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Abstract: Transit-oriented development (TOD) is among the most feasible strategies for relieving 
urban issues caused by the unbalanced development of transportation and land use. This study 
proposes a multiobjective TOD land use design framework for the optimization of the land use 
layout in station catchments. Given the high density and diverse development in Chinese megaci-
ties, a planning model that considers nonlinear impacts on ridership, land use efficiency, quality of 
life, and the environment is constructed. The model applies fine-grained geo-big data to fill gaps in 
the empirical and statistical data and improve practicability. A genetic multiobjective optimization 
approach without reliance on objective weighting is used to generate alternative land use schemes. 
A metro station in Shanghai is applied as a case study. The results indicate that the proposed rid-
ership objective outperforms the commonly used linear function, and the optimization method has 
superior extreme optima and convergence to baseline models. We also discuss the consistencies 
and conflicts in the objectives and provide a balanced land use scheme considering local policies. 
This work provides suggestions for sustainable urban design with coordinated land use and 
transportation. 

Keywords: geo-big data; land use planning; multiobjective optimization; nonlinear impact; trans-
it-oriented development 
 

1. Introduction 
Urban mass rail transit (MRT) systems provide an effective tool for residents and 

promote a shift from private vehicles to a low-carbon public travel mode [1,2]. None-
theless, cities face problems such as the inappropriate distribution of facilities and 
wasted social resources caused by unbalanced land use and MRT development. There-
fore, comprehensive strategies that integrate MRT and relevant land use are critical to 
sustainable urban planning [3]. The transit-oriented development (TOD) theory is con-
sidered one of the most feasible integrated land use and transportation theories [4,5]. 
TOD planning can improve the unbalanced state of transportation and land use and of-
fers a sustainable approach to urban development. 

Numerous recent studies have focused on TOD planning and generated various 
effective strategies and methods within this topic [6–8]. Particularly, TOD planning with 
mathematical models is prominent in generating sustainable land use plans and an intu-
itive evaluation [9,10]. Quantitative TOD planning methods involve the significant 
branch of multiobjective optimization, which generates alternative land use schemes 
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according to objectives based on TOD principles and strategies [11,12]. However, 
mathematical TOD models for China remain limited, although one noteworthy example 
of a TOD model for designing land use layout given a type and density around a metro 
station in China was proposed by Li et al. [13–15]. First, the parameters of the objectives 
mainly comprise coarse-grained statistical data and empirical indicators, which lead the 
objective functions to have insufficient expressive ability. Second, most objectives have 
been constructed with linear and straightforward functions, thereby simplifying the 
complicated relationship between objectives and land use, thereby reducing model reli-
ability. Finally, although multiobjective problems have been solved in previous studies 
by weighting objectives, determining the relative weights is challenging because of un-
certainty, and rarely have studies used actual multiobjective optimization in TOD plan-
ning. Fortunately, the appearance of urban geo-big data and the development of the 
learning model provide excellent potential for the refined construction and optimization 
of planning objectives. 

This paper presents a multiobjective TOD land use design framework to generate 
alternative land use schemes in the Chinese context, which consists of a TOD planning 
model and a multiobjective optimization approach for land use design. Traditional TOD 
planning models always consider several objectives, including the ridership of rail 
transit, compactness, land use mix, land use conflicts, and environmental effects [12–14]. 
In this work, elements of the built environment are added to the objective of ridership, 
and land use conflict is replaced by a more specific function of land use density. In addi-
tion, the objective of the total distance to the station is designed for the convenience of 
traveling by public transit. The proposed method makes several contributions. (1) We 
apply geo-big data to describe high-density and high-diversity development in the Chi-
nese context and provide abundant information for constructing objective functions and 
validating the availability of the method. (2) We explore the nonlinear impact of land use 
on ridership and represent the objectives of ridership with an ensemble learning method 
to ensure that the ridership can approach the expectation of the model after optimization 
to enhance the practicability of the planning model. (3) The method generates alternative 
land use schemes via a multiobjective genetic algorithm with a designed mix coding, 
which eliminates the limits of objective weighting and provides further suggestions for 
decision-makers with a unique reference point structure and normalization process. A 
case study of a metro station in Shanghai is presented to demonstrate the feasibility of the 
proposed method. The objective function of ridership is compared with the linear func-
tion to show its superiority. The employed optimization method presents a reliable abil-
ity to achieve optimization and convergence via comparison with two commonly used 
genetic algorithms. In addition, an alternative land use layout obtained by the planning 
method appears to be balanced and consistent with TOD strategies. 

The remainder of the paper is organized as follows. Section 2 reviews the related 
literature on TOD planning. Section 3 describes the research problem in detail and 
demonstrates the proposed TOD land use planning method. Section 4 introduces a case 
study in Shanghai and presents land use schemes to verify the effectiveness of the 
method. Section 5 discusses the relationship between the TOD planning objectives and 
provides several policy implications. Finally, the conclusions and limitations of the cur-
rent work are discussed in Section 6. 

2. Related Work 
TOD was first introduced for development design in a mixed-use community with 

high density and diversity that encourages residents to live near a transit station and 
decreases their dependence on private vehicles [16]. Cervero [17] proposed the basic 
“3D” principles of “density, diversity and design” for TOD planning and argued that 
land use with high density and diversity and a pedestrian-oriented design would en-
courage non-auto travel [18]. Since then, the principles and strategies of TOD have at-
tracted numerous scholars and have increased in complexity to fulfill the requirements of 
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urban sustainability [3,6,19–21]. As a green large-capacity travel mode, MRT is an ap-
propriate research object for TOD planning, and it is acceptable to build stable MRT 
systems based on TOD strategies.  

Although the principles and strategies of TOD have been comprehensively identi-
fied, there remain gaps in understanding how to transform TOD theory into a detailed 
analytical model for sustainable urban planning. The land use design problem (LDP) re-
fers to a mathematical programming model for optimizing the locations, types, and sizes 
of urban land use [22]. Because of the tight relationship between transportation systems 
and land use, recent studies have increasingly focused on planning the integration of 
land use and transit design [23–25]. In this context, TOD strategies have been applied to 
land use design. Lin &Gau [11] proposed a TOD model to increase MRT ridership, im-
prove living and environmental quality, and ensure social equity, but only commercial 
and residential land use was involved. As an extension, Lin & Li [12] developed a 
city-region level model that allocated recreational land use and added the objective of 
maximizing access to nonresidential activities. Li et al. [13] first established a TOD model 
for China based on the characteristics of Chinese megacities to maintain the sustainable 
development of the MRT system in China. On this basis, Ma et al. [14] considered the 
contribution of transportation to station-level planning, and local accessibility was ap-
pended to the objectives. Sahu [9] introduced a TOD planning model for modifying land 
use in the city of Naya Raipur that was based on the global TOD parameters of density, 
diversity, and distance to transit.  

A notable limitation of previous TOD planning studies was that they used only sta-
tistical and empirical data, which were insufficient for refined planning and yielded im-
practical results for specific planning tasks. Recently, geo-big data such as points of in-
terest, mobile sensors, and smart card data containing abundant information about hu-
man mobility and urban spatial structures have been widely applied to urban planning 
[26,27]. Geo-big data provide new opportunities to analyze TOD scenarios quantitatively 
and are capable of describing real-time urban spatial structures accurately for TOD 
planning [28]. In addition, ridership indicates the usage degree of the transit services and 
mobility triggered by land use, which is one of the most important indicators in TOD. 
Previous TOD planning models have generally estimated ridership with statistical trip 
generate/attraction ratio and linear (log-linear) functions. However, several studies have 
illustrated that the impact of land use on ridership is nonlinear, and the influence of rid-
ership cannot be entirely explained by land use [29]. Therefore, a more comprehensive 
nonlinear model with multiple factors is necessary for constructing the ridership objec-
tive in the TOD planning model. 

Even when a TOD model is constructed, optimization is challenging because the 
model involves multiple objectives with conflicting goals, a vast search space for the op-
timal solution, and a series of constraints. The genetic algorithm (GA) has been indicated 
to be appropriate for solving such large-scale problems, as it is adept at automatically 
and optimally searching in vast solution dimensions [30]. Most importantly, the GA has 
already been modified to solve multiobjective problems [31,32]. Consequently, various 
GAs have been applied to optimize the LDP and TOD models [9,33,34]. For multiobjec-
tive optimization, most TOD planning includes in its design a comprehensive function, 𝐹 = ∑ 𝑤௞𝐹௞௢௕௝௞ୀଵ , with weights to simplify the optimization [13,14,35]. However, the 
weights of the objectives are defined subjectively and different objectives have different 
dimensions, thereby resulting in models suffering from bias and sensitive outliers. 

In summary, although the land use and TOD planning model have been constructed 
with all-round perspective, station-level mathematical TOD can be improved in terms of 
data and function representation. An improved reasonable TOD land use planning 
method is still required to be developed for sustainable urban design with the balanced 
development of the MRT system and land use in the Chinese context. 
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3. Methodology 
3.1. Problem Statement 

This paper presents a TOD planning method based on strategies appropriate to the 
Chinese context to solve the land use design problem. As depicted in Figure 1, consid-
ering the MRT station as the central point, the land use design problem aims to determine 
the type, density, and location of the surrounding undeveloped land use cells and to ob-
tain an optimal land use layout based on the objectives relevant to TOD. Finally, alterna-
tive land use sketch maps are generated to display land use layouts [35,36]. Inspired by 
work by [14], seven types of land use are presented in this work, namely: public (e.g., 
school, government agency, hospital), industry (e.g., factory, warehouse), commercial 
(e.g., shopping mall, restaurant), economic (e.g., office building, corporate business, fi-
nance organization), residential (e.g., apartment, villa), road, and water. Notably, only 
the first five types of land use are applied to land use design because of the high cost of 
rectifying roads and water. 

3 1
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Undeveloped  
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Figure 1. Description of the land use design problem. 

In general, this study proposes a multiobjective TOD land use design framework. 
As shown in Figure 2, the method comprises two parts of a TOD planning model and a 
multiobjective optimization approach for land use design in a station catchment area. By 
using emerging geo-big data and traditional statistical and empirical data, a TOD plan-
ning model is constructed with linear and nonlinear objectives. Then, a robust heuristic 
algorithm is applied for generating alternative land use layouts. The details are intro-
duced in the next sections. 
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Figure 2. Work flowchart of the TOD land use design framework. 
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3.2. TOD Planning Model 
A dependable TOD planning model needs to consider numerous factors, including 

ridership, land value, land use efficiency, environmental effects, quality of life, and so-
cial equality [11,37]. Nonetheless, different contextual characteristics result in specific 
applications of TOD strategies [3]. In contrast to most American cities, which are char-
acterized by low density, car orientation, and multicenter layouts [38], most Chinese cit-
ies are characterized by high density and high transit ridership. To channel megacity 
growth in MRT corridors, TOD in China should contain high-density development, 
mixed land use, and pedestrian-friendly environments to be consistent with the features 
of Chinese cities. Based on the Chinese context and the concept of TOD, six objectives by 
referring to previous studies [11–15] are designed to promote the sustainable develop-
ment of MRT and related land use: the perspectives of ridership, compactness, land use 
conflict, land use mix, environmental effects, and destination accessibility. Moreover, a 
set of constraints are considered in the model. 

3.2.1. Parameter Definition 
The proposed TOD planning model contains the following parameters. 
I: set of land use cells; cell i∈ 𝐼.  
K: set of land use types; type k∈ 𝐾.  𝐵𝐸: built environment variables in the station area. 𝑇: transit service variables in the station area. 𝐺: demographic variables in the station area. 𝑁௜: cells within 8 neighbors of cell i. 𝑐௞௟: conflict degree between adjacent cells of types k and l. 𝑆𝑖𝑑𝑒: length of cells. 𝐴𝑟𝑒𝑎: area of cells. 𝑁௖௘௟௟: number of cells. 𝑃௞௥: r-type pollutants generated by unit density in a k-type land use cell. 𝑐𝑜𝑠𝑡௥: cost of treating r-type pollutants. 𝐿௜: distance from cell i to the metro station along the road. 𝐴𝑡𝑡𝑟௞: passenger attraction of unit k-type cell. 𝑙𝑜𝑤𝑒𝑟𝐸𝐼𝐼௞/𝑢𝑝𝑝𝑒𝑟𝐸𝐼𝐼௞: lower/upper bound, respectively, of the exploitative intensity 

index of each type of land use in each cell. 𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑡𝑖𝑜௞/𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑡𝑖𝑜௞: lower/upper bound, respectively, of the total percentage 
of each type of land use in the overall layout. 

3.2.2. Decision Variables 
Two decision variables are applied to the allocation of land use type and density. 𝑋௜௞: binary variable. {𝑋௜௞=1 if cell i is assigned to k-type; otherwise,𝑋௜௞ =0}, which 

describes the land use type of cells with one-hot encoding. 𝐷௜௞: k-type land use density of cell i; the unit of land use density is 100 mଶ/cell, and 
the value of the density is a positive integer for each cell. 

3.2.3. Objectives 
1. MRT ridership 

The first objective aims to maximize MRT ridership, which increases the utilization 
efficiency and profit for MRT and results in economic sustainability. Before the con-
struction of the TOD objectives, an available model is required to determine the nonlinear 
relationship between land use and ridership. Tree ensemble models such as gradient 
boosting regression tree (GBRT) have been applied for the description of ridership 
[39,40]. In this study, as one of the best tree ensemble methods, extreme gradient boosting 
(XGBoost) [41] is used for nonlinear modeling. Compared with GBRT, XGBoost has im-
portant advantages in two main respects: XGBoost employs the second-order Taylor 
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expansion to deal with the cost function, resulting in high model accuracy; and penalty 
coefficients are added to the cost function to increase the generalization ability. XGBoost 
consists of numerous classification and regression trees (CARTs), and the result is pre-
dicted by the summation of the continuous score in the leaves of the CARTs. The predic-
tion function is as follows: 

𝑦ො௜ = 𝜙ሺ𝑥௜ሻ = ෍ 𝜑ሺ𝑘ሻ ∗ 𝑓௞ሺ𝑥௜ሻ௄
௞ୀଵ , 𝑓௞ ∈ 𝐹 (1)

where 𝜑ሺ𝑘ሻand 𝑓௞ሺ∗ሻ are the learning rate and function of the k-th CART, respectively, 
and 𝑥௜ is the i-th leaf in the tree. Following the training of XGBoost, the learning model 
from the selected indicators becomes available to simulate the impact of multiple factors 
on MRT ridership, as shown in Equation (2). 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡௥ሺ𝐷; 𝐵𝐸; 𝑇; 𝐺ሻ (2)

where 𝐷, 𝐵𝐸, 𝑇, 𝐺are the indicators of land use, built environment, transit service, and 
demographics, respectively [39]. The detailed data and indicators are presented in Sec-
tion 4.2. Owing to the goal of this work, only the land use factors are changeable and the 
other factors are regarded as fixed control variables. Under these circumstances, the 
maximum MRT is shown as Equation (3): 𝑚𝑎𝑥𝑓ଵ = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 ൭෍ 𝑋௜ଵ𝐷௜ଵ௜∈ூ , ෍ 𝑋௜ଶ𝐷௜ଶ,௜∈ூ … , ෍ 𝑋௜௞𝐷௜௞௜∈ூ ൱ {𝑘 ∈ 𝐾} (3)

2. Compactness 
Compactness is a hot spot in urban planning and is significant for constructing re-

source-saving and environment-friendly cities [42,43]. The second objective aims to 
maximize compactness among land use cells, which improves land utilization efficiency 
and living convenience. There is no unified measurement of compactness owing to its 
diverse definitions and conceptual frameworks [44–46]. Inspired by previous TOD plan-
ning applications, this study measures compactness as the number of neighboring cells 
with the same land use type [9,15]. For example, the compactness of cell i with k-type 
land use can be computed by the number of cells assigned to k-type land use within the 
eight cells surrounding i. The objective is formulated as follows: 𝑚𝑎𝑥𝑓ଶ = ෍ ෍ ෍ 𝑋௝௞𝑋௜௞௝∈ே೔௞∈௄௜∈ூ  (4)

3. Land use conflict 
Conflicts are commonly generated in adjacent land use cells; for example, industrial 

lands may bring about noise and pollution and lead to negative effects for people living 
in nearby residential lands. The third objective aims to minimize the conflict between 
different adjacent land parcels to improve the quality of life of residents around the sta-
tion. Nevertheless, the conflict between adjacent cells is formidable to quantitatively de-
scribe, so an empirical indicator, conflict degree𝑐௞௟, is employed according to previous 
studies. In addition, considering that differently dense regions result in varying conflicts, 
this study introduces the identification of “adjacency” to the function establishment [47]. 
The objective is formulated as follows: 

𝑚𝑖𝑛𝑓ଷ = ∑ ∑ 𝑋௜௞𝐷௜௞ ∑ 𝑋௝௟ ௌ௜ௗ௘ඥ஽೔ೖ 𝑐௞௟௝∈஺ௗ௝೔௞∈௄௜∈ூ ∑ ∑ 𝑋௜௞𝐷௜௞௞∈௄௜∈ூ  (5)

4. Land use mix 
Mixed land use not only contributes to stimulating activities but also reduces travel 

costs and promotes travel by walking and bicycling, which is a significant feature for 
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compact and vital neighborhoods. The third objective aims to increase the degree of 
mixed land use to design a functionally diversified neighborhood consistent with TOD’s 
basic concept. The degree of mixed land use is measured by the entropy index [48], and 
the objective is formulated as follows: 𝑚𝑎𝑥𝑓ସ = − ∑  𝐴௞𝑙𝑛ሺ𝐴௞ሻ௞∈௄ln ሺ𝑁௖௘௟௟ሻ  (6)

where 𝐴௞  is the density percentage of k-type land use in the station area; and 𝐴௞=∑ 𝐷௜௞i∈ூ / ∑ ∑ 𝐷௜௞௞∈௄i∈ூ . 
 
5. Environmental effects 

The local environmental burden will be heavier as developed land use density and 
human activities increase, and reducing the environmental footprint in the precondition 
of TOD principles is important for sustainable planning [12]. By reference to previous 
studies, the fourth objective aims to reduce the pollution treatment cost, which reflects a 
decrease in the negative environmental influence of development and maintains envi-
ronmental quality [13,14]. A high density of industrial land cells may increase the cost of 
pollution; thus, controlling the allocation of high-pollution industries is important for 
green planning. The treatment cost is highly correlated with the land use density and 
needs to consider various types of pollution. The minimum pollution treatment cost is 
formulated as follows: 𝑚𝑖𝑛𝑓ହ = ෍ ෍ ෍ 𝑋௜௞𝐷௜௞௥∈ோ 𝑃௞௥𝑐𝑜𝑠𝑡௥௞∈௄௜∈ூ  (7)

6. Destination accessibility 
Destination accessibility, which is measured by the walkable distance from the 

origin to the transit station, is an essential principle of TOD [49]. This last objective aims 
to reduce the total walking distance of residents from the MRT station to their destination 
to support travel by MRT. Specifically, there are significant divergences in residents’ at-
traction to various land uses. Highly attractive land use should be close to the MRT sta-
tion, and dense development will create a high cost in terms of walking distance. The 
objective is formulated as follows: 𝑚𝑖𝑛𝑓଺ = ෍ ෍ 𝐿௜𝑋௜௞𝐷௜௞௞∈௄௜∈ூ 𝐴𝑡𝑡𝑟௞ (8)

3.2.4. Constraints 
In addition to the above objectives, several constraints exist during the optimization 

process. First, as the minimum units in the study, each cell must be allocated to one type 
of land use, and mixed land use is not acceptable. Therefore, the land use type is encoded 
into a binary variable,𝑋௜௞, and the constraint is presented as follows: X୧୩ = {0,1}, ∀i ∈ I, k ∈ K (9)෍ 𝑋௜௞௞∈௄ = 1, ∀𝑖 ∈ 𝐼 (10)

Second, intensive development will exceed environmental capacity; therefore, land 
use density is limited by the exploitative intensity index, such as the floor area ratio pro-
vided by the Urban Management and Planning Ordinance. The land use density of each 
cell must be constrained as follows: 𝑋௜௞ ∗ 𝑙𝑜𝑤𝑒𝑟𝐸𝐼𝐼௞ ≤ 𝑋௜௞𝐷௜௞𝐴𝑟𝑒𝑎 ≤ 𝑋௜௞ ∗ 𝑢𝑝𝑝𝑒𝑟𝐸𝐼𝐼௞, ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (11)
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Finally, as regional planning varies across different station locations, such as plan-
ning for a commercial center or a cultural center, the percentage of the land use density of 
different land use types is constrained by the government’s overall urban planning: 𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑡𝑖𝑜௞ ≤ ∑ 𝐷௜௞௜∈ூ∑ ∑ 𝐷௜௞௜∈ூ௞∈௄ ≤ 𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑡𝑖𝑜௞, ∀𝑘 ∈ 𝐾 (12)

3.3. Optimization Approach 
Land use design is a multiobjective programming problem, and it is impossible to 

achieve the best value for all of the objectives because of the conflict among them. Opti-
mization aims to find the Pareto optimal solutions of land use maps. Therefore, a method 
based on the nondominated sorting genetic algorithm III (NSGA-III)[32], which is skilled 
in searching for multiobjective optima without weights, is employed to generate alterna-
tive land use maps. Specifically, land use layout A is prior to being chosen only when A 
performs better than B among all objectives (A dominates B). Therefore, the land use 
layouts optimize the multiple objectives simultaneously and approach the optimum in 
the consecutive generations. Finally, a set of alternative land use layouts are obtained for 
further selection by decision-makers. The flowchart of the optimization model is shown 
in Figure 3, and the main operators are illustrated below. 

Start
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Calculate Fitness 
and Record
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Crossover
Mutation

First Offspring

Reproduction

First Parent

Calculate Fitness
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No

Stop

Yes

Offspring of this 
Generation

No

 
Figure 3. Flowchart of the optimization approach. 

1. Representation and Initialization 
In this work, we design a mixed coding for fitting the problem, where real coding is 

applied to describe the decision variables, and each undeveloped cell in the land use 
sketch map is transformed into two genes to represent the land use type (integer 0–4) and 
density (positive floating number). Consequently, the length of the chromosome in an 
individual is twice the number of undeveloped cells. In the initialization step, individuals 
are generated randomly, and unqualified individuals are removed by a constraining 
judgment. The initialization ends when the number of eligible individuals reaches the 
population size. 
2. Fitness 

Fitness is a crucial indicator for evaluating the performance of individuals and is the 
fundamental element for genetic operators. In this work, six fitness values that corre-
spond to the objectives are calculated:{𝑓1, 𝑓2, −𝑓3, 𝑓4, −𝑓5, −𝑓6}. 
3. Preselection 

For each iteration of the reproduction, a set of candidates (𝑄௧) consists of both the 
parent (𝑃௧) and offspring (𝐶௧) in the last iteration, and the purpose of preselection is to 
choose the best and most diverse individuals (𝑃௧ାଵ with the population size) for the next 
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iteration. The procedure of the operator is shown in Figure 4, and there are two steps in 
the preselection. 

Parent

Offspring

𝑃𝑡  

𝐶𝑡  

F1

F2

F3

F4

F5

Nondominant Fast Sort

F3

F3

F1

F2

F3

Niche-preserving 
Operator

𝑃𝑡+1

Eliminate

 
Figure 4. Illustration of the preselection operator. 

Nondominant fast sort: This operator is used to classify individuals into several 
levels based on the dominant relation. As shown in Figure 4, F1 is the best level. Indi-
viduals in F1 are not dominated by any other individuals, and individuals in F2 are 
dominated only by individuals belonging to F1. Individuals at a higher level are more 
likely to be selected. 

Niche-preserving operator: This operator is applied to choose individuals at the 
same level with the principle of individual diversity (such as F3 in Figure 4). The sketch 
map of the operator is shown in Figure 5. First, two-layer reference points (112) uniformly 
distributed on the unit simplex of the solution space are generated. Second, the ideal point 
is determined by the minimum value of each objective, and the extreme points are chosen 
as the points nearest to the axes. Third, the fitness of the objectives is normalized based 
on the ideal point and extreme point, and each solution is associated with the reference 
point whose reference line (the line that connects the reference point to the ideal point) is 
closest to the solution. Finally, when the reference point contains fewer solutions, the 
solutions associated with this reference point have a greater potential to be selected. Sig-
nificantly, the reference point intrinsically represents the preference for objectives, which 
can be regarded as a novel “weight”, and the fitness with normalization displays a 
comparable “score” for all objectives, which helps further decision making. 

 
Figure 5. Sketch map of the niche-preserving operator. 

4. Conventional Genetic Operators 
As excellent individuals are selected by preselection, the model randomly selects 

pairs of parents from 𝑃௧ାଵ. This work applies uniform crossover and uniform mutation 
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operators, and each gene decides whether to reciprocally interchange and mutate based 
on constants 𝑃௦ and 𝑃௠. In this study, the genes of the land use type are directly ex-
changed in the crossover and are randomly mutated to integers (0–4), while the genes of 
land use density employ a simulated binary crossover and polynomial mutation in the 
genetic operators. Finally, each individual must satisfy the constraints. 
5. Elitism and Termination 

This work also introduces elitism to the model, which preserves the individuals with 
the best performance for each objective to force the solutions to approach the optima. The 
algorithm ends when the given maximum iteration is reached; otherwise, the algorithm 
returns to reproduction. 

4. Case Study 
4.1. Study Area 

Shanghai is considered to be among the cities with a highly developed MRT system. 
To date, 16 lines with 416 stations are in operation, and the total length of the Shanghai 
Metro is 705 km. There is a substantial need for planning to integrate the MRT system 
and land use to relieve urban issues, and significantly, the government has adopted TOD 
as a crucial tool in land use planning. As a previous study found, the results of the TOD 
typologies are valuable for site selection [7]. In this study, the area around Fanghua Road 
Station is selected as the study area because the development of land at this station has 
been proven to lag behind the development of rail transit in the TOD typology [6], and 
the station has the potential to develop in coordination with land use optimization. 
Fanghua Road station is at the end of line 7 and near the subcenter of Century Park, 
which is located in the suburbs of Shanghai city (as shown in Figure 6a). The allocation of 
land use around the station is shown in Figure 6b, where residential regions occupy the 
largest area in the station catchment, and the diversity and density of land use are insuf-
ficient compared to MRT development. Specifically, a distance of between 400 m and 800 
m (10-min walk time) is appropriate for TOD planning, and a square circumscribed in the 
800 m radius of the station is used for planning in this case study, which is consistent 
with previous work [13]. Furthermore, the planned area is divided into 20 × 20 cells of 
uniform size; the size of each cell is 80 m × 80 m. On the one hand, we find that almost all 
the grids in this size contain a specific land use type, which distinguishes the different 
types of land cells and accurately describes the land use status. On the other hand, the 
grid size guarantees the efficiency of the solutions and generates appropriate land use 
sketch maps for regional planning. 

  
(a) (b) 

Figure 6. Map of the study area: (a) Distribution of the Shanghai Metro and Fanghua Road station; 
(b) Allocation of the land use around Fanghua Road Station. 
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4.2. Data Description and TOD Planning Model Construction 
Geo-big data have a high spatial resolution, fast updating, and convenient access 

compared to traditional survey information and are suitable for describing complicated 
scenarios around stations. The proposed method uses both geographical data with a high 
spatial resolution and empirical and statistical data for objective construction.  

Land use data: As substantial variables, land use allocation around the station is 
determined by the area of interest (AOI), which is a type of geographic data that com-
prises land parcels with exact types, locations, and outlines. Land use density is esti-
mated mainly by the floor area ratio (FAR) from planning data and housing websites for 
residential land and building outlines with floor information for other types of land. 

Data for ridership: Ridership is estimated by the inbound and outbound passenger 
flow using smart card data that contain abundant information on individual travel, in-
cluding the user, time, stop, and line. In this study, the average workday ridership is 
calculated from 266 metro stations in January 2018, with a total of 258,896,211 records for 
modeling. The data that correspond to the variables of ridership are illustrated in Table 1 
(buffer with 800 m). 

Empirical data: Several parameters are employed in the planning model. An artifi-
cial indicator, conflict degree𝑐௞௟ (0–8), is designed to estimate the conflict between adja-
cent parcels because quantitative evaluation involving numerous factors faces significant 
challenges [13,14]. The total cost of pollution treatment is calculated by pollution emis-
sions 𝑃௞௥ and unit cost 𝑐𝑜𝑠𝑡௥ for different pollutant types, which is estimated by the 
relevant policy [50]. Passenger attraction 𝐴𝑡𝑡𝑟௞ determines the distribution of residents’ 
destinations and is estimated according to the Technical Standards of the Traffic Impact 
Analysis of the Shanghai Construction Project [51]. 

Table 1. Data description for the variables of the ridership objective. 

Categories Variables Source 

Land use 

Residential density 
The area of interest (AOI) of Amap, building outlines 
with floors, and the floor area ratio from planning in-

formation and housing websites (such as 
https://m.ke.com/sh/, accessed on 31 October 2020) 

Economic density 
Commercial density 

Public density 
Industry density 

Built environment 
Length of the street network Open Street Map (OSM) 

Population density Landscan 2018 [52] 
Number of road intersections Open Street Map (OSM) 

Transit service 

Number of metro lines The official website of Shanghai Metro 
Number of bus stops The points of interest (POI) of Amap 

Terminal station (dummy) The official website of Shanghai Metro 
Departure interval The official website of Shanghai Metro 

Demographics 
Household Housing websites 

Housing price Housing websites 
Ridership MRT ridership (dependent variable) Smart card data 

The case study is conducted with the data mentioned above. The initial land use 
layout can be acquired based on the land use data by mapping the land use allocation of 
AOI data to grids and determining the density of the existing land use development 
from FARs. Then, the TOD planning model is established for optimization. With the 
count of the total (both boarding and alighting) ridership from smart card data and the 
preparation of the control variables and explanatory variables listed in Table 1, the 
XGBoost model is trained with data for ridership (all metro stations) for the first Objective 
of MRT ridership. The parameters of conflict degree 𝑐௞௟, pollution emissions 𝑃௞௥ and 
unit cost of different kinds of pollutants 𝑐𝑜𝑠𝑡௥are estimated from the empirical data, which 
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are used to build up the objectives of land use conflict, and environmental effects, re-
spectively. To construct the objective of destination accessibility, passenger attraction 𝐴𝑡𝑡𝑟௞are estimated with empirical data and the distances from land use cells to the metro 
station 𝐿௜ are calculated based on the OSM. Finally, the objectives of the land use mix 
and compactness are calculated with the land use layout, which does not involve addi-
tional information. 

4.3. Results and Analysis 
4.3.1. Ridership Modeling 

Fivefold cross-validation (5-CV) is applied to search for the optimal structure of 
XGBoost to ensure a robust model, and the total sample is divided into a training set with 
80% of the data, and a test set with the other 20% of the data for evaluation. Conse-
quently, XGBoost for nonlinear modeling is developed with a maximum of 10,000 CARTs 
and a learning rate of 0.005. In addition, the training is stopped early to improve the 
generalization of the model. The average goodness of fit (Rଶ) and root mean square error 
(RMSE) of the 5-CV are used to evaluate the model. Table 2 displays a comparison of the 
results of XGBoost and those of the linear model. The result of the ridership regression 
shows that XGBoost obtains a better result than the linear model in the training step, and 
61% of the ridership of the test samples can be explained by the XGBoost model, which is 
slightly higher than that of linear regression. In addition, this study compares the result 
of XGBoost with another two popular tree models, random forest and gradient boosting 
decision tree (GBDT), which indicate that the employed method is fitter at depicting the 
objective of MRT ridership than the other tree models. Nonetheless, the accuracy of the 
test set does not achieve the expected value for several reasons: there is a lack of sub-
stantial impact factors, such as car ownership, because of data accessibility; the size of the 
samples is too small to support the XGBoost model; and the data have deviation and 
noise. In summary, the model provides an appropriate setting for constructing the rid-
ership objective. 

Table 2. Model performance of XGBoost, linear model, and tree models. 
Objective Model 𝐑𝟐 RMSE 

  Training Test Training Test 

Ridership 

Linear (OLS) 0.64 0.53 1160 2543 
Random Forest 0.77 0.48 869 3190 

GBDT 0.95 0.56 340 2484 
XGBoost 0.96 0.61 330 2340 

4.3.2. Optimized Land Use Layouts 
The NSGA-III is used for multiobjective optimization, and the population size is set 

to 112. The maximum number of generations is 2000 because it is necessary to search a 
large number of generations for optimal solutions in such a large solution space. The ini-
tial land use map is acquired by transforming the land use allocation in the planning area 
to 20×20 cells, which consists of 233 developed cells and 167 undeveloped cells (Figure 
7a). Finally, 105 alternative non-dominated land use layouts are obtained after 2000 iter-
ations. The extreme optimal solutions (best performance in six objectives) are selected to 
validate the effectivity of the optimization approach, and the employed method is com-
pared with the elitist genetic-based algorithm (EGA) [53] and the nondominated genetic 
algorithm-II (NSGA-II) [31]. Table 3 shows that the optimal land use layouts obtained by 
NSGA-III achieve a maximum ridership of 129,418persons per day (A), maximum com-
pactness of 1520 (B), minimum land use conflict of 3.328 (C), maximum land use mixed 
degree of 0.696 (C), lowest pollution treatment cost of 8.917 × 10ହ RMB per year (D) and 
shortest walking distance of 2.557× 10଼ meters (E). The employed method performs 
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better than the EGA in most objectives (ridership, land use mix, and pollution cost), 
suggesting that the extreme optimization of the model is as excellent as that of the EGA. 
However, the EGA is not powerful enough to solve multiobjective problems. In addition, 
the nondominant solution set of NSGA-III is compared to that of NSGA-II  by a set 
coverage metric (C-metric) [54]. The comparison shows that 0.8% of the solutions in the 
Pareto solution set of the NSGA-III are dominated by the solutions in the Pareto solution 
set of the NSGA-II; and inversely, 2.7% of the solutions in the Pareto solution set of the 
NSGA-II are dominated by the solutions in the Pareto solution set of the NSGA-III, which 
shows that the applied model has remarkable convergence. Therefore, the NSGA-III is an 
appropriate optimization method with no empirical weights for the TOD planning 
model. 

  
(a) (b) 

Figure 7. Land use sketch maps of initialization and optimization: (a) Initial land use maps of the 
station area; (b) Balanced optimized land use maps. 

Table 3. Performance of the extreme optimal solutions of the NSGA-III and EGA. 

Algorithm Solution 
Ridership

（persons/day）
Com-

pactness 
Land Use  
Conflict Land Use Mix 

Pollution Cost 
(RMB/year) 

Walking Distance 
(m) 

NSGA-III 

A 129,418 1258 4.739 0.259 4.971× 10଺ 8.810× 10଼ 
B 59,073 1520 3.579 0.242 2.447× 10଺ 5.586× 10଼ 
C 56,554 1506 3.328 0.237 2.120× 10଺ 4.653× 10଼ 
D 73,299 1196 5.493 0.268 7.047× 10଺ 7.120× 10଼ 
E 53,369 1354 4.127 0.227 8.917× 𝟏𝟎𝟓 4.699× 10଼ 
F 50,381 1308 5.895 0.224 5.432× 10଺ 2.557× 𝟏𝟎𝟖 

EGA 

A 126,273 1304 4.403 0.246 3.178× 10଺ 7.976× 10଼ 
B 56,381 1572 4.021 0.241 3.671× 10଺ 4.476× 10଼ 
C 66,794 1482 3.246 0.240 2.273× 10଺ 6.347× 10଼ 
D 66,886 1294 4.947 0.266 6.608× 10଺ 7.012× 10଼ 
E 56,950 1340 3.937 0.231 9.468× 𝟏𝟎𝟓 6.322× 10଼ 
F 44,823 1350 5.372 0.214 5.401× 10଺ 2.436× 𝟏𝟎𝟖 

4.3.3. Further Selection: A Feasible Solution for the Study Station 
As discussed above, several consistencies and conflicts among the objectives need to 

be considered by decision-makers. Although the extreme optimal solutions achieve the 
best performance for each objective, a balanced solution is more favorable for practical 
planning. According to the “comprehensive plan and general land use plan of Pudong 
New Area, Shanghai” [55], the Fanghua Road Station of rail transit line 7 is regarded as 
the core, and the construction of both cultural parks and cultural facilities is planned to 
improve the comprehensive support of regional services and maintain ecological sus-
tainability. Therefore, the percentage of public land use has to be set to a high value to 
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satisfy this requirement, and the planning solution focuses more on land use conflict, 
land use mix, and pollution cost. Based on the purposes of the planning, an alternative 
balanced solution, which is selected from the aforementioned 105 alternative solutions, 
achieves the highest score of 0.455 after normalization and is associated with the refer-
ence point having the preference of (0.083333, 0.083333, 0.25, 0.25, 0.25, 0.083333) in each 
objective dimension. The solution for ridership is 58,616 persons per day, compactness is 
1298, land use conflict is 4.742, land use mix is 0.256, pollution cost is 3.751 × 10଺ RMB 
per year, and total walking distance is 6.157 × 10଼ meters. Figure 7b shows the opti-
mized land use sketch map and Figure 8 depicts the land use density of the selected so-
lution around the station. Significantly, commercial land use is vigorously developed 
and mainly concentrated in the internal and intermediate areas of the station to attract 
the attention of residents. Economic land use is uniformly allocated in the planning area 
to offer plenty of employment. Residential land use is mainly aggregated in the periph-
ery of the planning area, which is not influenced by the noisy station, and residents can 
walk home within a comfortable distance. Industrial land use is dispersed in the area 
with a small number of cells to maintain the land use mix and environmental protection. 
Finally, public land use including parks, cultural places, and public services, occupies a 
large space in the area, which is consistent with regional planning. The selected land use 
layout largely achieves the objectives of TOD planning and conforms to local political 
strategies [55], which provides suggestions regarding station-level land use develop-
ment. 

 
Figure 8. Optimized land use density of the station catchment. 

5. Discussion 
Analyzing the TOD planning objectives is imperative for integrated development of 

transportation and land use, and highlights valuable policy implications. The coefficient 
confusion matrix is constructed with the Pearson correlation coefficients of the objectives 
in pairs to seek out the relationship between the planning objectives. The correlation co-
efficients are shown in Figure 9 and several interesting findings are acquired. 

Firstly, similarly to the results of previous studies [39,40], we find that a high degree 
of mixed land use results in an increase in ridership, suggesting that functionally diverse 
land use provides abundant space for various activities and generates substantial travel 
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demands for MRT systems. Therefore, promoting functional diversity for land use is 
crucial for planning the undeveloped or developing metro station catchments. 

Secondly, high values of compactness enhance the local land use efficiency and de-
crease the conflict between adjacent land cells, but it negatively affects the degree of 
mixed land use. This is consistent with findings from a previous study [14]. For urban 
planners, it is important to keep a balance simultaneously between regional global land 
use functional diversity and compact local land use when making decisions for TOD 
planning. 

Thirdly, the local pollution treatment cost increases as ridership increases because 
high-density land development both increases residents’ travel demands and pollution 
emissions. This result has also been proved by a previous study [13]. Therefore, policies 
should advocate multi-mode public and low-carbon transportation and expand efforts to 
develop sustainable buildings, energy, and waste practices to construct green and livable 
TODs. 

Finally, the total walking distance increases along with land use mix and ridership, 
as shown in Figure 9a, because high-density and high-diversity development raises 
passage flows. Furthermore, we calculate the average walking distance of each person 
(the total distance divided by ridership). Figure 9b shows the relationship between av-
erage personal walking distance and ridership (both of them are standardized by 
max-min normalization), which indicates that the average walking distance of each per-
son does not increase, confirming that an appropriate land use allocation could shorten 
the walkable distance and enhance travel convenience to MRT stations, both of which 
increase the attractiveness of rail transit for residents. −0.2− 

  
(a) (b) 

Figure 9. Relationships between the planning objectives: (a) Coefficient confusion matrix; (b) Rela-
tionship between the average walking distance and ridership. 

6. Conclusions 
This paper proposes an improved multiobjective TOD land use design framework to 

finely optimize the land use layout surrounding MRT stations and promote coordinated 
development between public transportation and land use in Chinese megacities. The 
method is constructed via a TOD planning model and a multiobjective optimization ap-
proach. Based on TOD strategies in the Chinese context, the planning model focuses on 
economic rail transit, efficient and functionally diverse land use, high-quality and con-
venient living, and a low-polluting environment. Specifically, the planning model in-
troduces geo-big data and explores the practical nonlinear impacts of land use on MRT 
ridership. An improved genetic algorithm is used to solve the multiobjective program-
ming model, and it generates land use schemes with specific land use allocations and 
density features without objective weighting. Significantly, the optimized approach pro-
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vides objective preference information and normalized scores of the solutions for further 
selection to satisfy the local policies. The proposed method is validated in the case study 
of Shanghai. The results indicate that (1) the TOD planning model, constructed with 
geo-big data and statistical and empirical data with the consideration of nonlinear rela-
tionships between the land use and TOD objectives, is closer to the actual situation than 
other models; (2) The employed optimization approach is effective in solving the com-
plicated TOD planning model and in generating a set of alternative land use schemes 
with favorable extreme optima and convergence. Furthermore, this study discovers sev-
eral interesting findings based on analyzing the relationships between the TOD planning 
objectives, and provides meaningful suggestions for urban planning and policy-making. 
Most of the data in this framework are from open sources and the objective functions can 
be established; thus, the method is applicable for other Chinese megacities with some 
revisions (e.g., different study areas may use different grid sizes, model parameters, and 
constraints corresponding to local policies), which would provide valuable insights from 
a micro perspective for the future balanced development of MRT and station-level land 
use. 

Although the proposed method solves problems regarding TOD planning, there are 
several features to be improved and extended in the future. Overall, this study applies 
fixed-dimension cells for designing, allocates a pure land use category to each cell, and 
does not consider the mixed uses of buildings, which reduces the diversity of the realistic 
urban environment. Therefore, it would be significant to incorporate different land parcel 
shapes and mixed-use buildings into planning. Secondly, the alternative land use sketch 
maps from the proposed model are scattered and discrete, which creates problems in 
practical urban planning. Accordingly, critical spatial constraints will be introduced to 
the model. Moreover, some objectives, such as environmental effects, are simplifications 
that construct relationships only with land use and do not consider other elements of the 
built environment; thus, combining with more factors that contribute to the objectives 
can be beneficial for improving the TOD planning model. The multiple factors change 
with the transformation of the land use, so more complicated dynamic models can be 
considered for planning as an extension of this study. Finally, it is difficult to practically 
measure the attraction of land use with empirical data, but mobile sensor data such as 
cellular signaling data offer the possibility of precisely estimating the distribution of 
passenger flow, which will be used in future works.  
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