantially reduce 
the error of the model (with and without data augmentation) [11,35]. Few people have 
discussed this, as covariate images have a different data representation than the images 
often used in computer vision. We tentatively assume that the data augmentation effect 
of covariate pictures is related to the selected covariates. DEM achieves better data en-
hancement than other covariates under the same conditions (e.g., weather and DEM), be-
cause DEM has more distinct spatial information features and performs better when min-
ing shallow data features. However, it is undeniable that deep learning requires a large 
number of samples to train the model, and data augmentation can be very helpful for soil 
mapping based on deep learning [74]. 

 
Figure 9. Effect of using data augmentation as a pretreatment on a 15 × 15 pixel array. 

5.3. Interpretation of the Map Features 
In Figure 8a, we give the predicted SOM content map using the proposed LSM-Res-

Net architecture. The overall organic matter content interval ranged from 2 to 40 g/kg and 
was heavily concentrated in a 10–20 g/kg margin. The map shows that the SOM content 
of the study area decreases from northwest to southeast, with the edge of the Taihang 
Mountains in the northwest of the study area and the Yellow River in the south, and the 
topography changes from hills to plains as the elevation decreases. It is generally believed 
that SOM content is significantly and positively correlated with altitude, and the SOM 
content is higher in the relatively high altitude (18–25 g/kg of organic matter) in the north-
west than in other plain areas. Meanwhile, we found obvious organic matter dividing 
lines at the edge of the Taihang Mountains, where organic matter was more accumulated 
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at the bottom of the slope than on the ridge, and organic matter changes had obvious 
spatial variation. Xinxiang City is an important grain producing area in China, 78% of 
which is in the plain area, while the central area (19–27 g/kg of organic matter) has a large 
amount of farmland, and effective soil management measures have significantly increased 
the SOM content in the central area. The central low-value area is partly the ancient Yellow 
River basin, which is dominated by yellow sandy soils, which are known to have a much 
lower organic matter content than other soils. This is the reason why the central region 
has a low-value zone. Figure 8b shows the distribution of the SOM based on the random 
forest model after calibration. We noted a striped region in the middle of the southeast 
direction, which was not present in the prediction map of LSM-ResNet. We think the rea-
son is that the region is a plain area, some covariates (e.g., DEM, Aspect) in RF prediction 
do not vary much, and the model is more influenced by a single covariate (MAP), while 
LSM-ResNet can utilize more depth features through deep learning and has better perfor-
mance in the plain area. 

By comparing Figure 8a and b, perhaps another advantage of the ResNet model is 
that it can make better use of covariates. This is shown by the fact that the predictions of 
the RF model show the spatial trend of MAP, while ResNet uses the same covariates but 
does not. Thus, perhaps this effect of ResNet in protecting DSM maps is common when 
using coordinates as predictors. A similar pattern of spatial variation is seen in the SOM 
predicted by both models, with a decreasing trend from northwest to southeast. As can 
be seen in the figure, the average map of the mapping using the LSM-ResNet architecture 
shows a smooth but detailed pattern with significant spatial variation. 

5.4. Analyses of the Results of the Forecast Accuracy Assessment 
In this study, deep learning provided good predictive power as shown by RMSE, 

MAE, CCC, ME, and R2. The architecture used a dataset consisting of three covariates that 
outperformed traditional machine learning. The results we derived are similar to recent 
studies using deep learning for soil mapping [61], concluding that deep learning outper-
forms RF. Some people use DEM, NDVI, and Landsat TM band 5 images, among others 
[35]. The reason for this could be that the performance is better when there are fewer co-
variates, possibly because that the model generates a large number of super covariates 
from the original image during the convolution process, while RF is purely data driven 
and makes empirical judgments about the available covariates. Additionally, one of the 
reasons for the better performance of LSM-ResNet is the usage of a residual network to 
replace the original convolutional layer. In deep learning models, the deeper the model 
depth, the more features are extracted. It is easy to underfit the model, and if a model with 
inadequate depth with too few parameters is used, overfitting occurs. The LSM-ResNet 
model reduces model overfitting. It makes the model perform better in limited dataset 
training. We replace the Flatten layer with a Global Average Pooling layer. The Flatten 
layer may destroy the spatial information, which needs to be removed to abstract features, 
and the Global Average Pooling layer [75] pools the feature map of the last layer with the 
mean value to form a feature point, which is composed of these feature points final feature 
vector, which retains spatial information to a greater extent. In our experiments, LSM-
ResNet adds shortcut paths to enable the combination of features at different levels, al-
lowing for the LSM-ResNet model to converge faster. 

6. Conclusions 
In this study, we propose an innovative deep learning-based, data-driven LSM-Res-

Net approach to produce SOM predictions in the Xinxiang City, located in the central 
plain of Henan Province, China, while we evaluate and compare the prediction perfor-
mance of a traditional machine learning prediction model, the RF model. Our results show 
that LSM-ResNet has better SOM content mapping performance compared to the RF al-
gorithm. The advantage of LSM-ResNet is that it explicitly merges contextual information 
of covariates at adjacent locations. In addition, LSM-ResNet, like other machine learning 
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models, does not rely on rigid statistical assumptions about the distribution of soil prop-
erties. The LSM-ResNet architecture proposed in this experiment is well suited for the 
prediction of soil organic matter in plains, and the SOM prediction map has significant 
spatial variation. In addition, the proposed model can be used for the prediction of other 
environmental variables. 
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