
����������
�������

Citation: Kazemi, M.; Wecker, L.;

Samavati, F. Efficient Calculation of

Distance Transform on Discrete

Global Grid Systems. ISPRS Int. J.

Geo-Inf. 2022, 11, 322. https://

doi.org/10.3390/ijgi11060322

Academic Editor: Wolfgang Kainz

Received: 25 March 2022

Accepted: 21 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Efficient Calculation of Distance Transform on Discrete Global
Grid Systems
Meysam Kazemi , Lakin Wecker and Faramarz Samavati *

Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
meysam.kazemi@ucalgary.ca (M.K.); lakin.wecker@ucalgary.ca (L.W.)
* Correspondence: samavati@ucalgary.ca; Tel.: +1-403-210-9454

Abstract: Geospatial data analysis often requires the computing of a distance transform for a given
vector feature. For instance, in wildfire management, it is helpful to find the distance of all points in
an area from the wildfire’s boundary. Computing a distance transform on traditional Geographic
Information Systems (GIS) is usually adopted from image processing methods, albeit prone to
distortion resulting from flat maps. Discrete Global Grid Systems (DGGS) are relatively new low-
distortion globe-based GIS that discretize the Earth into highly regular cells using multiresolution
grids. In this paper, we introduce an efficient distance transform algorithm for DGGS. Our novel
algorithm heavily exploits the hierarchy of a DGGS and its mathematical properties and applies to
many different DGGSs. We evaluate our method by comparing its speed and distortion with the
distance transform methods used in traditional GIS and general 3D meshes. We demonstrate that our
method is efficient and has minimal distortion.

Keywords: distance transform; Discrete Global Grid Systems; Geographical Information Systems

1. Introduction

We are gathering an immense amount of data about the Earth which has a great
potential to help us understand and predict geospatial phenomena through analysis and
simulation. For this, determining the distance of all points of a given region to a geospatial
feature (e.g., boundary of a wildfire) is needed. Distance transform (DT) is a mapping that
specifies the distance of all points in a domain to a specified feature and is a fundamental
and frequent operation to perform analyses and simulation of geographic data. It has
been used for various geospatial analyses including watershed delineation [1], urban
planning [1], pipeline route design [2,3], and mountain railway alignment [4].

Traditional Geographic Information Systems (GIS) are usually based on flat maps, and
they have adopted distance transform methods from image processing techniques [1,5].
Figure 1a shows distance transform applied to a feature inside of an image (i.e., regular
2D grid). Mapping the curved earth into a flat domain introduces distortion, consequently,
any distance transform in image space may contain distortion. When a large area is
projected, this projection distortion is greater. Therefore, the traditional GIS approach for
distance transform is not directly applicable to large scale applications such as pipeline
route design [2]. Aside from the distortion at large scales, similar to many other operations
for the Earth, DT can be better presented and interpreted on the globe rather than 2D maps.

A new GIS approach, Discrete Global Grid Systems (DGGS), is a globe-based repre-
sentation of the Earth that reduces distortion by approximating the Earth with a polyhe-
dron [6–8]. A DGGS discretizes the Earth into mostly regular cells using multiresolution
grid systems. The regularity and multiresolution properties of DGGS are the outcome of
the iterative application of a refinement scheme to the initial polyhedron faces [6]. Due to
the spherical nature of the globe, it is not possible to find a fully regular discretization for
it. Hence, every DGGS grid is only semi-regular which makes it more challenging than

ISPRS Int. J. Geo-Inf. 2022, 11, 322. https://doi.org/10.3390/ijgi11060322 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11060322
https://doi.org/10.3390/ijgi11060322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-1557-0562
https://orcid.org/0000-0001-5253-7238
https://doi.org/10.3390/ijgi11060322
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11060322?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2022, 11, 322 2 of 22

a fully regular grid. However, there is a possibility of exploiting this semi-regularity to
develop a more efficient algorithm in comparison with irregular grids (see Figure 1b,c). In
the context of general 3D meshes, DT algorithms are developed based on geodesic distance
calculations [9,10]. These general mesh algorithms can be applied to the DGGS grid but are
slower, especially with larger grids. For the DGGS grid, we can use specific properties of
DGGS to develop a more efficient algorithm. The traditional distance transform algorithms
work on either perfectly regular grids (i.e., images) or general meshes. These methods
are not fit for the semi-regular mesh of a DGGS and do not exploit the hierarchy of the
underlying multiresolution grid. Thus, a novel approach is needed. To address this need,
in this paper, we introduce a new, efficient distance transform algorithm for DGGS.

(a) (b) (c)

Figure 1. DT applied to different types of grids (a) regular image-based grid, (b) semi-regular
Disdyakis Triacontahedron DGGS grid, (c) irregular general mesh. In this visualization, darker cells
are closer to the feature and brighter cells are farther to the feature.

In DGGS, we define distance transform as the distance of a set of cells to one or a set
of features. We use the properties of a DGGS, especially the hierarchy and the geometry of
the DGGS, to design an efficient distance transform algorithm. This algorithm does not
make any assumptions about the shape of the DGGS cells, the type of the refinement, and
the underlying projection, which is an advantage and makes this algorithm applicable to
many DGGSs.

Our algorithm is based on coarse to fine hierarchical traversal of the DGGS. We start
with a coarse resolution and calculate the distance of each coarse cell to the feature. This
step is efficient because there is a small number of cells in this resolution. Next, based on
calculated distances on the current coarse resolution, we reduce the search space for the
cells in higher resolutions and store all the relevant edges of the feature in a data structure.
We then iteratively refine the grid to a higher resolution and make use of the pre-calculated
search space to find the distance of child cells to the feature. We show that the distance of
the child cells is guaranteed to fall within the proximity of parent cells.

We prove a mathematical theorem which allows us to design an efficient algorithm.
We also analyse and report the performance of our algorithm for different input parameters.
This algorithm is compared to image-based and general mesh-based methods. This compar-
ison shows that our algorithm reduces distance distortions compared to methods that work
on image space and mesh space. In terms of efficiency, this algorithm is faster compared to
general mesh-based algorithms for higher resolutions. In summary, the main contribution
of this paper is the development of a novel and efficient algorithm for computing a distance
transform for a DGGS.

2. Background

In this section, we discuss background information for this paper. We explain related
works and papers to state our work among others. This section starts with the definition of
DT and its applications. Then, the necessary information about DGGS to understand this

ISPRS Int. J. Geo-Inf. 2022, 11, 322 3 of 22

work is explained. Next, we discuss different algorithms and methods used to compute the
DT on various domains as well as the advantages and disadvantages of each method.

2.1. Distance Transform Definition and Applications

In 1966, Rosenfeld et al. introduced DT as a sequential operation in digital picture
processing with applications in shape skeletonization [11]. In the very basic form on Image
Space, DT is a transformation from a binary image in which black pixels are object(s) or
feature and white pixels are background, to a gray-scale image. In this gray-scale image,
the gray level shows the distance of a background pixel to the feature. Figure 2 shows the
distance transform applied to a binary image. By looking at Figure 2b, it is obvious that the
skeleton of the shape can be extracted by following the bright pixels of the image.

(a) (b)

Figure 2. (a) The binary image before applying DT. (b) The result of applying DT to the binary image.

After that, the idea of DT has been applied to many different areas and has applica-
tions in medical image processing [12,13], shape analysis [14–16], computer graphics [17],
shortest path computation [18], image segmentation [19], and Convolutional Neural Net-
works [20], to name a few. In addition, different distance metrics such as Manhattan
distance [11], Chessboard distance [21,22], and Chamfer distance [23] have also been used
to find distance transform. However, Euclidean distance is still required for many of these
applications [24].

Besides the various mentioned applications of DT, de Smith [1] showed that DT is
useful for many geospatial applications too. For example, DT may be used for computation
of multilevel buffer zones for watershed delineation and slope lines [1]. DT is also useful
to construct voronoi regions which is useful for urban planing such as building hospitals
and schools in a city or to manage a rescue team in an area [1]. Furthermore, DT has
been used for large-scale construction planning such as pipeline route design [2,3], and
mountain railway alignment [4]. Smart agriculture is another example which makes use
of DT. When sampling soil from a field, DT can be used to ensure sample points are far
enough away from the undesirable areas such as the boundary of the field or known areas
of contamination [25].

2.2. Discrete Global Grid Systems

DGGS is a novel approach to GIS which approximates the Earth with a polyhedron to
make a global, universal representation of the Earth with less distortion compared to flat
maps [6]. DGGS is a discretized, hierarchical, and cell-based representation of the Earth
that provides an efficient neighbourhood access and parent-child traversal [6,7]. Every
DGGS is made of the following main elements.

2.2.1. Elements of a DGGS

• Initial Polyhedron: Figure 3 shows some of the initial polyhedrons that have been
used to create a DGGS [6,7]. The closer this polyhedron is to the surface of the Earth,

ISPRS Int. J. Geo-Inf. 2022, 11, 322 4 of 22

the less the projection distortion. In this work, we use a Disdyakis Triacontahedron
DGGS [26].

(a) (b) (c) (d)

(e)

Figure 3. (a) Tetrahedron (b) Octahedron (c) Icosahedron (d) Disdyakis dodecahedron (e) Disdyakis
triacontahedron.

• Refinement Scheme: Cells resulted from the faces of the initial polyhedron are usually
considered as the first resolution of the DGGS (i.e., zero level of refinement). A refine-
ment scheme is applied to the faces of the polyhedron to make higher resolutions and
a set of finer cells. This refinement can be congruent or non-congruent [6,7]. Figure 4
shows examples of refinements. The resolution at which the data is being presented
is the target resolution of the DGGS. Figure 5 shows the Disdyakis Triacontahedron
DGGS at different refinement levels [26]. At resolution 1, the average area of the
Disdyakis Triacontahedron DGGS cells is around 4,250,546.6 km 2. As this DGGS uses
a 1 to 4 refinement, each consecutive resolution reduces the area by a factor of 1/4.
This results in an average area of 15.4 m 2 at resolution 20.

(a) (b) (c)

Figure 4. Examples of congruent (a) 1 to 4 quad, (b) 1 to 3 triangle, and (c) non-congruent hexagonal
refinement. The black cells are original cells and the green lines show one level of refinement.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 5 of 22

(a) (b) (c)

Figure 5. Disdyakis Triacontahedron DGGS at resolution (a) 1, (b) 2, and (c) 3.

• Cell Shape: The cell shape of a DGGS naturally comes from the choice of the initial
polyhedron and the refinement scheme. The most common cell shapes are quads,
hexagons, and triangles [6,7].

• Projection: Within a DGGS, projection is the method of transferring information
between the polyhedral domain and the spherical domain of the Earth. Figure 6 shows
this projection for Disdyakis Triacontahedron DGGS as an example [26].

Figure 6. Disdyakis Triacontahedron DGGS at resolution three in the polyhedral domain (left) and
the spherical domain (right).

• Cell Indexing: To assign and retrieve data to and from the cells, we need to assign
some indices to the cells. Each index uniquely identifies one cell of the DGGS and a
database can rely on these indices instead of coordinates to store the data.

2.2.2. Distance in DGGS

The real distance between two points on the Earth depends on the topology of the
Earth between those two points. However, this distance is difficult to compute, which
is why an approximation of the Earth is often used to measure distances between points.
In this work, the distance between two points is calculated on a spherical domain via
great-circle arc (i.e., geodesic) calculations. We use a DGGS to project the points to the
spherical domain. Then, we use the following formula to calculate the distance between
the two points of p and q (see Figure 7) with r representing the radius of the Earth.

Distance(p, q) = acos(
~p
|~p| .

~q
|~q|) ∗ r

ISPRS Int. J. Geo-Inf. 2022, 11, 322 6 of 22

Figure 7. The red line is the great-circle arc connecting points p and q.

2.3. Computing Distance Transform

While a DGGS has benefits over a traditional GIS, the problem of distance transform
on DGGS is not investigated in the literature. In this section, we see how distance transform
is computed in image space and mesh space. Image space is the perfectly regular end of
the spectrum where distance transform algorithms are efficient. At the other end of the
spectrum are irregular general meshes in which distance transform is inefficient. DGGS is
in the middle of this spectrum where there is some level of regularity but they are not not
perfectly regular.

2.3.1. Computing DT on Image Space

Distance transform has been studied extensively in image processing for 2D images
since [11] (see also [24]). It can be computed efficiently in perfectly regular 2D domains,
for example see [27–29]. However, these algorithms exploit full regularity of the image
domain and applying them to a DGGS grid poses some challenges. One challenge is that
the concept of neighbour and distance are not aligned in DGGS grid (i.e., The neighbours
from different directions usually do not have the same distance). The second challenge is
that the DGGS grid is not perfectly regular but semi-regular.

Another flaw of using image-based algorithms for GIS applications is about accuracy.
De smith’s work [1] uses image-based algorithms to do a distance transform, thus it is
required to project the surface of the Earth onto a 2D plane which produces distortion.
Using recent methods of projection in GIS, the distance distortion in a small-scale, such as a
city, might be negligible. However, in large-scale applications, this method has measurable
distortion which impacts accuracy. Our algorithm, in contrast, calculates the distance
transform on the globe, which means the algorithm is applicable to larger scale applications
such as pipeline route design [2,3], mountain railway alignment [4], and those which
operate on global scale.

2.3.2. Computing DT on Mesh Space

Computing DT on a general mesh is more difficult than on 2D images due to the
impact of curvature on distance, as well as the irregular connectivity of general meshes. In
1987, Mitchell et al. introduced an algorithm that computes the exact geodesic distance on
a triangular mesh [30]. This algorithm is called the MMP algorithm after the initials of its
authors. However, there was no implementation of an MMP algorithm for 17 years, and it
was not until 2005 when Surazhsky et al. introduced one [31]. The challenge with this work
is that it works only for point features. Bommes et al. generalized the MMP algorithm to
work with any arbitrary vector feature [9]. Approximations of geodesic distance have also
been investigated in computer graphics for example by solving the heat equation on the
surface of a mesh [10]. However, in GIS exact distance calculations are important. While
these algorithms can be applied to a DGGS, they do not exploit any regularity or hierarchy
within it.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 7 of 22

2.3.3. Computing DT on DGGS

In contrast to image space and mesh space algorithms, our method exploits the
hierarchy and the geometric properties of a DGGS grid. This allows our method to be more
efficient than the general mesh-based versions. In addition, our method uses geodesic
distance (great-circle arc) calculations which provides more accurate distances compared to
the image-based algorithms and the mesh domain of a DGGS.

3. Reducing the Search Space for Developing an Efficient Algorithm

Our main goal is to develop an efficient algorithm for computing a distance transform
on a DGGS. Our algorithm relies on a massive reduction of search space using the hierarchy
of DGGS cells. We first discuss and prove a theorem that enables us to exploit the hierarchy
to reduce the search space.

Our algorithm needs three main inputs. First is a vector feature, e.g., the border of a
country. This input consists of a list of edges, where each edge is defined by two points
on the Earth that are connected by a great-circle arc. The second input is the DGGS that
we want to operate on. The DGGS enables us to utilize the hierarchical grid to optimize
the algorithm. In addition the last input is the resolution of the DGGS on which DT needs
to be calculated. We call this resolution the target resolution. The goal is to compute the
minimum distance from each cell of a region at the target resolution to the feature. The
minimum distance from a cell to the feature is defined as the minimum distance from a
representative point of the cell to the feature. Like Figure 8, this representative point can
naturally be the centroid of the cell, but any other interior point would work with our
algorithm too. The objective is to compute such a distance for all of the cells of the region
at the target resolution to form a distance field.

Figure 8. Distance of a cell to a feature.

To exploit the hierarchical nature of a DGGS, our algorithm starts at a coarse resolution
which has few cells and does not require many distance calculations. When refining the
grid, we make use of the calculations on the coarse resolution to reduce the number of
distance calculations at the target resolution. We accomplish this by introducing and
proving Theorem 1, which allows us to iteratively reduce the search space when traversing
to higher resolutions.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 8 of 22

Before describing the theorem, let us first establish some notations and a simple
illustration provided in Figure 9. Let p be the representative point of cell C, and rp be the
distance of p to the feature F. As demonstrated in Figure 9, rp = |p− fp| where fp is the
closest point of feature F to representative point p. During the hierarchical traversal of cells,
we must evaluate rq where q is the representative point of a descendant cell of C. Obviously,
the closest point fq can be different from fp. However, when p and q are close, the search
space of fq becomes a small subset of F. Theorem 1 reduces the search space of the fq by
providing a bound for this space.

Figure 9. An example of a the bounding space (green circle).

Theorem 1. Given an arbitrary shaped cell C, its representative point p, its distance to feature rp,
and q, the representative point of a descendant cell of C, the search space of fq is all the edges of the
F inside of a circle centered at p with radius rp + 2d, where d is the distance of the farthest possible
q to p.

Based on the Theorem 1, it is guaranteed that the closest point fq to any point in the
highlighted triangle in the Figure 9, is inside the bounding circle (the green circle).

Proof of Theorem 1. Based on the definition of the rq and fq we have (see Figure 9):

min
f∈F
| f − q| = rq 6 | fp − q| (1)

Otherwise, fp is closer to q than fq, and it contradicts with the assumption that fq is the
closest point of the feature to q. Using triangle inequality we have:

| fp − q| 6 rp + |p− q| (2)

Therefore, using (1) and (2) and the definition of d, we obtain:

rq 6 rp + |p− q| 6 rp + d (3)

To find the search space of fq in respect to p, using triangle inequality, we have:

| fq − p| 6 rq + |p− q| (4)

ISPRS Int. J. Geo-Inf. 2022, 11, 322 9 of 22

and then using (3) we obtain:

| fq − p| 6 rp + d + |p− q| 6 rp + 2d (5)

Figure 10 shows examples of d in triangular grids with congruent refinements with
assumption that p is the centroid of the shapes. When d is a small value, the search space is
smaller and the resulting algorithm becomes faster. The value of d depends on the shape of
the cell and the refinement used in DGGS. In general, d = max

q∈children(C)
|p− q| = |p− qm|.

For congruent refinements, d can simply determined using the parent cell’s geometry (i.e.,
qm is a point on the boundary of the cell C). For non-congruent refinements, d can be
determined with a similar method using the footprint of the cell C. For example, Kevin
Sahr [32] provides such a footprint for non-congruent aperture 3 hexagonal tree system.
Based on [32], the r shown in Figure 11 covers the entire footprint of the ancestor cell.
Therefore, this radius can be used as d.

(a) (b)

Figure 10. Two types of triangle 1 to 4 refinements with appropriate d. (a) 1:4 Longest-edge bisection,
which is used in [26]. (b) 1:4 midpoint refinement which is a more common refinement.

Figure 11. The gray cells are the footprint of the large black hexagon at 4 resolution higher. Image
taken Reprinted with permission from Ref. [32] Copyright 2008 Elsevier [33].

4. Calculating Distance Transform on DGGS

In this section, we introduce two algorithms that calculate a distance transform on a
DGGS grid. The basic idea is presented in the first algorithm and the second algorithm is a
modification of the first algorithm which repeats the first algorithm to gain more efficiency.
We make use of Theorem 1 to describe the first algorithm as follows.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 10 of 22

4.1. Single Stepping from Base to Target Resolution

To calculate DT on a DGGS, we start from a coarse resolution (i.e., base resolution).
Once in this resolution, computing distance using the exhaustive search algorithm becomes
very quick. Therefore, for each cell we check the distance to all edges of the feature and find
the minimum. After finding DT in the base resolution, we compute the bounding circle for
each cell in it. We then find and store all the edges of the feature that are within this circle;
we call this list of edges the “candidate list” of the cell. Based on Theorem 1, we refine
the grid to the target resolution and use the stored candidate lists for DT computation of
child (or descendant) cells. Therefore, in the target resolution, we simply need to check
the distance from each cell to the edges of the feature that are stored in their parents’ (or
ancestors’) candidate list. This process is presented in Algorithm 1. The pseudocode shows
how this algorithm can be implemented in three steps: (1) calculating the bounding circles
and the candidate lists in the base resolution (lines 1–5), (2), refining the base cells to get the
target cells with a jump from the base resolution to the target resolution (lines 6–9), and (3)
calculating the distances in the target resolution based on the candidate lists (lines 10–13).

Algorithm 1 Compute Distance Transform.

Input: grid, feature, baseRes, targetRes
Output: distanceField

1: baseCells← getCoveringCellsAtResolution(feature, baseRes)
2: for each cell in baseCells do
3: distance← computeDistance(cell, feature)
4: cell.candidateList← computeCandidateList(cell, distance, feature)
5: end for
6: targetCells← new List()
7: for each cell in baseCells do
8: targetCells.add(refineToRes(cell, targetRes))
9: end for

10: for each cell in targetCells do
11: candidateList← cell.ancestor.candidateList
12: distanceField.add(cell, computeDistance(cell, candidateList))
13: end for
14: return distanceField

Based on Theorem 1, the candidate list calculated in the base resolution is valid
for all descendants of the base resolution. This enables us to jump from the base reso-
lution to the target resolution. However, in the next section, we show how it is prefer-
able to refine the mesh one resolution at a time in order to fully exploit the hierarchy.
Algorithms 2 and 3 show the details of the computeCandidateList and computeDistance
subroutines, respectively. The implementation of the pointToGreatCircleArcDistance sub-
routine is given in Appendix A.

Algorithm 2 Compute Candidate List.

Input: cell, distanceToFeature, edgeList
Output: candidateList

1: representative← getRepresentativePoint(cell)
2: d← getD(cell)
3: candidateList← new List()
4: for each edge in edgeList do
5: distance← pointToGreatCircleArcDistance(representative, edge)
6: if distance < distanceToFeature + 2d then
7: candidateList.add(edge)
8: end if
9: end for

10: return candidateList

ISPRS Int. J. Geo-Inf. 2022, 11, 322 11 of 22

Algorithm 3 Compute Distance.

Input: cell, edgeList
Output: distance

1: representative← getRepresentativePoint(cell)
2: distance← +∞
3: for each edge in edgeList do
4: arcDistance← pointToGreatCircleArcDistance(representative, edge)
5: distance←min(distance, arcDistance)
6: end for
7: return distance

4.2. Iterative Refinement

In Section 4.1, we discussed how this algorithm is done in a single step from the
base resolution to the target resolution. However, this process can be repeated iteratively
between the base and the target resolutions to make the candidate lists smaller (i.e., re-
duce the search space) step-by-step. The algorithm for this modification is presented in
Algorithm 4. The basic idea is to go through the grid from the base resolution and refine
the grid one resolution at a time to reach the target resolution. This way, we can refine the
candidate lists iteratively in each step. Line 2 of Algorithm 4 is the main loop that controls
iterations of the algorithm. Lines 3–20 of this algorithm are similar to Algorithm 1 with a
small difference in Algorithm 1’s first step. To calculate the candidate lists, if it’s the first
time we are calculating, there is no previous candidate list and no previous distance field
(Lines 4–6). The next times, we use the previous candidate list and filter this list to make
smaller lists for the next resolution (Lines 7–10).

Algorithm 4 Compute Distance Transform with Iterative Refinement.

Input: grid, feature, baseRes, targetRes
Output: distanceField

1: coarseCells← getCoveringCellsAtResolution(feature, baseRes)
2: for currentRes← coarseRes + 1 to targetRes step 1 do
3: for each cell in coarseCells do
4: if isFirstTime then
5: distance← computeDistance(cell, feature)
6: cell.candidateList← computeCandidateList(cell, distance, feature)
7: else
8: distance← distanceField.getDistance(cell)
9: cell.candidateList ← computeCandidateList(cell, distance,

cell.parent.candidateList)
10: end if
11: end for
12: fineCells← new List()
13: for each cell in coarseCells do
14: fineCells.add(refineToRes(cell, currentRes))
15: end for
16: distanceField.clear()
17: for each cell in f ineCells do
18: candidateList← cell.parent.candidateList
19: distanceField.add(cell, computeDistance(cell, candidateList))
20: end for
21: coarseCells← fineCells
22: end for
23: return distanceField

ISPRS Int. J. Geo-Inf. 2022, 11, 322 12 of 22

5. Results and Discussion

The proposed DT algorithm works with any DGGS grid regardless of the shape of
the cells. To test and benchmark the algorithm, we have implemented it on a Disdyakis
Triacontahedron DGGS [26]. The cells of this DGGS are triangular cells with one-to-four
congruent refinement as shown in Figure 5. First, we show some visualizations of the
output of DT. Then, we describe some tests to evaluate the correctness and performance of
our algorithm.

Figure 12 shows a visualization of DT for Ontario at different target resolutions
and Figure 13 shows a visualization for three other provinces or territories of Canada.
Figure 14 shows the result of DT for two smaller scale features, the border of the city of
Calgary and a farm field in Alberta.

(a) (b) (c)

Figure 12. Distance transform for the border of Ontario at target resolution (a) 7 (Avg. cell size:
1037.3 km2), (b) 9 (Avg. cell size: 64.8 km2), (c) 12 (Avg. cell size: 1.0 km2).

(a) (b) (c)

Figure 13. Distance transform for the border of (a) Mainland British Columbia and (b) Nunavut at
target resolution 11 (Avg. cell size: 4.0 km2), and (c) Price’s Edward Island at target resolution 15
(Avg. cell size: 0.016 km2).

ISPRS Int. J. Geo-Inf. 2022, 11, 322 13 of 22

(a) (b)

Figure 14. Distance transform for the border of (a) the city of Calgary at target resolution 15
(Avg. cell size: 0.016 km2) and (b) a farm field in Alberta at target resolution 19 (Avg. cell size:
61.8 m2).

5.1. Correctness Analysis

In Sections 4.1 and 4.2, we discussed the correctness of Algorithms 1 and 4, which both
rely on Theorem 1 to reduce the search space by using the hierarchical properties of a DGGS.
In this section, we introduce an empirical test which provides further evidence for the
correctness of Algorithms 1 and 4. As the ground truth we use the result of the “Generate
Near Table” tool from the proximity tools of ArcGIS Pro with the geodesic distance option.
To use this tool, we output two pieces of information from our software, (1) the midpoints
of the cells used for our DT calculations, and (2) the feature (or boundary) from which the
distance is measured. Our system considers line segments of the feature as great-circle
arcs, while this is not the case for ArcGIS Pro. To address this issue, we construct a high
resolution sampling from the features’ line segments (i.e., 10 m distance between sample
points). At this scale, there is practically no difference between a great-circle arc and a
straight line. We then import these two pieces of information into ArcGIS Pro with the
spatial reference system EPSG:4047 to match our DGGS earth model. We repeated this test
for features at three different scales which are shown in Figure 15.

(a) (b)

Figure 15. Cont.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 14 of 22

(c)

Figure 15. Distance transform sample points and corresponding boundaries imported into ArcGIS
Pro for (a) the province of Ontario, (b) the city of Calgary, and (c) a farm field in Alberta.

The “Generate Near Table” tool outputs the geodesic distance from each point to
the boundary. Using this data, we calculate the difference from the distances we cal-
culated for these points using Algorithms 1 and 4. Table 1 presents the extents of the
calculated difference.

Table 1. Difference in millimeters between the ArcGIS Pro calculated geodesic distances and ours.

Difference Min (mm) Max (mm) Mean (mm) Std. Deviation (mm)

Ontario (Algorithm 1) 0.0 0.0 0.0 0.0
Calgary (Algorithm 1) −1.3 1.8 0.0 0.1

Farm field (Algorithm 1) −6.4 11.4 0.1 0.6

Ontario (Algorithm 4) 0.0 0.0 0.0 0.0
Calgary (Algorithm 4) −1.3 1.8 0.0 0.1

Farm field (Algorithm 4) −6.4 11.4 0.1 0.6

Table 1 shows the accuracy of our algorithms and demonstrates that our main algo-
rithms, implementation of all subroutines, and results are correct. It also shows that when
identical points are given, both Algorithms 1 and 4 produce the exact same distance. The
small difference between ArcGIS Pro and our algorithm might be caused by boundary
resampling or floating point errors.

5.2. Performance Analysis

To analyze performance, we use the boundary of the province Ontario of Canada as
the input feature which has 449 edges. In the process of this algorithm, DGGS operations
are used to obtain vertex positions of a cell (used to find representative point of a cell
and also to calculate d), and children of a cell. In addition, operations to project a point
from the polyhedral domain of a DGGS to the spherical domain (used in lines 1–3 of
Algorithm A1). The aim of the proposed algorithm is to be efficient with the assumption
that DGGS operations are efficient. In the other words, this algorithm tries to be efficient by
minimizing the number of distance calculation operations needed to compute the distance
field. Therefore, to evaluate the algorithm independent of the efficiency of DGGS operations,
we calculate and report the number of distance calculation operations performed for each
run of the algorithm.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 15 of 22

The distance calculation operation or Algorithm A1, calculates the minimum spherical
distance from a point to a great circle arc. This is the unit of work and our algorithm tries to
minimize the number of occurrences of this operation. The baseline is that we do not exploit
the hierarchy of the DGGS and directly use the target resolution to calculate the distance.
To achieve this, for each cell in target resolution, we check the distance from the cell to all of
the feature edges. Therefore, the total number of operations is the number of cells in target
resolution times the number of edges of the feature. In theory, the ideal scenario is that for
each cell in the target resolution, we know exactly which edge is the closest and compute
the distance of the cell only to that edge. In this case, the total number of operations is only
the number of cells in target resolution. Figure 16 showcases the dramatic improvement
in the performance of our algorithms explained in Sections 4.1 and 4.2 compared to the
baseline which makes it possible to calculate DT for higher resolutions.

Figure 16. The number of distance operations in different target resolutions for the boundary
of Ontario.

The graphs in Figure 16 are exponential because the number of target cells grows ex-
ponentially with the target resolution. To better understand the efficiency of our algorithm,
we can slightly change our metric. Figure 17 shows the performance of the algorithms in
another metric, reporting the total number of operations per target cell. The domain of this
metric is between one (being our ideal scenario of knowing the closest edge to each cell
exactly) and the number of edges of the feature (449 for the border of Ontario). The closer
this number is to one, the better the performance.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 16 of 22

Figure 17. The number of distance operations in different target resolutions for the boundary
of Ontario.

Interestingly, this metric is a constant for the baseline algorithm due to us checking
every edge of the feature for each cell at the target resolution. What’s more is that as we
observe higher resolutions we can better exploit the hierarchy and get closer to the ideal of
1 operation per target cell.

Based on the analysis presented in this section, the iterative algorithm outperforms
the first algorithm. For the boundary of the province of Ontario and the target resolution of
12, the best number of operations per target cell we could achieve using the first algorithm
is 17.7. However, using the iterative algorithm with the same inputs, we can achieve 6.9
operations per target cell, which is considerably lower.

5.3. Discussion

For a specific target resolution, the base resolution is an input to our algorithm that
does not affect the result but gives us greater freedom of choice. We previously discussed
that this should be a coarse resolution, but a concrete number has not been stated. Figure 18
shows the number of operations used to calculate DT in resolution 12 using the iterative
algorithm from different base resolutions. We observe that the number of operations almost
strictly increases with increasing the base resolution. However, there is no considerable
difference between the base resolutions 3 to 7 (minimum of 6.9 operations and maximum
of 7.5 operations). It is clear that if the resolution of the base is very close to the target
resolution, we do not gain a large improvement. In addition, our algorithm is not sensitive
to this input as long as a coarse resolution is chosen.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 17 of 22

Figure 18. The effect of the base resolution on the performance of the iterative algorithm for the target
resolution 12.

The single-step algorithm calculates the candidate lists only in the base resolution first
and then jumps to the target resolution. The iterative algorithm on the other hand, after
calculating the candidate lists in the base resolutions, refines the candidate lists in every
resolution in between. These two algorithms act as extremes, meaning other options are
also possible. We have investigated all the combinations possible to reach from the base
resolution to the target resolution. We found that always visiting the every resolution in
between, like the iterative algorithm does, is always the most efficient.

6. Comparison

Distance transform methods used in traditional GIS that are based on image space
introduce distortions. Figure 19a shows the distance transform computed in ArcGIS Pro
software using image-based methods, and the distortions can be clearly seen. Figure 19b
and Figure 19c show a visualization calculated on the DGGS with our method.

(a)
Figure 19. Cont.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 18 of 22

(b) (c)

Figure 19. Distance transform from Yellowknife using (a) ArcGIS and planar distance calculations,
(b,c) DGGS and our method.

To quantify the amount of distortion caused by traditional GIS (i.e., flat map projec-
tions), we performed a test which is similar to Section 5.1. We use the same features as
Figure 15, but we switch to the planar distance option within the “Generate Near Table”
tool. To use the planar distance calculations, we first project the boundary and the sample
points using the WGS 1984 UTM projected coordinate system. Table 2 shows the compar-
ison between the ArcGIS Pro planar distance calculation and the distances produced by
Algorithm 4. As we expect, significant distance distortion is present in the planar setting
and it reduces to smaller amounts as the scale decreases. In this test, if the feature was not
contained in a single UTM zone, we projected all points to the zone that contains the largest
portion of the feature. Specifically, we used UTM zone 17N for Ontario, 11N for Calgary,
and 12N for the farm field.

Table 2. Difference in meters between the ArcGIS Pro calculated planar distances and the distances
from Algorithm 4.

Difference Min (m) Max (m) Mean (m) Std. Deviation (m)

Ontario −85.9256 3268.89 431.938 581.674
Calgary 0.0068 32.80 6.301 6.725

Farm field −0.0058 1.80 0.307 0.359

To compare the MMP algorithm [30] for general meshes with our method, there are
two aspects to consider. First, the MMP algorithm gives the exact geodesic distance on
the mesh. In the case of a DGGS, the mesh is an approximation of a sphere, and points
must be projected from the sphere onto the face of the mesh. The MMP algorithm does
not consider the effects of the projection and thus its geodesic calculations will not be the
same as those calculated on the sphere. However, for higher resolutions of the DGGS,
where the mesh is closer to the surface of the sphere, the MMP algorithm becomes a closer
approximation to the spherical geodesic distances. Second, the MMP algorithm is less
efficient than our algorithm for higher resolutions. For this comparison, we have used
the border of Ontario to benchmark the algorithms, the process of which is done on a
computer with an Intel Core i7-6700 CPU with both algorithms being tested under the same
conditions using the Google Benchmark tool. Figure 20 then compares the execution time
of the two algorithms, and Table 3 lists the number of target cells at different resolutions
next to their respective execution times. In resolutions lower than 9, the MMP algorithm
is faster (though it is less accurate), but the difference is negligible. As we go to higher

ISPRS Int. J. Geo-Inf. 2022, 11, 322 19 of 22

resolutions and greater numbers of target cells, the MMP algorithm takes more time than
our method by a wide margin.

Figure 20. Execution time of our algorithm and the MMP algorithm at different resolutions for border
of Ontario.

Table 3. Execution time of our algorithm and MMP algorithm along with number of target cells for
the border of Ontario.

Target Resolution # of Target Cells Our Algorithm (ms) MMP (ms)

5 208 74.0 0.8
6 464 66.6 1.6
7 1488 113.3 5.7
8 5952 159.6 33.9
9 19,392 273.9 240.7

10 69,696 719.7 2474.8
11 260,480 2200.3 40,178.0
12 1,041,920 7541.7 946,192.2

7. Conclusions and Future Work

With the immense amount of data becoming available, distance transform as a tool
to analyse such data is important. The problem of distance transform is a solved problem
in image processing, but for the geospatial data, image-based methods are unfit. The fast
growing new approach of GIS, DGGS, as a tool to better integrate and analyse such data,
needs distance transform. To this end, we have proposed a complete and comprehensive
method for efficiently calculating the distance transform on top of a DGGS grid. Our
approach properly accommodates any potential DGGS regardless of the shape of the grid
cells and the congruency of the refinement scheme. We have discussed how to fine-tune
the parameters of our algorithm to get the best results for the border of Ontario as input
feature. We have also compared our method with the image-based methods and general
mesh methods. The comparison shows that our method is superior in terms of accuracy
and efficiency for large datasets.

There is still some important future work to be conducted. Our method calculates
the distance based on a spherical great-circle arc calculation. Despite most of the DGGSs
that use a sphere for their reference model of the Earth, some other DGGSs use an oblate
spheroid to provide a more accurate representation. We suspect that our method is ap-
plicable to such DGGSs if one can define an efficient distance calculation method for the
ellipsoid. However, further research is required to prove this claim.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 20 of 22

Another interesting active branch of DGGS research is 3D DGGSs. There exist some
works that aim to build a 3D DGGS or extend current 2D DGGSs to 3D DGGS [34,35].
For this work, we have assumed a 2D DGGS, but the same idea might be able to be
reimplemented for a 3D DGGS. The initial idea is to prove Theorem 1 for 3D shapes
using a bonding sphere instead of a bounding circle, and use this new theorem to build
the algorithm. Although, more research is required to evaluate this idea and make any
potential necessary changes to the algorithm.

Author Contributions: Conceptualization, Meysam Kazemi and Faramarz Samavati; methodology,
Meysam Kazemi and Faramarz Samavati; software, Meysam Kazemi and Lakin Wecker; validation,
Meysam Kazemi and Lakin Wecker; formal analysis, Meysam Kazemi and Faramarz Samavati; data
curation, Meysam Kazemi and Lakin Wecker; writing—original draft preparation, Meysam Kazemi;
writing—review and editing, Meysam Kazemi and Lakin Wecker and Faramarz Samavati; visualiza-
tion, Meysam Kazemi and Lakin Wecker; supervision, Faramarz Samavati; project administration,
Faramarz Samavati; funding acquisition, Faramarz Samavati. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Natural Sciences and Engineering Research Council
(NSERC) of Canada (Grant No. DG 2018-03935).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to all members of the GIV research team at the University of
Calgary for insights and discussion. Thanks to Kian Samavati for proofreading and grammatical
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GIS Geographic Information System
DGGS Discrete Global Grid System
DT Distance Transform

Appendix A

Algorithm A1 shows how one can calculate the distance of a point to a great-circle arc.
This algorithm is used in Algorithms 2 and 3. In this algorithm the arc is represented with
the two endpoints which are connected to each other with a great-circle arc. It is assumed
that the point and the two end points are on the polyhedral domain of the DGGS, so the
first step is to project them into the spherical domain.

Figure A1 gives some geometric context. We assume a unit sphere. Vectors ~v and ~w
form a plane. The vector ~N = ~v× ~w is the normal to that plane. We project the point p
to that plane. Then, by normalizing that projected vector, we push it to the great-circle
that intersects v and w (this is p′ and line 6 in Algorithm A1). So, p′ lies on the great-circle,
but we do not know if p′ is between v and w (on the arc) or outside of it. We test it by
calculating the cross vectors ~p′ ×~v and ~p′ × ~w. The result of these crosses are also normals
to the aforementioned plane. If the cross vectors point in different directions (180◦ angle
between them), then p′ is between v and w, otherwise (0◦ angle between them), p′ is outside
of them.

ISPRS Int. J. Geo-Inf. 2022, 11, 322 21 of 22

Algorithm A1 Point To Great-circle Arc Distance.

Input: point, arc
Output: distance

1: point← normalize(dggs.projectToSphericalDomain(point))
2: v← normalize(dggs.projectToSphericalDomain(arc.endpoint1))
3: w← normalize(dggs.projectToSphericalDomain(arc.endpoint2))
4: normal← normalize(v.cross(w))
5: pDotNormal← p.dot(normal)
6: projection← normalize(point - (pDotNormal * normal))
7: cross1← projection.cross(v)
8: cross2← projection.cross(w)
9: dotOfCrosses← cross1.dot(cross2)

10: if dotOfCrosses < 0 then
11: distance← acos(point.dot(projection))
12: else
13: d1← acos(point.dot(v))
14: d2← acos(point.dot(w))
15: distance←min(d1, d2)
16: end if
17: return distance * radiusO f TheEarth

Figure A1. The red line is the great-circle arc connecting points v and w, and point p is the point
in question.

References
1. de Smith, M.J. Distance transforms as a new tool in spatial analysis, urban planning, and GIS. Environ. Plan. B Plan. Des. 2004, 31,

85–104. [CrossRef]
2. Kjaernested, S.N.; Jonsson, M.T.; Palsson, H. Methodology for pipeline route selection using the NSGA II and distance transform

algorithms. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Washington, DC, USA, 28–31 August 2011; Volume 54822, pp. 543–552.

3. Kristinsson, H.; Jonsson, M.T.; Jónsdóttir, F. Pipe route design using variable topography distance transforms. In Proceedings of
the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long
Beach, CA, USA, 24–28 September 2005; Volume 4739, pp. 331–336.

4. Pu, H.; Zhang, H.; Li, W.; Xiong, J.; Hu, J.; Wang, J. Concurrent optimization of mountain railway alignment and station locations
using a distance transform algorithm. Comput. Ind. Eng. 2019, 127, 1297–1314. [CrossRef]

5. ArcGIS. Euclidean Distance. 2021. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-
toolbox/euclidean-distance.htm (accessed on 17 June 2021).

6. Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A survey of digital earth. Comput. Graph. 2015, 53, 95–117. [CrossRef]
7. Alderson, T.; Purss, M.; Du, X.; Mahdavi-Amiri, A.; Samavati, F. Digital earth platforms. In Manual of Digital Earth; Springer:

Singapore, 2020; pp. 25–54.
8. Goodchild, M.F. Reimagining the history of GIS. Ann. GIS 2018, 24, 1–8. [CrossRef]

http://doi.org/10.1068/b29123
http://dx.doi.org/10.1016/j.cie.2018.01.004
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/euclidean-distance.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/euclidean-distance.htm
http://dx.doi.org/10.1016/j.cag.2015.08.005
http://dx.doi.org/10.1080/19475683.2018.1424737

ISPRS Int. J. Geo-Inf. 2022, 11, 322 22 of 22

9. Bommes, D.; Kobbelt, L. Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes; VMV: Saarbrücken,
Germany, 2007; Volume 7, pp. 151–160. Available online: https://www.graphics.rwth-aachen.de/publication/63/bommes_07
_VMV_011.pdf (accessed on 17 June 2021).

10. Crane, K.; Weischedel, C.; Wardetzky, M. The Heat Method for Distance Computation. Commun. ACM 2017, 60, 90–99. [CrossRef]
11. Rosenfeld, A.; Pfaltz, J.L. Sequential operations in digital picture processing. J. ACM 1966, 13, 471–494. [CrossRef]
12. Cuisenaire, O. Distance Transformations: Fast Algorithms and Applications to Medical Image Processing; Technical Report; Louvain-la-

Neuve: Belgium, 1999. Available online: https://infoscience.epfl.ch/record/61606 (accessed on 17 June 2021)
13. Wang, Y.; Wei, X.; Liu, F.; Chen, J.; Zhou, Y.; Shen, W.; Fishman, E.K.; Yuille, A.L. Deep distance transform for tubular structure

segmentation in ct scans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020; pp. 3833–3842.

14. Liu, H.C.; Srinath, M.D. Partial shape classification using contour matching in distance transformation. IEEE Trans. Pattern Anal.
Mach. Intell. 1990, 12, 1072–1079. [CrossRef]

15. Lavallée, S.; Szeliski, R. Recovering the position and orientation of free-form objects from image contours using 3D distance
maps. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 378–390. [CrossRef]

16. Teixeira, R.C. Curvature Motions, Medial Axes and Distance Transforms; Harvard University: Cambridge, MA, USA, 1998. Available
online: https://www.proquest.com/openview/50c844f9001964e3be3073ae12a738ad/1?pq-origsite=gscholar&cbl=18750&diss=y
(accessed on 17 June 2021).

17. Moustakas, K.; Tzovaras, D.; Strintzis, M.G. SQ-Map: Efficient layered collision detection and haptic rendering. IEEE Trans. Vis.
Comput. Graph. 2006, 13, 80–93. [CrossRef]

18. Choi, Y.H.; Lee, T.K.; Baek, S.H.; Oh, S.Y. Online complete coverage path planning for mobile robots based on linked spiral
paths using constrained inverse distance transform. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5788–5793.

19. Acharjya, P.; Sinha, A.; Sarkar, S.; Dey, S.; Ghosh, S. A new approach of watershed algorithm using distance transform applied to
image segmentation. Int. J. Innov. Res. Comput. Commun. Eng. 2013, 1, 185–189.

20. Ma, J.; Wei, Z.; Zhang, Y.; Wang, Y.; Lv, R.; Zhu, C.; Gaoxiang, C.; Liu, J.; Peng, C.; Wang, L.; et al. How distance transform maps
boost segmentation CNNs: An empirical study. In Medical Imaging with Deep Learning; PMLR, 2020; pp. 479–492. Available online:
https://proceedings.mlr.press/v121/ma20b.html (accessed on 17 June 2021).

21. Lee, Y.H.; Horng, S.J. Fast parallel chessboard distance transform algorithms. In Proceedings of 1996 International Conference on
Parallel and Distributed Systems, Tokyo, Japan, 3–6 June 1996; pp. 488–493.

22. Lee, Y.H.; Horng, S.J. Optimal computing the chessboard distance transform on parallel processing systems. Comput. Vis. Image
Underst. 1999, 73, 374–390. [CrossRef]

23. Butt, M.A.; Maragos, P. Optimum design of chamfer distance transforms. IEEE Trans. Image Process. 1998, 7, 1477–1484. [CrossRef]
24. Fabbri, R.; Costa, L.D.F.; Torelli, J.C.; Bruno, O.M. 2D Euclidean distance transform algorithms: A comparative survey. ACM

Comput. Surv. (CSUR) 2008, 40, 1–44. [CrossRef]
25. Schmaltz, T.; Melnitchouk, A. Variable Zone Crop-Specific Inputs Prescription Method and Systems Therefor. U.S. Patent CA

2,663,917, December 2014.
26. Hall, J.; Wecker, L.; Ulmer, B.; Samavati, F. Disdyakis triacontahedron DGGS. ISPRS Int. J.-Geo-Inf. 2020, 9, 315. [CrossRef]
27. Ciesielski, K.C.; Chen, X.; Udupa, J.K.; Grevera, G.J. Linear time algorithms for exact distance transform. J. Math. Imaging Vision

2011, 39, 193–209. [CrossRef]
28. Shih, F.Y.; Wu, Y.T. Fast Euclidean distance transformation in two scans using a 3× 3 neighborhood. Comput. Vis. Image Underst.

2004, 93, 195–205. [CrossRef]
29. Lucet, Y. New sequential exact Euclidean distance transform algorithms based on convex analysis. Image Vis. Comput. 2009, 27,

37–44. [CrossRef]
30. Mitchell, J.S.; Mount, D.M.; Papadimitriou, C.H. The discrete geodesic problem. SIAM J. Comput. 1987, 16, 647–668. [CrossRef]
31. Surazhsky, V.; Surazhsky, T.; Kirsanov, D.; Gortler, S.J.; Hoppe, H. Fast exact and approximate geodesics on meshes. ACM Trans.

Graph. (TOG) 2005, 24, 553–560. [CrossRef]
32. Sahr, K. Location coding on icosahedral aperture 3 hexagon discrete global grids. Discrete Global Grids. Comput. Environ. Urban

Syst. 2008, 32, 174–187. [CrossRef]
33. Reprinted from Computers, Environment and Urban Systems, 32, Sahr, K., Location coding on icosahedral aperture 3 hexagon

discrete global grids, 186, Copyright 2022, with permission from Elsevier (Licence No. 5246110741204).
34. Ulmer, B.; Hall, J.; Samavati, F. General Method for Extending Discrete Global Grid Systems to Three Dimensions. ISPRS Int.

J.-Geo-Inf. 2020, 9, 233. [CrossRef]
35. Ulmer, B.; Samavati, F. Toward volume preserving spheroid degenerated-octree grid. GeoInformatica 2020, 24, 505–529. [CrossRef]

https://www.graphics.rwth-aachen.de/publication/63/bommes_07_VMV_011.pdf
https://www.graphics.rwth-aachen.de/publication/63/bommes_07_VMV_011.pdf
http://dx.doi.org/10.1145/3131280
http://dx.doi.org/10.1145/321356.321357
https://infoscience.epfl.ch/record/61606
http://dx.doi.org/10.1109/34.61706
http://dx.doi.org/10.1109/34.385980
https://www.proquest.com/openview/50c844f9001964e3be3073ae12a738ad/1?pq-origsite=gscholar&cbl=18750&diss=y
http://dx.doi.org/10.1109/TVCG.2007.20
https://proceedings.mlr.press/v121/ma20b.html
http://dx.doi.org/10.1006/cviu.1998.0741
http://dx.doi.org/10.1109/83.718487
http://dx.doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.3390/ijgi9050315
http://dx.doi.org/10.1007/s10851-010-0232-4
http://dx.doi.org/10.1016/j.cviu.2003.09.004
http://dx.doi.org/10.1016/j.imavis.2006.10.011
http://dx.doi.org/10.1137/0216045
http://dx.doi.org/10.1145/1073204.1073228
http://dx.doi.org/10.1016/j.compenvurbsys.2007.11.005
http://dx.doi.org/10.3390/ijgi9040233
http://dx.doi.org/10.1007/s10707-019-00391-w

	Introduction
	Background
	Distance Transform Definition and Applications
	Discrete Global Grid Systems
	Elements of a DGGS
	Distance in DGGS

	Computing Distance Transform
	Computing DT on Image Space
	Computing DT on Mesh Space
	Computing DT on DGGS

	Reducing the Search Space for Developing an Efficient Algorithm
	Calculating Distance Transform on DGGS
	Single Stepping from Base to Target Resolution
	Iterative Refinement

	Results and Discussion
	Correctness Analysis
	Performance Analysis
	Discussion

	Comparison
	Conclusions and Future Work
	Appendix A
	References

