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Abstract: Confronted with the spatial heterogeneity of the real estate market, some traditional
research has utilized geographically weighted regression (GWR) to estimate house prices. However,
its predictive power still has some room to improve, and its kernel function is limited in some
simple forms. Therefore, we propose a novel house price valuation model, which is combined with
geographical neural network-weighted regression (GNNWR) to improve the accuracy of real estate
appraisal with the help of neural networks. Based on the Shenzhen house price dataset, this work
conspicuously captures the variable spatial regression relationships at different regions of different
variables, which GWR has difficulty realizing. Moreover, we focus on the performance of GNNWR,
verify its robustness and superiority, and refine the experiment process with 10-fold cross-validation.
In contrast with the ordinary least squares (OLS) model, our model achieves an improvement of
about 50% on most of the metrics. Compared with the best GWR model, our thorough experiments
reveal that our model improves the mean absolute error (MAE) by 13.5% and attains a decrease of
the mean absolute percentage error (MAPE) by 13.0% in the evaluation on the validation dataset. It
is a practical and powerful way to assess house prices, and we believe our model could be applied
to other valuation problems concerning geographical data to promote the prediction accuracy of
socioeconomic phenomena.

Keywords: GNNWR; GWR; house price valuation; spatial heterogeneity

1. Introduction

Housing prices are closely related to the lives of new urban residents, and they also com-
prise a vital economic index to which the government needs to pay close attention. Exploring
the spatial distribution pattern of housing prices has great practical significance and guiding
value for government regulation, individual house purchase, or third-party valuation.

As a country with one of the fastest urbanization processes, China has seen steadily
rising housing prices in the past few decades, especially in its major cities. Affected by the
COVID-19 pandemic in 2020, the world’s major economies entered a liquidity easing cycle,
and housing prices in many cities in China rose significantly [1]. On this basis, several
Chinese cities, such as Shenzhen, Xi’an, and Chengdu, have implemented second-hand
housing transaction reference pricing, which is used to curb house price increases. The
reference price provides us with a reasonable valuation for slight housing price bubbles.

In this research, we propose a novel house price valuation model based on the data of
Shenzhen, China. In the past, different models have been developed by many scholars to
model and estimate house prices. In 1972, Rosen [2] proposed the hedonic model, which
aims to measure property prices using a number of environmental factors. Early studies
mainly consisted of three components: location traits, structural traits, and neighborhood
traits, i.e., housing prices are mainly a function of these three characteristics and are
approximately linearly related in an exponentialmanner [3]. A number of subsequent

ISPRS Int. J. Geo-Inf. 2022, 11, 450. https://doi.org/10.3390/ijgi11080450 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11080450
https://doi.org/10.3390/ijgi11080450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-9322-0149
https://doi.org/10.3390/ijgi11080450
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11080450?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2022, 11, 450 2 of 25

studies have demonstrated the relative validity of this model, and measures of these factors
are able to estimate the positive or negative correlation between each independent variable
and house price more accurately. For example, MoK et al. [4] modeled the house prices in
Hong Kong in 1994, showing that house prices were significantly negatively correlated with
the age of the house and the distance from the central business district and significantly
positively correlated with the floor. As time progresses, more and more independent
variables were taken into account and more statistical indicators were added to test the
validity of the model. Further studies have partially incorporated land use planning, as well
as accessibility in terms of transportation [5]. In recent years, related residential house price
studies have incorporated a variety of external environmental factors such as the natural
landscape and neighborhood size to analyze their impact on house prices [6]. However,
these models have constantly encountered problems in dealing with spatial heterogeneity,
i.e., the same independent variable has different effects on house prices in different regions.
Ordinary hedonic models can only model a certain independent variable with constant
coefficients, but the real situation is often influenced by spatial factors. For example, in
suburban areas, transportation conditions dominate house prices, and the quality of nearby
schools does not matter. By contrast, in downtown areas, the quality of schools near homes
might be more critical, and nearby transportation conditions are relatively less important.
This is something that cannot be analyzed by ordinary hedonic models.

Furthermore, taking into account the spatial heterogeneity of the different influencing
factors, geographically weighted regression (GWR) methods are proposed, which allow the
coefficients to change at different locations [7,8]. The method can be understood as a local
weighted linear regression for each local area, and the coefficients fully take into account
the effects of adjacent data points according to the first law of geography proposed by To-
bler [9]. In order to build a more satisfying model for the geographically variable regression
relationships, Brunsdon and Fotheringham [10] mentioned several key questions that GWR
has faced: the selection of the variables, the bandwidth, and the spatial autocorrelation
of the error. Many scholars have made attempts to resolve these questions on this basis.
For example, Tu et al. [11] used the GWR model to discover the relationship between the
spatial variations and the urban public ridership in Shenzhen. In 2011, Geng et al. [12]
used the GWR model to model house prices in Shenzhen. Compared with the ordinary
least squares (OLS) model, the R2 improved from 0.56 to 0.79. Zhang et al. [13] used mixed
geographically weighted regression to model the rent in Nanjing, i.e., some variables were
locally weighted according to the geographic location while some variables were globally
weighted, and good results were achieved. Lu et al. [14,15] added non-Euclidean distance
to GWR, and for some geographic elements that do not obey the standard linear measure,
this model achieved better results on the spatial proximity measurement of London and
could have better estimation performance for house prices.

However, the ability of GWR to express spatial relationships is limited. Therefore,
many scholars have resorted to artificial intelligence methods, which have developed
rapidly in recent years, to model house prices using their superb ability to fit to house
price [16,17]. Although the estimation performance of neural network models is usually
superior to that of OLS models, the spatial distributions obtained by these models are
not entirely reasonable, and the constructed regression relationships are difficult to in-
terpret spatially, because they ignore the spatial properties of housing price regression
relationships. Another flaw is that some studies on modeling house prices with the help of
neural networks have not introduced a 10-fold validation mechanism. Moreover, as some
scholars have suggested, the “black box” approach of neural networks has significantly
limited their practical significance in predicting house prices and other socioeconomic
problems [18]. Both polynomial regression models and traditional neural network methods
depart from this linear structure and have relatively complex expressions, making analysis
and prediction much more difficult.

In recent years, based on the idea of geographic weighting of GWR, Du et al. [19]
proposed a geographically neural network-weighted regression (GNNWR) model that
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combines the OLS and neural network models. Owing to their powerful learning abilities,
neural networks can effectively address the potential spatial nonstationarity and complex
nonlinear features in regression relations. The concept of GNNWR is similar to that of
the transformer model [20], a groundbreaking and popular model proposed in 2017. The
principle of the transformer model can be summarized as “attention is all you need”. The
GNNWR model was proposed in the same period as a simpler approach to evaluate the
similarity (attention) between the estimated point and training dataset. Considering the
widespread application of attention models in recent years, GNNWR is used in this study
to model the ecological environment of nearshore seas [21] and estimate the spatial PM 2.5
concentrations in China [22]. The model performance and explanatory power are noted to
be satisfactory.

Unlike ecological phenomena, socioeconomic phenomena such as housing prices
are not always continuous in physical space. For example, geographical coordinates are
discrete and represent discontinuous location qualities. We speculate that the limitations
associated with the complexity of socioeconomic problems can potentially be overcome
using valuation strategies based on the GNNWR model. Housing price valuation is a
classic problem that involves geographical data. In this study, we consider the data of
Shenzhen, which is a representative city in China. On 8 February 2021, the Shenzhen Real
Estate and Urban Construction Development Research Center released reference prices for
second-hand housing transactions for the city’s 3595 residential quarters. This dataset can
be used to establish a residential price valuation model considering various factors, such as
property endogenous variables, subway, and school district conditions. Consequently, we
use the GNNWR framework to build a residential price valuation model to address the
spatial heterogeneity and nonstationarity present in the data [19].

In summary, the objective of this study is to introduce the GNNWR model in the
socioeconomic field to establish a residential price valuation model based on the reference
price data of second-hand housing transactions in Shenzhen, accurately fit the spatial
heterogeneity and nonlinear relationships of multiple environmental factors, and obtain
a more accurate housing pricing model than the GWR method by considering the spatial
distributions of multiple factors and their influence on housing prices. In particular, by
improving this pricing model, more patterns can be mined to clarify the importance of each
factor and variations in the factor weights.

From the viewpoint of methodological hybridization, the proposed approach provides
several novel opportunities for geographical comprehension. As a platform for residential
valuation, each hybridization provides a range of new possibilities for driving a paradigm
shifts toward sustainability, as indicated by Benessia et al. [23]. The proposed model
can provide reference for residential valuation, land auctions, and reference prices of
second-hand housing transactions in other cities. Through its integration in a hybrid
decision-support system, the proposed method can support the real estate market and
sustainable land use development as a diagnostic remedy, especially in the COVID-19
pandemic scenario [24].

2. Study Area, Data Sources and Research Methods
2.1. Shenzhen House Price Profile

The Shenzhen Special Economic Zone was established in 1980. This zone is adjacent
to Hong Kong in the south and lies to the west of the Pearl River Estuary in Guangdong
Province, China. Owing to its geographical proximity to Hong Kong and policy support,
Shenzhen has emerged as the region with the third largest GDP, with nine districts under its
jurisdiction. According to the Seventh National Census data, the population of Shenzhen
has reached 17.56 million. Even under the impact of COVID-19, Shenzhen’s regional GDP
was RMB 2767.024 billion in 2020, 3.1% higher than that in 2019.

With the increasing population, the housing prices in Shenzhen are rising owing to
its excellent economic conditions and business environment. To suppress the prohibitive
increase in housing prices, in February 2021, the Shenzhen Real Estate and Urban Construc-
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tion Development Research Center established the reference prices for second-hand housing
transactions in 3595 residential quarters, based on the government-recorded transaction
prices of second-hand housing and surrounding first-hand housing prices.

In this study, data from Shenzhen are used considering the following factors. First, the
reference prices of second-hand housing transactions in this region have been extensively
evaluated compared to data in the other regions. The differences across house types and
floors are averaged, government-recorded transaction prices and surrounding first-hand
housing prices are combined, short-term heat and bubbles are removed, and accurate
valuation results for a property can be obtained. Second, Shenzhen’s urban development
is mostly natural. No important political center, relics, or slums exist that can influence
the urban planning. Third, the reference prices are introduced in a uniform batch, with a
large amount of data and notable influence. Therefore, the results of modeling the reference
prices of second-hand house transactions in Shenzhen can provide reference for other cities
to introduce similar measures.

2.2. Experimental Data

In total, 2871 complete and effective initial data records are obtained, covering 2871 res-
idential quarters in Shenzhen as shown as Figure 1. The data source is https://shenzhen.
qfang.com (accessed on 20 August 2021). The records include the following three types of
data points:

1. Latitude and longitude: The latitude and longitude range between 22.484310° N and
22.788011° N and between 113.814605° E and 114.498340° E, respectively. The latitude
and longitude coordinates used for GNNWR are converted to the WGS 1984 50N
coordinate system after projection conversion.

2. Endogenous variables: These variables include the age of the building (AB), number
of parking spots (NPS), management fee (MF), green ratio (GR), and plot ratio (PR).
AB is calculated as the difference between 2021 and the construction year. If the
construction age is a range, the completion time is considered. If MF is a range, it
is calculated as the average of the upper and lower bounds. GR and PR are defined
as follows:

GR =
SVegetation

SLand

PR =
SFloor
SLand

where SVegetation is total green area; SLand is total land area; SFloor is total building area
of the neighborhood.

3. Environment-related variables: These variables include distance from the sea (SD),
quality of available public schools (QAPS), number of subway stations within a radius
of 1 km (NSS), and distance to the nearest subway station (DSS). SD is calculated
with reference to the location of the nearest coast, and DSS is indicated in units of
meters. QAPS is calculated using the following process: We divide schools into four
types (provincial key schools, city key schools, district key schools, and ordinary
schools) and assign points to each category (1–4 for ordinary, district key, city key,
and provincial key junior high schools, respectively; and 1.5, 2.5, 3.5, and 4.5 for
ordinary, district key, city key, and provincial key elementary schools, respectively).
The points of the best school in a school district are set as the QAPS. The QAPS is
designed considering the following aspects. First, according to the real-estate agencies
in Shenzhen and Hangzhou, key schools correspond to higher weights than common
schools. Second, the real-estate agencies indicate that elementary schools correspond
to higher weights than junior high schools because parents are more likely to choose a
better school in the early stages of child development. Third, according to comparative
analyses, the QAPS is a metric with high statistical significance.

https://shenzhen.qfang.com
https://shenzhen.qfang.com
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(a) (b)

Figure 1. Distributions of Neighborhood Data Points in Shenzhen, China among 10 Districts. (a) 10
Folds; (b) Test Set.

2.3. Research Methodology

Geographically Weighted Regression (GWR):
Based on the first law of geography, some scholars have proposed a geographical

weighted regression (GWR) model, trying to change the regression coefficient from global
to local, and change the weights of adjacent points according to different distances in the
regression framework. GWR model defines spatial nonstationarity as [7,25]:

yi = w0(ui, vi)× β0 +
p

∑
k=1

wk(ui, vi)× βkxik + εi

We can denote the coefficient as βk(ui, vi) = wk(ui, vi)× β0, to substitute the estimated
value of ordinary least squares model β̂k, the estimated value can be obtained as a uniform
linear structure:

ŷi =
p

∑
k=0

β̂k(ui, vi)xik

The estimator in matrix form can be expressed as:

ŷi = xT
i (XTW(ui, vi)X)−1XTW(ui, vi)y

The spatial weight matrix W(ui, vi) can be expressed as:

W(ui, vi) ,


w1(ui, vi) 0 · · · 0

0 w2(ui, vi) · · · 0
...

...
. . .

...
0 0 · · · wn(ui, vi)


In GWR model, the weight kernels usually use Gaussian, bi-square, tri-cube and

exponential functions. These functions can relatively simply express the complex rela-
tionship between spatial proximity (e.g., spatial distance) and spatial nonstationarity (i.e.,
spatial weight).

It should be noted that there are different ways to select the function in the spatial
weight matrix, and different selection methods directly affect the final modeling accuracy.

The Gaussian weighted function can be expressed as:

wij = e
−

ds
ij

b2

where ds
ij is the distance between points i and j; b, the bandwidth, producing a declining

effect relative to ds
ij, has different methods to select: for the fixed Gaussian weight function,
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the bandwidth is the same at each point and is a constant in the same model; for the
adaptive Gaussian weight function, the bandwidth is different at each point, and the
point distance closest to the point is often taken as the value of bandwidth. In any case,
the Gaussian weight function requires a variable input, that is, the distance range (fixed
bandwidth) or the number of major adjacent features (dynamic bandwidth).

The bi-square weighted function can be expressed as:

wij =

{
[1− (ds

ij/bi)
2]2, ds

ij < bi;

0, the others.

where ds
ij is the distance between two points; bi is the bandwidth. It is also divided into

fixed type and adaptive type according to the above method.
This model is built using adaptive functions, i.e., an input variable is needed to select

the number of major neighboring elements, and the AICc criterion is used to determine
whether it is more preferable [26].

Geographically Neural Network-Weighted Regression (GNNWR):
Similarly, based on the nonstationarity in the spatial relationship, GNNWR goes

further than GWR, trying to more accurately catch the fluctuation of spatial nonstationarity
on the regression relationship at different locations. The key step of GWR is the selection
and construction of spatial weight matrix function. On this basis, GNNWR attempts
to go further and find an appropriate spatial weight matrix function with the help of
neural network.

To accurately fit the complex relationship between spatial distance and spatial weight,
GNNWR designs a spatial weighted neural network (SWNN) to achieve the neural network
expression of weight kernel function. Specifically, SWNN takes the spatial distance between
points as the input layer and the spatial weight matrix as the output layer, and selects the
appropriate number of hidden layers according to the modeling needs. The spatial weight
calculation of the points corresponds with:

ŷi = xT
i β̂(ui, vi) = xT

i W(ui, vi)(XT X)−1XT y

where W(ui, vi) is the spatial weight matrix as:

W(ui, vi) ,


w0(ui, vi) 0 · · · 0

0 w1(ui, vi) · · · 0
...

...
. . .

...
0 0 · · · wp(ui, vi)


That is, this matrix is the result of function W : R2 → R(1+p)×(1+p). SWNN further

considers the existence of an intermediate variable [di1, di2, di3, · · · , din] and matrix W(ui, vi)
is a function of variable [di1, di2, di3, · · · , din], where dij is the distance from point i to sample
point j. Thus, the GNNWR-based house price estimation model is shown as Figure 2:
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Figure 2. Network Structure for Geographical Neural Network-Weighted Regression Model.

2.4. Indicators of Model Performance

The paper uses the following metrics to evaluate the performance of the model. Firstly,
the correction of Akaike information criteria (AICc) [7] is as follows:

AICc = nln(σ̂2) + nln(2π) + n
n + tr(S)

n− 2− tr(S)

The expression of matrix S is shown in Appendix B. The method is applicable for
both GWR and GNNWR. In practice, the smaller the value, the better the performance
of the model [26], and we use AICc to select the appropriate input parameters for GWR
model. Other measures of model performance include: coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE). The definitions are as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2

RMSE =

√
∑n

i=1(yi − ŷi)2

n

MAE =
∑n

i=1 |yi − ŷi|
n

MAPE =
1
n

n

∑
i=1
|yi − ŷi

yi
| × 100%

Among them, y is the average of the observed values; σ̂2 is the mean square error of
the model and p is the effective degree of freedom of the model.

2.5. Neural Network Design and Implementation

The GNNWR model uses a classic neural network framework, the process flow of
which is illustrated in Figure 2. Additionally, 10-fold cross-validation is performed to ensure
the robustness and reliability of the algorithm. All layers of the spatially weighted neural
network are fully connected, and the dropout technique proposed by Srivastava et al. [27]
is applied to enhance the generalization ability of the model. Each hidden layer is com-
bined with the batch normalization technique, the parameters are initialized using the
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method proposed by He et al. [28], and the parametric refined linear unit is used as the
activation function.

OLS, GWR, and GNNWR are applied to the max–min normalized housing price data,
and 10-fold cross-validation is performed to build the models over the training set, as
shown in Figure 3. The results for the validation set are used to calculate the root mean
square error (RMSE) as the loss function and evaluate the generalization ability. The result
with the highest generalization ability is selected for the three methods, and the predictive
ability of the model is tested on the test set. From the 2871 records, 431 (approximately
15%) constitute the test set, and the remaining 2440 records are equally divided into 10
groups (each containing 244 records, approximately 8.5%) for the cross-validation process.

Figure 3. 10-fold Cross-validation Experiment Process

Considering the results of preliminary experiments (Table 1), we use a six-layer neural
network structure containing: one input layer; four hidden layers with 512, 128, 64, and 16
neurons; and one output layer. The number of neurons in the input layer is the number
of training samples, and the number of neurons in the output layer is the number of
parameters in the linear regression model (number of independent variables plus one).

Table 1. Loss for Different Structures.

Structure of Hidden Layers Validation Loss Train Loss Test Loss

(1024, 512, 256, 128, 64, 32) 0.006470 0.002790 0.008867
(512, 128, 64, 16) 0.006427 0.0038040 0.008683

(512, 128, 32) 0.006529 0.0040193 0.008555
(256, 64, 16) 0.006537 0.0043795 0.008555
(256, 32, 8) 0.006527 0.0049904 0.008379

(256, 32) 0.006567 0.0046721 0.008992

After several trials, in the hyper-parameters, the value of learning rate is 10−2.95 ≈
0.00112, β1 = 0.8, β2 = 0.999, batch size = 128. The loss percentage in the dropout layer is
0.9, and the maximum number of epochs is 90,000.

To reflect the optimization in the iterative process, Figure 4 shows the change in the
test indicators of one fold during model training. In more than 30,000 epochs, if the loss
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for the validation set does not decrease after 9000 epochs, the neural network training is
terminated.

(a) (b) (c)

(d) (e)

Figure 4. Performance Variations on the Train (Orange Line) and Validation (Blue Line) Sets in
the Train Process of GNNWR Model. (a) The Decrease of AICc on Train Set. (b) The Decrease of
Average Absolute Error. (c) The Decrease of Average Relative Error. (d) The Increase of Determination
Coefficient. (e) The Decrease of Loss.

To demonstrate the superiority of GNNWR, the results of the OLS, GWR, and GNNWR
on the Shenzhen housing price dataset are compared. The GWR method uses the golden
search method to identify the most suitable number of neighboring elements according to
the Akaike information criterion (AICc).

As the NSS and QAPS variables are typically small integers, the design matrix used in
GWR modeling may exhibit multicollinearity when the number of neighboring elements is
small. Therefore, the search lower bound is set as 100 (i.e., at least 100 neighboring elements
are involved in the solution of the local regression coefficients).

According to a simple preliminary experiment, the bi-square function significantly
outperforms the Gaussian function as the kernel function of GWR over the 10-fold dataset.
The parameters are presented in the Table A1 attached in Appendix A. Therefore, in the
subsequent analyses, the bi-square function is used as the weight kernel function for
the GWR model. In the experiments, we use OLS as a rudimentary contrast. Both OLS
and GWR solutions are built on ArcGIS Pro 2.5.2. GNNWR is implemented using the
TensorFlow 1.15.0 library under the Python 3.6.13 kernel.

3. Results
3.1. Data Set Analysis and Descriptive Statistics

Table 2 summarizes the results of the correlation analysis and descriptive statistics of
Shenzhen housing prices with different variable factors.

The variables can be ranked as follows in decreasing order of the absolute values of
the correlation coefficients with housing prices: SD, MF, NSS, DSS, GR, AB, PR, QAPS, and
NPS. MF, NSS, GR, PR, QAPS, and NPS are positively correlated with housing prices; and
SD, DSS, and AB are negatively correlated with housing prices.
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Table 2. Exploratory Analysis and Descriptive Statistics of the Experimental dataset.

Indicator Price AB NPS MF GR PR SD QAPS NSS DSS

Mean 62,219.3 17.995 507.196 2.625 0.340 3.113 6586.1 3.704 1.769 930.5
Maximum 132,000 51 5500 36.6 0.990 7.000 24,967.2 4.5 8 25,110.0
Minimum 16,100 1 1 0 0.100 0.100 23.2 0 0 16.8
Std. Dev. 22,986.5 7.138 647.509 1.888 0.130 1.438 4933.7 1.179 1.432 1838.5

Correlation
Coefficient - −0.118 0.079 0.262 0.216 0.105 −0.504 0.080 0.248 −0.236

Variation
Coefficient 2.707 2.521 0.783 1.391 2.620 2.164 0.749 3.143 1.235 0.506

VIF - 1.622 1.243 1.227 1.122 1.150 1.167 1.204 1.365 1.136
t-test p - 0 3.4 × 10−8 0 0 0.0197 0 0.3208 0 0

Basic hypothesis testing is performed for each variable in the global regression equa-
tion using R language. The coefficient for each variable is assumed to be zero in the global
regression equation, and a test statistic that satisfies the t-distribution when the hypothesis
holds is constructed. Correspondingly, the p-value can be calculated. However, it can
be found that the p-value of PR is not significant at the significance level of 0.01 and the
p-value of QAPS is not significant at the significance level of 0.05 or even 0.1. If a global
regression is used, these two independent variables should be excluded. However, two
spatial statistical modeling methods, GNNWR and GWR, take them into account in this
study, and the significance of each variable in this model can be re-tested with the help of
the F2 statistic in the Appendix B. According to the analysis of nonstationarity diagnostics
in Appendices B and C, both variables are highly significant, when the coefficients of the
linear model are allowed to vary with geographic coordinates. These results demonstrate
the superiority of the spatial statistical modeling approach over the existing approaches.

3.2. Comparison of Indicators of House Price Valuation Models

The housing price valuation model is evaluated considering the fitting ability over the
training set and prediction ability over the test set. We stochastically divide the 2871 records
into the training and validation sets (2,440 records as 10 folds) and a test set (remaining
431 records).

The models are evaluated considering the R2 value, RMSE, mean absolute error (MAE),
mean absolute percentage error (MAPE), AICc, and Pearson correlation coefficient. For
the dataset generated after the 10-fold crossover, the following results are obtained after
merging the validation sets in Table 3.

Table 3. Indicators of GNNWR, GWR, and OLS on Merged Validation Set and Test Set.

Set Model R2 RMSE MAE MAPE Mean Err. Pearson
Cor. Coe.

Merged
Validation
Set

GNNWR 0.840177 9069.561 6558.630 0.111965 27.88808 0.916637
GWR 0.788728 10,427.68 7581.746 0.128538 −73.9177 0.888123
OLS 0.432101 17,096.31 13,003.76 0.228767 −5.60228 0.657404

Test Set GWR 0.790389 11,195.01 7912.005 0.122266 911.3839 0.891319
GNNWR 0.817178 10,455.19 7108.715 0.109174 1393.691 0.905834

The results demonstrate the superiority of the GNNWR model. The OLS model
achieves the worst prediction, with the lowest R2 and highest prediction error in terms
of the RMSE, MAE, and MAPE. Given the severe spatial nonstationarity, the OLS model
cannot detect the intrinsic relations and spatial fluctuations between the housing prices
and independent variables. The RMSE and MAE of the GNNWR model are approximately
13.0% and 13.5% lower than those of the GWR model, respectively. The GNNWR model
also outperforms the existing models in terms of the R2 and MAPE values. Additionally,
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the mean residual error of the GNNWR model is 62.2% lower than that of the GWR model,
which means that its predictions are more unbiased than those of the GWR on this dataset.
Overall, the GNNWR model exhibits improved generalization ability compared to the
other models.

The performance indicators of the GWR and GNNWR models in the modeling process
over the 10 training sets are compared to examine the fitting quality. Table A2 presents the
results of these indicators.

The number after the GWR results refers to the number of most suitable neighboring
elements selected based on the AICc value. As the training sets are slightly different,
the most appropriate number of neighboring elements is re-selected each time the GWR
model is rebuilt. Consequently, we use the best GWR model to ensure the fairness of the
comparisons.

For all 10 datasets, the GNNWR model considerably outperforms the GWR model
for all indicators (AICc, RMSE, R2, and Pearson correlation coefficient). The notable
improvement in AICc indicates that the GNNWR model can more accurately predict the
housing price and space weight matrix without significant increase in the complexity. In
contrast, the GWR model is vulnerable to overfitting, which decreases the correctness of
the predictions on the validation sets. In summary, the GNNWR model produces a more
capable kernel function than any GWR model, and it can effectively capture the spatial
heterogeneity details, estimate the spatial weights, and predict the dependent variables.

Furthermore, the generalization ability is evaluated by predicting the test set. In this
analysis, the results of the models with the best generalization ability are compared. Both
the GNNWR and GWR models exhibit the highest performance when dataset 4 is used
as the validation set, and the other indicators’ details are shown in the Appendix A of
Table A3.

The GNNWR model outperforms the GWR model in predicting the test dataset: The
MAE and MAPE of the GNNWR model are 10.2% and 10.7% lower, respectively; thus, real
estate agencies can achieve more accurate estimations than those associated with the GWR
model. Moreover, the RMSE of the GNNWR model is decreased by 6.6%, the R2 value and
Pearson correlation coefficient are enhanced, while the mean error is increased. In a recent
study, experiments on housing price datasets were conducted using the geographically
weighted artificial neural network (GWANN) model [29]. The RMSE of the GWANN model
was only 3.3% better than the GWR model for the best batch when predicting housing
prices. This result also demonstrates the superiority of the proposed framework.

Moreover, we have conducted some hypothesis testing about the spatial nonstationarity
in Appendices B and C. The results of experiments and theoretical analyses highlight
the importance of establishing a regression model with coefficients variegated among
geographical coordinates. We have also extended the analysis to the results of GWR model
in Appendix D. The comparison of the two models indicates that the GNNWR model can
more accurately detect the spatial heterogeneity in a facile manner.

4. Comparative Analysis and Discussion
4.1. Comparison of Prediction Performances of House Price Valuation Models

The relative error rate for each prediction over the validation and test sets is calculated.
The GWR and GNNWR models are compared using the Q–Q plot as Figure 5a,b, derived
using MATLAB. It should to be pointed out that no more than 5% of the points are not
shown outside this range.
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(a) (b)

(c) (d)

(e)

Figure 5. Analysis of the Relative Error Rates between GWR and GNNWR Model. (a) Q-Q Plot of
Relative Error Rates On Merged Validation Set. (b) Q-Q Plot of Relative Error Rates On Test Set. (c)
Histogram of Relative Error Rates On Merged Validation Set. (d) Histogram of Relative Error Rates
On Test Set. (e) The Ratio of the Top N Best/Worst Predictions from 2 Models.

Ordering the relative error rates, it can be found that the relationship between the
kth value on the validation set is approximately δ

(k)
GWR = 1.123δ

(k)
GNNWR + 0.0033. The

relationship between the kth value on the test set is approximately δ
(k)
GWR = 1.160δ

(k)
GNNWR +

0.0003. These reference lines that represent the theoretical distribution have a clear deviation
with y = x, which enable us to confirm the superiority of GNNWR models.
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The histograms of the models are shown in Figure 5c,d. On the validation set, setting
the histogram horizontal coordinates between [0,1] and bin width of 0.09, 9 of the 11 bins
with error rates less than or equal to 9.9% include more data from the GNNWR model. This
trend is also observed in the test set. Similarly, when the histogram horizontal coordinates
are set between [0, 1], and the bin width is set as 0.15, five of the seven bins with error rates
less than or equal to 10.5% have more data from the GNNWR model.

The prediction data of the validation sets for both models are shown in Figure 5. The
numbers of data points in both sets below a certain threshold are calculated, and the ratio
of the two numbers is plotted as a blue line on the graph. The ratio of the number of
predicted data from GWR to that from GNNWR when the statistical error rate is above a
certain value is plotted as the orange line on the graph. For data (two runs of predictions
over 2440 records) with a relative error rate of less than 0.203, the number of predictions
from GNNWR are 1.34 times larger than those from GWR. In contrast, for data with error
rates higher than 0.37, the number of predictions from GWR are 1.62 times larger than
those from GNNWR. In conclusion, the GNNWR and GWR predictions account for more
high-precision predictions and high-error predictions, respectively.

Comparing with other works [22], it can be found that another study also supports
the conclusion that GWR can significantly reduce the prediction error compared to OLS
models, indicating that spatial heterogeneity exists. In another study on Shenzhen house
prices, the authors used GWR model to increase the R2 from 0.56 to 0.79 [12]. Some simple
artificial intelligence models, such as decision tree models, can even predict worse than
OLS if they are not designed properly [30]. In a separate study comparing the OLS model
with multiple models, the best stepwise and tuned support vector machine model reduced
the RMSE by 25%, the polynomial regression model reduced the RMSE by 8.3%, and even
the optimal simple neural network selected from the 1–3 hidden layers increased the RMSE
by 66% [31]. Since the 1990s, scholars have been trying to use neural network models to
predict house prices and compare them with OLS models. Some studies have demonstrated
the superiority of the neural network approach [32–34], but others have found that there
is no great need to use neural networks [35,36]. Considering the 47% reduction in RMSE
metrics compared to OLS in this study, it is easy to see that simply using complex functions
trained by neural networks to approximate the training dataset does not improve the
prediction accuracy, and that a GWR-based framework can best capture information on the
geographic distribution. These indicate that accurate estimation of spatial heterogeneity is
extremely necessary.

According to the literature [22], the prediction error of the GWR is significantly lower
than that of the OLS models, indicating the presence of spatial heterogeneity. In a study on
Shenzhen housing prices, the GWR model was noted to increase the R2 from 0.56 to 0.79 [12].
Notably, simple artificial intelligence models, such as decision tree models, may achieve
inferior predictions compared to those of the OLS model if designed inappropriately [30].
In another study, the OLS model was compared with multiple models. Compared to the
OLS model, the best stepwise and tuned support vector machine model achieved a 25%
lower RMSE, the polynomial regression model achieved an 8.3% lower RMSE, and the
optimal simple neural network (selected from frameworks with 1–3 hidden layers) achieved
a 66% higher RMSE [31]. Since the 1990s, scholars have constantly attempted to use neural
network models to predict housing prices and compare them with OLS models. Although
several studies have demonstrated the superiority of the neural network approaches [32–34],
other studies have highlighted their limitations in certain applications [35,36]. Considering
the 47% reduction in RMSE metrics compared to OLS in this study, it is easy to see that
simply using complex functions trained by neural networks to approximate the training
dataset does not improve the prediction accuracy, and that a GWR-based framework can
best capture information on the geographic distribution. These findings highlight the
importance of accurately estimating spatial heterogeneity.
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4.2. Analysis of Variables Related to House Prices

The GNNWR model is based on the structure of linear regression, in which different
coefficients are assigned to different variables based on the location of the property to
capture the spatial heterogeneity. For the 10-fold dataset established in this study, the
coefficients of different independent variables at each prediction point can be visualized
and output after merging the validation sets, as shown in Figure 6. This section describes
the analysis of the fluctuations of these coefficients.

As the data are normalized before they are used in GNNWR training, the values
for different parameters can be directly compared, as indicated in Table 4. The mean
values indicate that the degree of influence of each independent variable on housing
prices is different, and the parameters can be ranked as follows in the decreasing order
of their absolute values: SD, MF, AB, NPS, DSS, GR, NSS, QAPS, and PR. When spatial
heterogeneity is considered, the effect of the NPS and AB on housing prices is more notable
than that estimated using the correlation coefficient, and the effect of the NSS is less notable
than that estimated using the correlation coefficient. The trends of the positive and negative
correlations with the housing prices are the same as those in the previous analysis: MF,
NPS, GR, NSS, QAPS, and PR are positively correlated with housing prices; and SD, AB,
and DSS are negatively correlated with housing prices. The parameters can be ranked in
decreasing order of the standard deviations of the coefficients as follows: DSS, MF, SD, AB,
NSS, NPS, GR, PR, and QAPS. Specifically, the public transportation conditions and school
district conditions (DSS and QAPS, respectively) exhibit the highest and lowest degrees
of spatial heterogeneity, respectively, consistent with the intuition. In a more extensive
analysis, the distributions of the coefficients of each variable are considered, as shown in
the following figures. The figures are plotted using the natural breakpoint method with
inconsistent color ranges for different subplots, and the boundaries near zero are finetuned
to highlight the positive and negative correlation features. Owing to the small standard
deviations, the data of PR and QAPS are classified into only six levels unlike the eight levels
of the other variables. The modeling results based on the 10 training sets are smooth, with
few mutations and outliers in the geographic proximity. The predictions for the coefficient
distributions are consistent for all sets.

The distributions of the intercept and variables derived from the GNNWR are examined
to demonstrate the significance of the proposed model in socioeconomic research.

First, we analyze the endogenous variables, specifically, MF, AB, NPS, GR, and PR, in
descending order of their influence on housing prices.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Coefficient Weight Distributions of Variables for GNNWR model in Shenzhen Real Estate
Market. (a) Intercept; (b) Age of Building (AB); (c) Distance to the Nearest Subway Station (DSS);
(d) Green Ratio (GR); (e) Management Fee (MF); (f) Number of Parking Spots (NPS); (g) Number of
Subway Stations within 1 km radius (NSS); (h) Plot Ratio (PR); (i) Quality of Available Public Schools
(QAPS); (j) Sea Distance (SD).



ISPRS Int. J. Geo-Inf. 2022, 11, 450 16 of 25

Table 4. Descriptive Statistics of Coefficients of Variable.

Coefficients of
Variables AB NPS MF GR PR SD QAPS NSS DSS Intercept

Mean −0.280 0.170 0.458 0.114 0.002 −0.474 0.021 0.033 −0.160 0.508
Maximum 0.612 1.101 2.675 0.836 0.320 0.383 0.179 0.701 6.763 1.486
Minimum −1.450 −0.420 −1.322 −0.230 −0.191 −2.035 −0.055 −0.868 −4.627 −0.018
Std. Dev. 0.195 0.179 0.609 0.108 0.057 0.253 0.026 0.187 0.820 0.208

The housing prices are mainly positively correlated with the MF, with representative
areas including southwest Nanshan District and the southern coast of Baoan District. The
negatively correlated areas include Huanggang in Futian District along the border with
Hong Kong. We speculate that marginal districts may exhibit a stronger positive correlation
between the MF and housing prices, because the MF may characterize the differences
between villas and hotels, as example dwellings.

The increase in AB limits the housing prices in Shenzhen. The negative correlation
between the housing prices and AB is the strongest in the coastal Nanshan District with
Houhai as the core, central Futian District with Xiangmi Lake’s eastern shore as the core,
and southern Longhua District with Shenzhen North Station as the core. The strong
negative correlation is attributable to the large supply of high-quality new houses near
these locations, as old properties are vulnerable to cold markets. At the border of Luohu
and Futian districts, the correlation between AB and the housing prices transforms from
negative to positive. According to Goodman et al. [37], AB influences housing prices in
a nonlinear manner, with a positive effect observed when AB is greater than a certain
threshold. The Shenzhen areas explored by the GNNWR model are those with the earliest
constructions, and these areas include famous landmarks, such as Dongmen Old Street and
Diwang Building.

The NPS and housing prices are positively correlated. The strongest positive correla-
tions are observed in central Nanshan District, Xiangmi Park in western Futian District, and
near Caiwuwei in Luohu District. The contribution of NPS to housing prices is expected to
be the most significant in middle-class residential areas and wealthy areas. The areas with
strong positive correlations, explored by the GNNWR model, coincide with such regions.

The increase in GR increases housing prices, especially in the central Futian District
and central Luohu District, which are located in the prosperous part of the city with higher
demand for GR. In the suburbs and along the coast, the GR does not tend to increase
housing prices, and a weak negative correlation is observed in Longgang District.

The variations in the PR are small, and its influence on housing prices is not signifi-
cant in terms of the average weight. However, the PR and housing prices are positively
correlated in western Luohu District. This finding is contrary to the general perception,
potentially because the PR in this region is closely related with the overall appearance of
the neighborhood. Western Luohu District is the older urban area of Shenzhen. A low PR
is representative of the old and dilapidated characteristic of the neighborhood, whereas
a high PR corresponds to new high-rise housing. These characteristics are the potential
reason for the positive correlation in this region unlike in the other locations.

Second, we examine the influence of the environmental variables, specifically, SD, DSS,
NSS, and QASP, in descending order of their influence on housing prices.

The SD and housing prices are negatively correlated, with typical areas including
most of the Nanshan and Luohu Districts. Moreover, a negative correlation is observed
in certain inland parcels, such as the southern part of Longgang District and the northern
edge of Luohu District. This correlation is attributable to the fact that the SD characterizes
the distance from the core urban area.

The correlation between the DSS and housing prices fluctuates considerably. Generally,
a larger distance from the subway corresponds to lower housing prices. However, a
positive correlation is observed in southeastern Futian District, southern Luohu District,
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and southern Nanshan District. Notably, these regions correspond to high employment
concentration. Southeastern Futian District houses the Huaqiang North Market, one of
the largest cellphone part distribution markets worldwide. Southern Luohu and Nanshan
Districts house the Xinxiu Village Industrial Zone and Shekou Industrial Zone, respectively.
Consequently, the following inferences can be derived: in residential and suburban areas, a
smaller DSS corresponds to more convenient commuting and thus higher housing prices.
In contrast, in areas with dense subway entrances, such as central business districts or
industrial areas, a larger DSS may drive down housing prices. People who buy houses in
this neighborhood are already close to their workplace; thus, the need to commute through
subway channels is insignificant. Proximity to the subway entrance may lead to aggravated
noise and congestion.

The NSS and housing price are positively correlated. For the Nanshan, Futian, and
Luohu Districts, the distribution of positive and negative correlations is the opposite to that
of DSS. This result confirms the abovementioned conjecture.

The QASP and housing prices are weakly correlated. Except for western Luohu
District, in which the housing prices are strongly positively correlated with the QASP, the
effect of the QASP is not significant in the other districts in Shenzhen. Western Luohu
District represents the old city of Shenzhen, and the old residential areas are desirable
owing to the mature school districts, resulting in a strong positive correlation. In contrast,
the high-quality new housing in the new district does not have an established school
district, and the housing price is dominated by other factors. Consequently, the influence
of the school district is weak.

The distributions of the intercepts in the regression model can be effectively explained.
The intercept represents the inherent premium of the house after considering all of the
effects of the independent variables. Figure 6 shows that according to the reference prices
for the second-hand housing transactions introduced by the government, the highest
inherent premium pertains to the coast of Nanshan District with Houhai as the core and
middle of Futian District with the east shore of Xiangmi Lake as the core. The market
frantically attempts to exploit the scarcity of premium locations and assign higher premiums
to the abovementioned regions. In 2020, the highest residential transaction prices for
these two sites (USD 50,000–70,000 per square meter) set a new record for housing prices
in Shenzhen, and the prices for marginal residences were USD 10,000–20,000. In this
context, the reference prices defined by the government helped reflect the inherent premium
distribution and narrow the gap between the inherent premiums. Similarly, the GNNWR
model can accurately estimate this premium based on the reference price.

The regression functions of the GNNWR and GWR models are similar, which validates
the proposed model. However, the GWR model is associated with higher errors. These
analyses highlight the value of the proposed valuation model in socioeconomic research.

5. Conclusions

Based on Shenzhen housing price data, we demonstrate the superiority of the GNNWR
model over the OLS and GWR models in price valuation. We introduce a 10-fold validation
approach and obtain the following results by performing predictions for 1 10th of the data
in each fold. The RMSE of the GNNWR model is 13% and 47% lower than those of the
GWR and OLS models, respectively. Additionally, the GNNWR outperforms the GWR
and OLS strategies in terms of the other metrics. The robustness of the GNNWR model is
experimentally evaluated. The 10-fold validation mechanism avoids stochastic interference,
and the results of testing over the test set demonstrate the validity of the proposed model.
Hypothesis testing is performed to analyze the significance of the spatial heterogeneity.
The AICc metric for the training set indicates that the increase in the fitting accuracy of
the GNNWR model compared with that of the GWR model (which also models the spatial
heterogeneity) is considerably larger than the increase in the complexity of the kernel
function. Therefore, the GNNWR model is highly robust. The GNNWR model is noted to
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exhibit excellent information mining ability, in the context of the spatial heterogeneity of
Shenzhen.

The contributions of this study can be summarized as follows. First, the spatial weight
matrix can adequately reflect the dataset characteristics. In contrast, GWR, as a relatively
traditional modeling method for spatial analysis, commonly uses kernel functions, the
choices of which are limited, for example, to Gaussian and bi-square functions. There-
fore, the performance of GWR frameworks is limited. Second, the proposed framework
overcomes similar limitations of the existing methods by refining the experiment process
and diminishing the black-box property. In particular, the GNNWR model uses the neural
network only to fit the kernel function more accurately than that achievable using GWR and
reserves the reasonable framework of GWR (i.e., spatial weighted regression). Therefore,
the kernel function in the GNNWR model is not a simple linear function or an a priori expo-
nential function similar to that used by the GWR. Instead, the kernel function clarifies the
general correlation between the spatial distances and weights and is learned from the data
through artificial intelligence. Third, the proposed valuation model can more effectively
interpret the geographical coordinates compared to other neural network prediction meth-
ods that take into account less geographical location information and thus exhibit unstable
performances. Although the neural network predictions are noted to be more accurate than
those of the OLS models [32–34]in this study, several studies have highlighted that neural
network models often do not outperform the OLS model and its improved variants (e.g.,
hedonic models that correct the dependent variable through log and polynomial regression
models) [35,36]. Nevertheless, the RMSE of a few neural network models is more than 30%
lower than those of the OLS models.

The GNNWR model has not been applied in the socioeconomic domain since its inven-
tion, and we fill this gap. To address the housing price prediction problem, state-of-the-art
methods typically modify the GWR model in a coarse manner to better understand the
geospatial information. The resolution is not as fine as that associated with the GNNWR
model. In common housing price prediction tasks, for instance, in Kaggle competitions,
the input data lack geographical coordinates to prevent the data from confusing neural
network and decision tree models [38,39]. Only a few neural network models [29] exhibit
a high performance when dealing with geographical coordinates. The proposed model
outperforms the existing models because we combine the GWR and neural network models.
Specifically, we exploit the GWR framework to comprehend the geospatial coordinates and
overcome the limitation associated with the kernel function by using a neural network.
Future research can be focused on the following aspects. First, the linearity, homoscedas-
ticity, independence, and normality properties of the error term in the linear model are
examined. If these aspects are not satisfied, the dependent variable can be preprocessed
using the Box–Cox method. Second, more independent variables can be considered to
expand the choice of independent variables. Third, comparable tests can be performed
on other datasets, or data from multiple cities can be acquired to build a housing price
prediction benchmark.
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Appendix A. Tables Related to Experiment Results

Table A1. GWR Model Performance for Different Kernel Types.

GWR Kernel Type 1

Train Test

R2 RMSE MAE MAPE AICc Correlation
Coefficient R2 Correlation

Coefficient

Bi-square (105) 0.8861 7655.203 5623.454 0.094994 51,842.0 0.941789 0.7935 0.892818

Gaussian (101) 0.7471 11,408.08 8372.857 0.141284 52,790.3 0.865382 0.6120 0.783185
1 The number in parentheses indicates how many neighbors have been used to build the spatial weight matrix

Table A2. Indicators of GWR and GNNWR over Train Sets.

Train Set 1 Model 2 R2 RMSE MAE MAPE Pearson Cor. Coe. AICc

0 GNNWR 0.9130 6665.74 4907.16 0.084455 0.955890 44,935.93
GWR (108) 0.8806 7810.28 5722.90 0.096476 0.938932 46,711.89

1 GNNWR 0.9145 6698.92 4945.16 0.084418 0.956290 44,923.25
GWR (101) 0.8881 7662.40 5624.61 0.095042 0.942811 46,714.44

2 GNNWR 0.9168 6516.65 4849.38 0.084081 0.957767 44,799.69
GWR (101) 0.8835 7713.28 5663.39 0.095898 0.940476 46,751.67

3 GNNWR 0.9068 6923.85 5118.84 0.087057 0.952315 45,066.73
GWR (101) 0.8887 7566.31 5594.39 0.094180 0.943155 46,666.59

4 GNNWR 0.9180 6489.22 4784.29 0.080781 0.958206 44,776.13
GWR (101) 0.8842 7711.99 5656.98 0.095410 0.940830 46,748.33

5 GNNWR 0.9109 6777.58 4990.82 0.086299 0.954517 44,972.38
GWR (101) 0.8849 7702.18 5664.53 0.095798 0.941220 46,744.85

6 GNNWR 0.9175 6538.53 4796.90 0.082787 0.958058 44,850.11
GWR (106) 0.8814 7839.84 5715.71 0.096394 0.939293 46,751.99

7 GNNWR 0.9183 6529.28 4827.74 0.081521 0.958488 44,795.06
GWR (101) 0.8871 7675.50 5658.68 0.095299 0.942348 46,730.64

8 GNNWR 0.9077 6868.49 5104.66 0.087495 0.953352 45,038.13
GWR (104) 0.8825 7749.99 5713.72 0.096287 0.939906 46,735.51

9 GNNWR 0.9082 6814.82 4998.50 0.086338 0.953331 45,025.80
GWR (107) 0.8796 7802.49 5714.57 0.096653 0.938439 46,719.31

1 The Train set of 0 means that dataset 0 is excluded and the 1, 2, . . . , 9 datasets are selected, and so on. 2 The
number in parentheses indicates how many neighbors have been used to build the spatial weight matrix.

http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_8717370.html
http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_8717370.html
http://www.sz.gov.cn/cn/xxgk/zfxxgj/tzgg/content/post_8545768.html
https://shenzhen.qfang.com
https://shenzhen.qfang.com
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Table A3. Prediction Performance of 10 GNNWR Models for Each Validation Set.

Validation Set R2 RMSE MAE MAPE Pearson Cor. Coe.

0 0.836963 9454.353 6876.564 0.115830 0.915256
1 0.821430 8697.789 6277.030 0.105508 0.907206
2 0.855282 8930.441 6546.944 0.109760 0.924835
3 0.812268 9812.707 6643.969 0.112837 0.901745
4 0.871563 8189.907 5944.871 0.104658 0.933591
5 0.837077 9098.732 6577.607 0.111918 0.915711
6 0.840490 8783.315 6620.163 0.113857 0.917376
7 0.813833 9034.993 6549.102 0.115053 0.902763
8 0.840247 9332.620 6836.936 0.117101 0.916725
9 0.854961 9260.348 6713.113 0.113130 0.925135

Appendix B. Indicators of Significance Test Statistics for Spatial Nonstationarity

To test whether a relationship exhibits significant spatial nonstationarity, we perform
significance tests of GNNWR and GWR modeling results by using the residual sum of
squares and its approximated distribution deduced by Leung et al. [40] and Du et al. [19].
We present the formulation for the GNNWR model as an example. The expression for the
GWR can be similarly derived.

First, the hat matrix of GNNWR is expressed as:

SGNNWR ,


xT

1 W(u1, v1)(XTX)−1XT

xT
2 W(u2, v2)(XTX)−1XT

...
xT

n W(un, vn)(XTX)−1XT


δi , tr{[(I − S)T(I − S)]i}, i = 1, 2 · · ·

The statistical quantities F1 is obtained as:

F1 =
RSSGNNWR/δ1

RSSOLS/(n− p− 1)

The distribution of F1 can be approximated as F distribution, where
δ2

1
δ2

is the degree

of freedom of the numerator and n− p− 1 is the degree of freedom of the denominator.

That is, given a significance level α, if the inequality F1 < F1−α(
δ2

1
δ2

, n − p − 1) holds, it
can be determined that the regression relationship has significant spatial non-smoothness,
otherwise the spatial non-smoothness is not significant.

Second, the significance of the spatial nonstationarity can also be verified for each
independent variable. The null hypothesis is that the coefficients of this independent
variable are at all points in space. The alternative hypothesis is that the coefficients of this
independent variable differ in at least one point in each part of the space. First, we define
the variance of the coefficients of the kth independent variable over n data points.

V2
k ,

1
n

n

∑
i=1

(β̂ik −
1
n

n

∑
i=1

β̂ik)
2

Moreover, we define ek as an n-rank vector with the (k + 1)th element set as 1 and
other set as 0. A square matrix of order n is established, with each element set as 1.

Bk ,


eT

k W(u1, v1)(XTX)−1XT

eT
k W(u2, v2)(XTX)−1XT

...
eT

k W(un, vn)(XTX)−1XT
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γik , tr{[ 1
n

BT
k (I − 1

n
J)Bk]

i}, i = 1, 2 · · ·

The statistical quantities F2 is obtained as:

F2(k) =
V2

k /γ1k

σ̂2

The distribution of F2(k) can be approximated as F distribution, where σ̂2 is the mean

square error, γ2
1k

γ2k
is the degree of freedom of the numerator and δ2

1
δ2

is the degree of freedom

of the denominator. That is, given a significance level α, if the inequality F2(k) > Fα(
γ2

1k
γ2k

, δ2
1

δ2
)

holds, the null hypothesis can be rejected and the variable k is determined to have significant
spatial nonstationarity, otherwise the spatial nonstationarity is not significant.

Appendix C. Spatial Nonstationarity Diagnosis of House Price Regression
Relationship

Based on the spatial heterogeneity diagnostic indicators, the GNNWR results can be
analyzed considering two aspects.

First, we examine if the model results have a significant spatial nonsmoothness. For
the 10-fold data, the prediction effect parameters of each GNNWR model in the validation
set are presented in Table A3. Using RMSE as the index, the best fitting model (model 4)
and the worst fitting model (model 3) were selected for hypothesis testing. The hypothesis
testing parameters are determined from the previous derivation as the following Table A4.

Table A4. F1 Hypothesis Testing.

F1 Hypothesis Test F1 σ1 σ2 Distribution Significant Level

Best Fitting Model 0.071602 4439.122 4,871,141 F(4.0454, 2186) 1 × 10−2

Worst Fitting Model 0.117877 3118.766 804,246.6 F(12.094, 2186) 1 × 10−4

After determining the F1 value and F distribution, the p value for the hypothesis
can be calculated. The results indicate that the hypothesis is rejected, and severe spatial
nonstationarity exists in modeling the Shenzhen house price.

Next, we analyze the significance for each independent variable. The null hypothesis
is that the coefficient of each independent variable is a constant. This hypothesis includes
another hypothesis that the coefficient of this variable is zero everywhere. In this context,
the p value of F2 can reject both the hypotheses if it is adequately small. The results are
presented in Table A5.

Table A5. F2 Hypothesis Testing.

Model Variable Intercept AB NPS MF SD GR PR QAPS NSS DSS

Best
Fitting
Model

F Value 614.58 234.48 381.14 562.52 537.77 503.31 385.10 418.17 646.79 502.37
γ1 0.0198 0.0893 0.4068 0.4108 0.4200 0.4560 0.5951 0.6102 0.6753 0.6692
γ2 0.0004 0.0057 0.1095 0.1085 0.1108 0.1120 0.1629 0.1595 0.1789 0.1824

Significant
Level 1 × 10−10 1 × 10−8 1 × 10−9 1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−11 1 × 10−12 1 × 10−11

Worst
Fitting
Model

F2 1017.10 471.84 573.85 872.23 845.57 774.72 344.85 367.06 560.84 432.05
γ1 0.0289 0.1302 0.5264 0.5279 0.5338 0.5990 1.3826 1.3973 1.5010 1.4639
γ2 0.0008 0.0115 0.1760 0.1741 0.1758 0.1807 0.9202 0.9138 0.9341 0.8760

Significant
Level 0 1 × 10−4 1 × 10−4 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Every independent variable considerably influences housing prices, but the degree of
influence varies across regions, which is suggestive of significant spatial nonstationarity.
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This simple comparison highlights that a better model may require a higher spatial non-
stationarity estimation for variables and lower spatial nonstationarity estimation for the
intercept.

Appendix D. Comparison of GNNWR and GWR Coefficients

To compare the GNNWR and GWR models, we visualize the results of GWR, imple-
mented using ArcGIS Pro with a group of parameters that lead to best fitting performance
on all data. The coefficients of different independent variables at each prediction point
for the GWR model are shown in Figure A1, and the statistical properties of different
coefficients are listed in Table A6. For most of the variables except QAPS and SD, the
weight distributions of GNNWR (Figure 6) are similar to those of GWR (Figure A1). The
coefficients of GWR typically fluctuate more abruptly than those of the GNNWR model.
For several significant variables such as the SD, intercept, and DSS, the GNNWR model
provides a smoother distribution compared to the GWR. When the GWR model is used, the
clusters and clumps grow, and the undesirable characteristic of the coefficient distribution
lying across zero becomes more significant.

Tables A6 and 4 demonstrate that GNNWR outperforms the GWR model in terms of
the statistical characteristics. The differences in the standard deviation of variables such
as AB, NPS, MF, GR, PR, and NSS are smaller than 0.02, which means that the degrees of
fluctuations of these variables are similar. However, the standard deviations of the other
variables for GWR are 2–4 times larger than those for GNNWR. This finding highlights that
the GNNWR models the spatial heterogeneity in a more accurate and more facile manner
and is less prone to overfitting compared with the GWR model.

Moreover, the difference in the distribution of the SD coefficients reflects the limitations
of the GWR model. The kernel function of GWR requires priori conditions, such as bi-
square or exponential correlation waning patterns, owing to which similar coefficients
are distributed in clusters. Notably, the variable SD characterizes the distance from the
coastline, which means that the weight distribution of SD might have a higher similarity in
the direction parallel to the coastline than in the direction perpendicular to the coastline.
Theoretically, the coefficient distribution should appear as a strip parallel to the coastline.
The actual results are also consistent with our speculation, with the GWR results resembling
clumps, and the GNNWR results resembling strips parallel to the coastline. The difference
in the DSS coefficients are attributable to a similar cause.

Therefore, the comparison results demonstrate the high robustness of GNNWR.

Table A6. Descriptive Statistics of Coefficients of Variable from GWR

Coefficients of
Variables AB NPS MF GR PR SD QAPS NSS DSS Intercept

Mean −0.281 0.191 0.420 0.125 0.000 −0.278 0.030 0.009 −0.240 0.460
Maximum 0.189 0.872 2.369 0.676 0.194 4.920 0.396 0.560 6.202 1.534
Minimum −0.926 −0.275 −0.656 −0.073 −0.236 −4.456 −0.240 −0.819 −7.993 −0.731
Std. Dev. 0.193 0.176 0.589 0.104 0.068 1.090 0.094 0.190 1.814 0.356
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Figure A1. Cont.
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(i) (j)

Figure A1. Coefficient Weight Distributions of Variables for GWR model. (a) Intercept; (b) Age of
Building (AB); (c) Distance to the Nearest Subway Station (DSS); (d) Green Ratio (GR); (e) Manage-
ment Fee (MF); (f) Number of Parking Spots (NPS); (g) Number of Subway Stations within 1 km
radius (NSS); (h) Plot Ratio (PR); (i) Quality of Available Public Schools (QAPS); (j) Sea Distance (SD).
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