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Abstract: Urban-safety perception is crucial for urban planning and pedestrian street preference 
studies. With the development of deep learning and the availability of high-resolution street images, 
the use of artificial intelligence methods to deal with urban-safety perception has been considered 
adequate by many researchers. However, most current methods are based on the feature-extraction 
capability of convolutional neural networks (CNNs) with large-scale annotated data for training, 
mainly aimed at providing a regression or classification model. There remains a lack of interpretable 
and complete evaluation systems for urban-safety perception. To improve the interpretability of 
evaluation models and achieve human-like safety perception, we proposed a complete decision-
making framework based on reinforcement learning (RL). We developed a novel feature-extraction 
module, a scalable visual computational model based on visual semantic and functional features 
that could fully exploit the knowledge of domain experts. Furthermore, we designed the RL mod-
ule—comprising a combination of a Markov decision process (MDP)-based street-view observation 
environment and an intelligent agent trained using a deep reinforcement-learning (DRL) algo-
rithm—to achieve human-level perception abilities. Experimental results using our crowdsourced 
dataset showed that the framework achieved satisfactory prediction performance and excellent vis-
ual interpretability. 

Keywords: urban-safety perception; reinforcement learning; scene understanding; artificial  
intelligence; interpretability; feature extraction 
 

1. Introduction 
Safety perception is a prerequisite for happiness, health, and a high quality of life 

[1,2]. Low perceptions of safety are likely to influence walking preferences and psycho-
logical awareness and may trigger criminal behaviour [3–5]. Several studies have shown 
that the visual appearance of a city is vital to human perception and responses to the 
surrounding environment [6–9]. Moreover, the visual qualities of urban spaces affect the 
psychological state of its inhabitants [10], making it critical to understand people’s safety 
perceptions and evaluations of urban spaces. 

With the popularisation of online street views and the extensive use of machine 
learning techniques, previous methods of interviewing city residents and manually re-
viewing photographs and videotapes of a city for analysis can now be executed automat-
ically. A typical approach is to obtain large-scale street-view data using online street-view 
websites, make annotations, and then use machine-learning techniques to regress and 
predict street-view images to obtain safety scores [7,11,12]. This approach usually requires 
crowdsourcing websites [6] to collect the absolute safety scores of images or the occur-
rence of crimes on government websites to acquire appropriate labels. However, the la-
bels obtained through crowdsourcing often result in considerable noise, owing to factors 
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such as an insufficient number of comparisons [13] and the random actions of users. Con-
sequently, they cannot be treated as actual labels, which means that the subjectivity of the 
prediction results of the above models cannot be avoided, possibly leading to low confi-
dence in the results. 

Unlike previous studies, this study proposes a complete evaluation framework to 
predict human perceptions of safety from geotagged images of urban spaces. This is 
the first study to make high-level judgements on urban safety by combining visual–se-
mantic features and reinforcement learning (RL) methods. Referring to [14–16], we mod-
elled the problem of urban-safety perception as a Markov decision process (MDP) 
problem [17] and then used the deep reinforcement-learning (DRL) algorithm to solve 
it to obtain a human-like perception policy on urban safety. It was experimentally estab-
lished that the RL-based framework outperformed previous regression and convolutional 
neural network (CNN)-based methods. By simulating the sensory basis of humans in de-
cision making, we could visualise safety perception evaluation patterns and form a re-
ward function for the RL process to guide the output of the model. Using this new frame-
work, the construction process of subjective perception could be analysed at a deeper 
level. In addition, our framework permitted the quantitative analysis of the image’s vis-
ual–semantic features, which correlated with the concept of perceived safety. 

2. Review of Related Fields 
This chapter describes critical work in three related research areas—the safety per-

ception of the city, interpretable scene understanding of street views, and decision mak-
ing. 

2.1. Safety Perception of the City 
The perception of the city—which refers to the recognition and feeling of a particular 

place—forms part of the city’s imagery. Lynch proposed the concept in The Image of 
the City [18] in 1960, that is, imagery results from the interaction between an observer and 
the objects being observed, which refers to people’s overall perceptions and impressions 
of the city. In her book, Jane Jacobs proposed the “street eye” theory [19], where she dis-
cussed the street’s role as a city’s main visual scene and its impact on human perception. 
The theory states that safety is an essential function of streets. As a pioneer in the study 
of city perception, her work inspired later researchers in the field of city planning and 
safety perception. In contrast to objective safety, safety perception is a subjective feeling 
that is usually associated with the fear of crime and potential danger [20]. A low level 
of safety perception affects human behaviour, which may lead to further negative conse-
quences. Li et al. [21] found that a low level of safety perception could lead to a greater 
reluctance to engage in physical activity among older adults. The fear of crime has 
also been reported [22,23] to be negatively associated with psychological and physical 
health, making the study of city-safety perceptions of great importance. 

In recent years, several studies have analysed the physical elements of street views 
that have different levels of impact on safety perception. Liu et al. [24] found that geo-
metric scenes in street views generally produce a higher level of safety perception than 
naturalistic scenes. Li et al. [25] found that, for different types of terrain, the visibility of 
green vegetation plays a vital role in improving the safety perception in city areas. Re-
cently, several studies have proposed metrics and descriptors to understand and repre-
sent the visual perception of streets. Cheng et al. [8] proposed four inducers to character-
ise streets’ visual perception—namely, significant area saturation, visual entropy, the 
green view index, and the sky openness index. Zhang et al. [9] proposed a local repre-
sentation framework using scene elements consisting of street scene ontology and street 
visual descriptors for the qualitative understanding and quantitative representation of 
street scenes, respectively. 
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Currently, most studies focus only on the impact of one or two of the perceptual fac-
tors associated with city construction, residential areas, or crime [3]. However, they do 
not propose a general approach that considers the impact of both urban functional areas 
and street features on safety perception. To the best of our knowledge, ours is the first 
quantitative representation model for street-scene perception. 

2.2. Interpretable Scene Understanding 
Before deep learning was widely applied, researchers often conducted mathematical 

and statistical analyses based on existing statistics [26] or designed questionnaires to col-
lect data [27] to understand scenes. Both approaches are costly and do not directly exam-
ine the visual scenes. Advances in computer technology have made it feasible to conduct 
research directly based on the perceptual features of vision. Moreover, computer vision 
methods have been shown to emulate human perception and reliably predict safety judge-
ments using pictures of urban scenes [7,28,29]. Visual features have been widely used to 
analyse their impact on security perception [11,12,30]. 

Quercia et al. [6] used a crowdsourcing approach to annotate street-view images and 
investigate the role of visual features in perceptual predictions. Arietta et al. [3] proposed 
a support vector regression model to predict non-visual attributes (crime rate or house 
prices) from images and automatically determined the visual elements associated with the 
predicted attributes. Naik et al. [7] designed the Streetscore algorithm (training it on the 
Place Pulse 1.0 [31] dataset), which could predict the safety perception score of street-view 
images. However, the algorithm focused on only a few specific features, and the limita-
tions of the dataset made it less effective, with it failing to predict non-typical street-view 
images with unusual elements. 

Naik et al. [11] proposed an Streetscore-CNN and Ranking Streetscore-CNN to study 
the safety perception problem on a larger scale, achieving more accurate results than 
Streetscore. Since then, CNNs have been increasingly applied in this field. For instance, 
Liu et al. [12] proposed a unified framework to quantify the perceived attributes (e.g., the 
level of safety) of a city’s physical environment and introduced CNNs to parameterise 
instance-level scoring functions. This method could generate region-level safety scores to 
interpret the perception process. 

However, the problem of identifying visual elements that correlate with high-level 
semantic visual attributes has rarely been addressed, even though image semantic seg-
mentation is critical for understanding scenes [9]. A recent study [4] used a semantic seg-
mentation technique to obtain visual–semantic features before assessing the impact of mi-
cro-built environmental variables on drug activities. However, they did not analyse the 
effect on safety perception. These studies used either CNN [11,28] or regression methods 
[7,12] to analyse or make predictions. Such an approach can be prone to overfitting on 
smaller datasets [32]; it can also fail to properly understand the inherent patterns of per-
ception evaluation performed by humans under such conditions. In addition, the data 
obtained through crowdsourcing have considerable noise, which can negatively impact 
the building of a theoretical streetscape safety perception framework. 

2.3. Decision Making 
Decision making lies at the core of control theory [14] and is widely used in autono-

mous driving [15], robot navigation, and human-level control in gaming [16]. In these ap-
plications, agents are designed to interact with the environment to observe and execute 
specific actions to fulfil predefined goals. The RL method [33–36] is well-suited for han-
dling decision-making tasks. You et al. [15] used RL to achieve the desired driving behav-
iour in autonomous-vehicle planning problems and successfully applied the RL method 
to decision-making problems. 

To the best of our knowledge, no decision-making framework has been applied to 
city perception or interpretable street-view analysis. This study proposes a training 
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method using DRL algorithms driven by visual features, functional features, and expert 
knowledge. Our method performed well in this evaluation. 

3. Methods and Data Processing 
In our study, the problem of urban-safety perception was abstracted as a decision-

making problem and represented using the MDP. In this process, we form a computa-
tional model to represent the elements of the MDP and design the reward function. DRL 
algorithms can then be used to solve the problem of obtaining a safety evaluation strategy 
for street-view images, thus forming an urban-safety perception decision-making frame-
work (Figure 1) based on visual–semantic features, functional features, and objective 
safety scores. 

 
Figure 1. The proposed decision-making framework for urban-safety perception prediction consists 
of two main modules: a feature-extraction module to extract visual semantic and functional features, 
as well as safety score obtained from crowdsourcing; and a reinforcement learning module to obtain 
the safety perception prediction. 

This section introduces a novel semantic-segmentation-based image perceptual fea-
ture computational model combined with functional and visual–semantic features. The 
exact system-modelling method is presented in Section 4. First, we introduce the process 
of collecting Dujiangyan street images and designing a crowdsourcing website to obtain 
the safety score of the images using the learning-to-rank (LTR) method (Section 3.1). We 
then describe the application of expert knowledge in this study (Section 3.2). 

3.1. Building the Dataset 
Following Naik et al. [11], a crowdsourcing data-collection website was designed to 

obtain annotations for the datasets used in this study. 
Building the Dataset. The original dataset used in this study was based on street-view 

images of Dujiangyan City provided by the Baidu street-view API. The dataset included 
11,584 panoramas, each panorama being sliced into four images corresponding to the four 
angles of observation (−90°, 90°, 180°, 270°). We also obtained the latitude–longitude val-
ues of the images through the GPS satellite positioning of the street car that took the pic-
tures. Owing to the data-collection method of the Baidu street-view platform, the original 
dataset had a high level of redundancy, which was not convenient for annotation and 
analysis. Therefore, we filtered and constructed a smaller dataset for this study. Based on 
the latitude–longitude values, we obtained the specific street locations corresponding to 
each image and built the dataset by randomly filtering the images according to the street 
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locations (Figure 2a). In this process, we ensured that the images were geographically av-
eraged, which meant that our dataset reflected the overall appearance of Dujiangyan City. 
In contrast to [11], we concatenated the images of the four orientations in a two-by-two 
sequence, thus simulating the horizontal view of the human eye [37]. We used panoramas 
for the crowdsourcing data annotation to obtain better subjective safety indicators. 

 
Figure 2. (a) The distribution of locations of selected street view images in Dujiangyan city. (b) Ex-
amples of normalised safety scores (represented as Q) using Trueskill and LambdaRank. 

Design of the Crowdsourced Website. We designed a website to collect pairwise com-
parisons of pictures. When visiting our website, users were shown a random pair of im-
ages from our dataset and asked to click one image in response to the question, “Which 
picture leaves you with a safer impression?” The user choices were collected for compar-
ison. 

Obtaining Safety Scores. Gathering relative comparisons is a more efficient and ac-
curate method of obtaining human rankings than obtaining numerical scores from each 
user [11]. Based on this, we recorded the number of user-clicks as a pairwise comparison 
of a set of images. From a single click, we used a 3-tuple (−1, 0, +1) to record the user’s 
choices, +1 denoting a “win” for the image, −1 denoting a “fail”, and 0 denoting a “tie” for 
both images. We also recorded a number of randomly selected images and used these to 
dynamically adjust the extraction strategy to ensure that the number of annotations for 
each image was comparatively balanced. TrueSkill [13] and LambdaRank [38] were used 
to convert the participants’ clicks (preferences) into objective scores. We used the average 
results of the two algorithms as the final safety scores for the images (Figure 2b). The 
Trueskill algorithm is designed based on a Bayesian graphical model to evaluate the skill 
level of game players. In our case, a sufficient number of user clicks could determine the 
“superior” image (i.e., the “winner”). The LambdaRank algorithm transforms a ranking 
problem into a pairwise classification problem, directly defining the gradient using its 
physical meaning in the ranking problem and then solving the gradients for the final rank-
ing. LambdaRank can fully utilise an image’s “win” or “fail” to rank it as a feature. 

3.2. Expert Rating 
To model this problem, the selection of visual features in the dataset and the con-

struction of an expert system for safe reasoning require reliable expert knowledge, the use 
of which is a simple and efficient method [39]. Although subjectivity and bias cannot be 
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eliminated, the reliability of expert knowledge is acceptable. It is practical when the actual 
properties of an environment can be consulted and the objectivity of the data evaluation 
can be adequately guaranteed [40]. 

To obtain expert knowledge, 15 researchers and professors in related fields were in-
vited, i.e., sociology, urban planning, landscape architecture, and computer vision. Spe-
cifically, as a panel of experts for this project, they were asked to complete the following 
four tasks on the dataset. 
• Low-quality images were removed, such as those with tunnels or few elements. Fol-

lowing [41], the most representative features in the street-view images were selected. 
• Criteria were proposed for zoning based on the features and actual geographical lo-

cation of each functional area in the city. We describe zoning in Section 3.3. 
• A corresponding expert system for perceptual safety prediction based on different 

functional areas was designed; this expert system was the basis of our RL method 
(for both the reward function and the state definition). 

• The safety scores were amended to reduce the uncertainty and set the score thresh-
old—that is, images above the threshold were considered safe and labelled “1”. oth-
erwise, the label was “0”. It is worth noting that, even after correction by experts, 
noise still existed in the labels. 
Due to the small size of the filtered dataset and to further incorporate the objectivity 

and comprehensiveness of expert knowledge into the model, we invited experts to evalu-
ate the entire dataset as much as possible. Fifteen experts were needed to consider 1142 
images each. We used the voting method to determine the final labels for those images 
with different opinions from experts. We also used statistical methods to analyse the data 
to reduce the potential bias for the different types of features proposed by the experts. 
After the expert rating, 651 images could be used for further analysis 

3.3. Feature Extraction 
Based on expert knowledge (Section 3.2), we used semantic segmentation techniques 

to extract features from street-view images. To model the problem, we defined two types 
of features, that is, visual and functional features [42]. In addition, we used the safety score 
obtained in Section 3.1 as a third type of feature. 

Visual features. In this study, we define visual features as those that can represent 
the overall characteristics of the street-view image (Table 1). Combining previous litera-
ture and expert analyses, we selected 11 visual features in 3 categories, that is, (1) Field of 
view (FoV), which is the cover ratio of a specific scene element in the field of view [9]; (2) 
Visual entropy, which is the result of combining the concepts of information entropy with 
the characteristics of the human visual system [8], reflecting images’ visual complexity 
and richness; and (3) Tiny objects, which are the small-scale objects in the street-view im-
ages after semantic segmentation, such as poles, electric wires, and the number of vehicles 
and people. 

Table 1. Specific definitions of street view visual features. 

Feature Name Description 
Sky-FoV The cover ratio of the sky in the field of view 

Greenery-FoV The cover ratio of the terrain and vegetation in the field of view 
Wall-FoV The cover ratio of the wall in the field of view 

Sidewalk-FoV The cover ratio of the sidewalk in the field of view 
Building-FoV The cover ratio of the building in the field of view 

Traffic_light-FoV The cover ratio of the traffic light in the field of view 
Traffic_sign-FoV The cover ratio of the traffic sign in the field of view 

Visual Entropy 
The magnitude of the visual entropy value can reflect the visual complexity and 
richness of an image 
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Vehicle Number The number of the vehicles 
Person Number The number of the person 

Electric Wire Whether there is any electric wire. The value is 0 or 1. 

To calculate the FoV, we used the semantic segmentation technique to segment the 
city scenes into scene elements and calculate their coverage ratio, that is, the pixel propor-
tion (Figure 3). The scene elements included the sky, vegetation, terrain, poles, buildings, 
walls, fences, roads, sidewalks, traffic signs, and traffic lights. SegFormer [43], OCRNet 
[44], and DeeplabV3 + [45] were used to obtain the best results. All techniques were trained 
using the Cityscapes dataset [46]. We eventually applied the SegFormer model, which 
combines a transformer with a lightweight multilayer perceptron (MLP) decoder. No po-
sitional coding was required, thus avoiding interpolation, which can lead to performance 
degradation when the test resolution differs from the training. It was also proposed that 
the MLP decoder aggregate information from different layers, combining local and global 
attention for semantic representation. 

s 

Figure 3. Results of different semantic segmentation algorithms. 

Functional features. The city can be seen as a combination of many different func-
tional areas [42], while a specific geographic location can impact safety perception. For 
different functional areas (Figure 4), we defined functional features as visual features 
that could fully express the characteristics of their locations. It should be noted that, in the 
feature vector representation, the functional features were reflected in ordinal numbers, 
with different numbers representing different functional areas. 

 
Figure 4. An example of functional areas. 

Feature vector representation. Considering that the original visual features have dif-
ferent ranges of values and that using normalisation can lead to a loss of their original 
meaning [42], we calculated the threshold value for each visual feature individually and 
then mapped the features based on the threshold to obtain binary values. The following 
expression can be used to construct binary values, ix : 
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max(sgn( ),0) (1 ) min(1 sgn( ),1)i i i i ix f t f tθ θ= ⋅ − + − ⋅ − − . (1) 

In the above expression, ix  denotes the i-th binary visual feature value, if  denotes 
the i-th visual feature value, and it  denotes the threshold of the i-th feature. The value of 
θ  denotes whether the feature value is positively correlated with perceived safety, that is, 
the value selection of θ  is 0 or 1. 

Unlike in [42], we use X  to represent both functional and visual features after map-
ping to binary values. X  can be represented as a feature vector obtained from an image, 
as follows 

( ){ }1 2, , ,..., jf y
j j j jy x x xX = , (2) 

where jy  denotes the j-th functional area in Table 2, and ( )jf y  denotes the number of 
selected visual features in the functional area jy . 

Table 2. The visual features correlated to different functional areas. Each area also has a safety score. 

No. (j-th) Functional Area Features 

1 Business Area 
GVI, Wall-FoV, Traffic_light-FoV, Traffic_sign-FoV, Electric Wire, Sky-FoV, 

Building-FoV 
2 Cultural Area GVI, Wall-FoV, Electric Wire, Sky-FoV, Person Number 
3 Residential Area Wall-FoV, Electric Wire, Building-FoV, Sky-FoV, Visual Entropy, GVI 
4 Industrial Area Electric Wire, Wall-FoV, Sidewalk-FoV, Vehicle Number, GVI 
5 Suburban Area Electric Wire, Wall-FoV, Sky-FoV, Visual Entropy 
6 Others Visual Entropy, Electric Wire, Building-FoV, GVI, Wall-FoV, Sky-FoV 

4. System Modelling 
Combining RL and deep learning (DL), DRL can be used to solve complex decision-

making problems, making it suitable for simulating human perceptual patterns and ob-
taining safety perception predictions of street-view images. Specifically, we modelled the 
interaction between experts and street-view images as a stochastic MDP and used DRL 
methods to solve the MDP problem for the optimal policy that could predict the percep-
tual safety of given images. 

In this section, we first briefly introduce the MDP as the necessary theoretical support 
for modelling RL. We then describe how to model the evaluation strategy using visual 
and functional features. Finally, we demonstrate how to solve the decision-making prob-
lem using the DRL method. Our framework can be applied to any dataset, outputting 
human-like perceived safety predictions, which could help improve urban design and 
planning efficiency. 

4.1. Markov Decision Process 
The Markov decision process (MDP) is a discrete-time stochastic process that pro-

vides a mathematical framework for modelling decision-making problems. The MDP 
framework can model the interaction between the agent and environment for most RL 
problems. In this interaction process, the agent performs actions based on policies to ob-
tain as many rewards as possible, which is the goal of the MDP. RL methods need to be 
applied to find the best policy. 

A typical MDP model can be represented by a quadruplet ( , , , )a aS A P R , where S  de-
notes the set of all possible states in the environment, that is, the state space (finite set); A  
denotes the set of all possible actions, that is, the action space (finite set); aP  denotes the 
state transition probability; and aR  denotes the immediate reward after the state transi-
tion. In the MDP case, the cumulative reward sum that the agent can obtain is 
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1
0

( , )t
at t t

t
E R s sγ

∞

+
=

 
 
 
∑ , where [0,1]γ ∈  denotes the discount factor that enables the policy-

maker (agent) to consider the impact of current and future rewards on the overall reward. 
We use the function ( )sπ  to denotes the action that the agent performs in that state and 

*π  to denote the best RL strategy. The following equation describes the goal of RL. 

*

0
arg max ( , ( ))t

t t
t

E R s s
π

π γ π
∞

=

 =   
∑  (3) 

4.2. Image-Based Modelling 
Inspired by [47] and the traditional model of an expert system, we designed an im-

age-based model to predict the safety perception of a city. Our decision-making model 
can be regarded as an agent that interacts with the environment, the environment being a 
given image (I), the feature vector of I defining the state, and the action being to predict 
whether the street-view image is safe or not as {0,1}A  . 

State Definition. Considering both the visual and functional features of each street-
view image, we defined the state of the MDP, as shown in Figure 5. According to the 
expert criteria, each image was classified into the corresponding functional area. The 
states of the MDP each represent one of the six conditions listed in Table 2. It is worth 
noting that the features corresponding to each functional area are selected based on expert 
knowledge, so subjectivity cannot be entirely avoided. For a given functional area iy , the 

total number of possible states for that given functional area is ( )2 if y . Thus, the total num-
ber of states for all functional areas is 336. 

6
( )

1
TotalNumber 2 if y

j=
=∑  (4) 

 
Figure 5. The Markov decision process of our framework. The neural network agent (left) learns to 
exploit the visual state (bottom) to predict the action, which is the perceived safety indicator (top). 
Then, the agent explores the environment (right) to maximise the total reward (middle). 

Reward Function Design. The design of the reward function was based on expert 
knowledge. The reward function directly determines the performance of a model. In our 
case, this is represented by mapping manually selected features. These features depend 
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on the environmental state. A linear combination of features can be used to represent 
the reward function [15], which can be expressed as follows. 

)( , ) ( ( , )TR ss a a Qω Φ= + , (5) 

where ω  denotes the weight vector, Q  denotes the safety score of the image, and ( , )s aΦ  
denotes the feature vector, with each component representing a single feature point in the 
state-action space. In this study, we define ( , )s aΦ  as follows. 

( , ) sgn( 0.5)s a X aΦ = ⊕ −  (6) 

The conditions are as follows: (1) the impact of features on safety perception varies 
across functional areas, and (2) there are different features for different functional areas. 
A higher reward was given for the correct step to ensure that the agent learned an effec-
tive strategy. We designed the weight vector ω  to reward or penalise specific features 
in the reward function. Consequently, the DRL algorithms could be applied to learn the 
optimal policy by maximising the total reward. According to [8,9], safety perception is 
highly associated with features that have a clear physical meaning, so selecting features 
and designing weight vectors is based on expert knowledge. 

Policy Learning. After designing the reward function of the corresponding MDP, we 
determined the optimal decision policy for the agent using DRL, which can solve complex, 
previously intractable, real-world decision-making problems. 

In our environment, the actions are discrete. Consequently, we used the DRL algo-
rithm D3QN, which can be applied to a discrete action space. The algorithm combines the 
advantages of a Double Deep Q-Network (DDQN) [48] and a duelling DQN [49]. A 
DDQN can train two Q networks simultaneously to reduce overestimation bias; a Duel-
ling DQN uses the advantage function to accurately estimate the Q values of the states. 
The D3QN is a model-free DRL algorithm that iteratively solves the Bellman equation. 
The following equation formulates the algorithm 

'
' '

( , ) ( ' | ') ( ', ')a a
s ss

s S a A
Q s a R P a s Q s aπ πγ π

∈ ∈

 = +   
∑ ∑ , (7) 

where ( , )Q s aπ  denotes the state-action-value function, '
a

ssP  denotes the probability that 
the agent reaches 's  from s  by performing action a , and ( )π ⋅  denotes the agent’s policy. 

Similar to the DDQN, the dual-network structure of the D3QN consists of an evalu-
ation network 1Q  and a target network 2Q . 1Q  selects an action for the next step using the 
argmax function, and 2Q  is used to reduce the overestimation of the argmax function. 
D3QN trains the networks simultaneously, and a smaller Q  value is selected to calculate 
the temporal difference error, thus reducing the overestimation bias. 

2

max 1

max

arg max ( ', )

( ', ; )

;
a

a Q s a

r Q sy aγ

θ

θ −

=


= +
 (8) 

Based on the Duelling DQN [49], D3QN separates the action-value function ( , )Q s aπ  
into two parts—namely, a state-value function ( )V sπ  (which is only related to the state) 
and an advantage function ( , )A s aπ  (which is related to both states and actions). 

( , ; , , ) ( ; , ) ( , ; , )Q s a V s A s aπ π πθ α β θ α θ β= +  (9) 

Summary of DRL Contributions. In this study, the existing D3QN algorithm was 
adapted to real-world applications, bridging the gap between simulation-based DRL ap-
plications and challenging real-world tasks. Moreover, a novel reward function that could 
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consider the visual and functional features for evaluating city-safety perception was de-
veloped to guide D3QN-based model training. 

5. Experimental Results 
5.1. Experimental Setup 

RL Environment. Based on the visual and functional features mentioned in Section 
3.3 and the designed reward function (5), we could design an environment for training 
the agent. It is worth noting that the safety scores computed using Trueskill and Lamb-
daRank were also used as features for the reward function. The gym library was used to 
design an RL environment. 

Implementation Details. We used the DRL algorithms PPO, A2C, SAC, and D3QN 
for training on the open-source RL library Ray RLlib. The training epochs were set to 100; 
in this case, the trained model could maintain a good balance between the convergence 
speed and the strategy efficiency. 

Evaluation Protocols. We used the image-level area under the ROC curve (AUC) to 
evaluate the prediction correctness. For the AUC classification metrics, we only evaluated 
the predictions of images because the output represented the safety perception of the im-
age. To evaluate the visual perceptual pattern, we adopted cosine similarity and the Kull-
back–Leibler distance (KLD), with smaller KLD values being indicative of better perfor-
mance. 

5.2. Main Results 
Comparison Methods. We compared the RL-based method for predicting the per-

ceived safety of an urban area to several methods which performed well in the literature 
for perceptual safety prediction—namely, (1) the support vector machine (SVM): we pre-
dicted the perceived safety of an input image by selecting the same visual features as our 
method; (2) the multilayer perceptron (MLP): we trained a neural network to directly pre-
dict the safety of the input image with their visual features or image matrices, options 
with higher output scores being selected; and (3) the CNN: we used a 5-layer CNN to 
classify the input images and obtain the final classification results. 

Safety Perception Predictions. Table 3 shows the AUC results of each method on the 
urban-safety perception prediction. Among them, the RL-based method performs best on 
the test set. Due to the small size of our crowdsourced dataset, the overfitting of the 
method using neural networks for direct image prediction is more severe, and the model 
generalisation is more likely to be affected. 

Table 3. Comparison with several methods. AUC evaluates the correctness of the prediction. 

Methods Input Format AUC 
SVM Vector 0.617 
MLP Vector 0.611 

MLP (Layers = 5) Image Matrix 0.540 
CNN (Layers = 5) Image Matrix 0.550 

RL (D3QN) Vector 0.686 

The results demonstrate the limitations of supervised methods in the case of a small 
dataset, as well as the fact that traditional classification methods are inferior to RL-based 
methods, as RL-based methods can use intrinsic decision patterns and human-like con-
siderations to derive predictions. We applied various DRL algorithms to the training pro-
cess for our RL-based approach, as shown in Figure 6. Two metrics—namely, cosine sim-
ilarity and KLD—are used to measure the effectiveness of each method in recovering vis-
ual perceptual patterns. The best results in each metric, obtained using D3QN, are listed 
in Table 4. 
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Figure 6. Mean reward of the agent when training with different reinforcement learning methods. 

Table 4. Quantitative results for the decision-making framework in our dataset using different re-
inforcement learning methods. A higher AUC value or cosine similarity value indicate a better per-
formance. Smaller KLD values indicate better performance. 

Methods AUC Cosine Similarity KLD (↓) 
PPO 0.619 0.231 0.302 
A2C 0.612 0.215 0.295 
SAC 0.684 0.369 0.237 

D3QN 0.686 0.369 0.244 

5.3. Interpretation of Results 
Figure 7 shows the reward maps for the four different situations. In Figure 7a, the 

image is considered safe, with each visual feature receiving different rewards according 
to the functional feature. The vehicle number receives a reward of 3, whereas the Sky-FoV, 
Building-FoV, and Greenary-FoV all receive a reward of −1. Furthermore, the number of 
vehicles in the street-view image is consistent with the experts’ perception of a safe image. 
At the same time, the sky openness, building area, and greenery area are consistent with 
the experts’ judgements on the negative points affecting safety. 
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Figure 7. Visualising the expert evaluation model based on visual features for four cases. In (a) the 
label of the image is safe, and the prediction given by the model is also safe; (b) the label is unsafe, 
and the prediction is safe; (c) the label is safe, and the prediction is unsafe; (d) the label is unsafe, 
and the prediction is also unsafe. “r(Visual Entropy)” refers to the different rewards obtained by the 
feature visual entropy according to different actions. 

This example reflects the experts’ intrinsic patterns when judging pictures’ safety, 
proving that the model is effective in imitating the decision making of experts. In Figure 
7b, the actual label is unsafe; however, based on our model, the image’s visual features 
satisfy the expert’s perception of safety. This proves that there is noise in the labels, mak-
ing it essential to seek an interpretable human-level prediction method. 

6. Conclusions 
Dujiangyan was the worst-hit area of the Wenchuan earthquake. Since 2008, we have 

been conducting a series of follow-up studies on the post-disaster recovery and recon-
struction in this city. After the reconstruction, Dujiangyan not only completely retains the 
style of the old city before the disaster, but also has a large number of new urban land-
scapes. In addition to the original residents, there is also a large immigrant population. 
The rapid recovery and promotion of the economy and population prompts us to think 
about the urban construction and residents’ regional identity in disaster-stricken areas. To 
explore this question, we proposed a RL-based decision framework to predict the per-
ceived safety of urban street-view images, simulate human decision-making patterns, and 
quantify the impact of visual-semantic features on urban-safety perceptions. We used 
crowdsourcing and LTR algorithms to obtain the objective safety scores of street-view 
images. We then obtained visual and functional features using semantic segmentation 
methods and domain-expert knowledge, respectively, creating an image dataset with fea-
tures. Subsequently, we modelled the safety evaluation process as an MDP and used RL 
methods to solve it and obtain a prediction policy. Using this policy, we established a 
complete and intelligent evaluation model for urban-safety perception and avoided the 
problem of weak model interpretability caused by supervised learning. We also made 
better use of expert knowledge and reduced the effect of the high noise rates of 
crowdsourced data. The experimental results of our crowdsourced dataset showed that 
our method achieved a satisfactory prediction performance and excellent visual interpret-
ability. It is important to note that, as we apply this framework to other cities, expertise is 
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needed to fine-tune the reward function to obtain a more accurate and interpretable 
model. Therefore, for better results, future work should include scaling up the dataset and 
investigating the reward design by considering other embedding measures with expert 
knowledge. 
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