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Abstract: Traffic prediction is a topic of increasing importance for research and applications in the
domain of routing and navigation. Unfortunately, open data are rarely available for this purpose. To
overcome this, the authors explored the possibility of using geo-tagged social media data (Twitter),
land-use and land-cover point of interest data (from OpenStreetMap) and an adapted betweenness
centrality measure as feature spaces to predict the traffic congestion of eleven world cities. The
presented framework and workflow are termed as SocialMedia2Traffic. Traffic congestion was
predicted at four tile spatial resolutions and compared with Uber Movement data. The overall
precision of the forecast for highly traffic-congested regions was approximately 81%. Different data
processing steps including ways to aggregate data points, different proxies and machine learning
approaches were compared. The lack of a universal definition on a global scale to classify road
segments by speed bins into different traffic congestion classes has been identified to be a major
limitation of the transferability of the framework. Overall, SocialMedia2Traffic further improves the
usability of the tested feature space for traffic prediction. A further benefit is the agnostic nature of
the social media platform’s approach.

Keywords: vehicle traffic; social media; Twitter; OpenStreetMap; Uber Movement; classification;
traffic prediction; machine learning

1. Introduction

The ability to monitor, analyse, visualise and predict urban traffic movement has
increased in the past years because of the sudden increase in GNSS (global navigation
satellite system)-enabled devices, such as smartphones [1,2]. The GNSS-enabled fleet of
delivery vans, for example, is one such data source which makes it possible to monitor
near-real-time traffic congestion in urban cities. Such data have increased the popularity
of traffic mapping in quantitative mode among research groups [3–5]. Vehicle traffic in
particular has been extensively studied using such data due to its direct impact on economy
and livelihood. However, existing studies have always been limited to small study areas
due to the scarcity of data coverage, scalable proxies and ground truth validation [6]. All
major traffic data providers are currently either private companies or government bodies.
Therefore, data are in general not publicly available for science and research—researchers
depend on the goodwill of the organisations owning the data or on sufficient financial
resources to obtain access to them. This is creating a growing necessity for cheap, publicly
available, georeferenced datasets for traffic prediction with a considerable spatial and
temporal resolution. Such datasets can also be used to support similar research questions
related to CO2 emission, urban planning, sustainable goals and the overall well-being of
urban dwellers [7].

Information technology giants such as Google, Yandex, HERE, Mapbox, etc., primarily
rely upon telemetry data to perform traffic estimation on a global scale [8,9]. Data captur-
ing thus either takes place via their API (Application Programming Interface), via SDKs
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(Software Development Kit) installed on various user mobile devices or through some
third-party providers such as fleets of GNSS-enabled delivery vans [8,10]. The amount of
telemetry data collected is in the order of millions of data points, as reported by Mapbox
in 2017, when the company collected around 20 million geo-tagged points to generate a
global traffic map.

Within academia, a lot of regional studies have explored the usability of social media
data to understand human mobility, vehicle navigation, smart cities and urban mod-
elling [11]. These activities have focused on aspects such as vehicle and pedestrian traffic
congestion or origin–destination (OD) matrix estimations [12]. However, most of the work
has been based on using media data (text, images, videos and tags) associated with a
given media platform. For vehicle traffic modelling, the majority of work is based on
using the content of text messages of Twitter data for selected world cities [13]. The core
of the approach is to look for key traffic-related words (in the case of Twitter) to perform
a sentiment analysis to identify traffic conditions in the vicinity. It involves text mining
and in some cases OD matrix generation. These kinds of approaches have limitations in
terms of transferability to other regions with different spoken languages. Furthermore,
the approaches cannot easily be transferred to other media platforms. Coffey [14] tried
to find the relationship between BikeShare data and the kinds of tweet messages made
by users during trips. The underlying approach was to convert the mobility data into a
set of words for reclassification. Another recent work by Yao [9] tried to explore human
mobility patterns by deriving spatial clusters from tweet posting coordinates. It has been
shown that tweet-related features can largely improve traffic prediction for road segments
where travel demand plays a crucial role in determining congestion [15–17]. Zhao [18]
investigated different adapted centrality measures for estimating traffic flow. Besides mod-
elling the network using primary and dual graphs, he also modelled the network based on
groups of densely connected streets, similar to a community-based road network model.
He furthermore investigated the influence of network models on traffic flow estimation.

Steiger [19] commented that “the user-generated, textual content of tweets is noisy,
making it challenging to apply natural language processing (NLP) techniques to identify
meaningful information”. He identified a few frequently repeating, daily patterns with
similar time-dependent disruption characteristics along major arterial (ring) roads (similar
to road centrality), as a proxy indicator of mobility behaviour. Gao [20] interestingly
counterargued the usability of betweenness centrality for traffic prediction by reporting
that it is not a stable indicator because of the variability in shape and range across study
areas. To achieve more realistic OD trips, he used the distance–decay effect to give more
weight to short rather than long distances. Another notable study on the subject came
from Pun [21] and Giles [22], who modelled traffic flow based on three types of traffic
flow information, i.e., annual average daily traffic (AADT), public traffic and private traffic.
They further analysed how the OD population density affects the number of trips per route
per day.

In this study, the possibility of using geo-tagged social media data along with an
adapted and approximated road betweenness centrality measure and land-use land-cover
point of interest (POI) feature spaces was explored as a potential proxy for vehicle traffic
congestion. A global attempt has been made to better understand at which spatial and
temporal resolution highly congested regions related to motorised vehicles can be predicted.
In particular, the different modes of counting and quantifying data points and other
identified proxies have been investigated at various scales, making this a proof-of-concept
study. The authors present a framework to extract this information for different city street
networks, named SocialMedia2Traffic (SM2T). The framework understands the upcoming
surge of more publicly available social media datasets, thus investigating if they all could
collectively be used to mimic the telemetry data of other paid solutions. We argue that
the location-based analysis for traffic congestion is more scalable and robust as it does not
have to rely on human sentiment detection. We propose a context-free way to extract traffic
information. The approach aims to ensure that any future service based on its forecasts
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will not have to go offline in the case that a specific data source goes out of service—as
happened partially to the geo-tagged Twitter data in 2019 when the option was disabled to
attached GNSS-derived coordinates to tweets, and only less precise location information
could be added. The way media data are being used in SM2T is different from how the
paid solutions are using counterpart telemetry data, as discussed in the following sections.

There are two ways to extract traffic information from human-generated social media
data: (a) using the context of generated media, and (b) using the coordinate location of
the user during the period of data generation [23]. The context-based approach is not
transferable across different media platforms [24], and is complex but works with a limited
amount of data. Location-based traffic retrieval, on the other hand, is scalable and easier to
implement in the sense that it remains independent of any specific platform and shows
more robustness with a strong proxy if provided in a sufficient amount [25,26]. How many
data points are “enough” for location-based analysis for a given resolution presumably
varies from region to region. Works such as that by Wang [27] present a similar framework
to perform traffic mapping; however, this framework does not use social media data as a
proxy and relies solely on GPS trajectories and POI data. Jayasinghe [28] investigated the
suitability of centrality measures for estimating traffic flow. Similarly, Zhang [29] explored
the relationship between land-use land-cover POIs and traffic flow congestion in multiple
cities. Therefore, the literature supports the idea of using social media, POI and centrality
data for traffic mapping, although there has been no combined effort to measure it all on a
global scale. Furthermore, a framework is missing for the development of Software as a
Service.

The objectives of this paper are as follows:

• To test the existence of a direct as well as combined relationship between geo-tagged
Twitter data/land-use land-cover POI/betweenness centrality and high traffic conges-
tion on roads.

• To propose a framework to train the model and argue its fitness for purpose.

There is no open web service available that provides a dynamic traffic congestion
map on a global scale. One of the immediate users of the SM2T service would be publicly
available routing services such as OpenRouteService [30], which would benefit in the form
of a better Estimated Time of Arrival. Such a service is supposed to help many sectors such
as courier delivery, urban planning, environmental modelling, carbon emission, etc. [31–34].
The Uber Movement speed dataset is available for obtaining the ground truth for selected
world cities (data can be retrieved from Uber Movement, (c) 2021 Uber Technologies, Inc.,
San Francisco, CA, USA , [35]). No peer-reviewed work of this nature is available online
on a global scale. The framework presented here aims to provide data on high traffic
congestion on a global scale, in contrast to small test areas that current research studies
already provide. Although the precision and spatial/temporal resolution of SM2T falls well
behind any proprietary solution, this should be treated as a preliminary study to explore
the possibility in this direction.

We explored the relationship between Twitter data and traffic speed using the follow-
ing experimental set-up:

• We tested two Twitter-based proxies as a predictor: the number of users on a road
segment and the number of users within a vicinity.

• We used land-use and land-cover-related POIs as an additional predictor and investi-
gated four different ways of aggregating POI information for a given tile.

• We used an adapted centrality betweenness measure as an additional predictor. Be-
tweenness centrality was measured with respect to a different set of POIs.

• We tested four different spatial resolutions for a regular grid-based tessellation model.
• We investigated different thematic resolutions: (i) using continuous traffic speed informa-

tion and (ii) using traffic speed information classified into up to three congestion levels.
• We tested the performance of five machine learning models.
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2. Methods and Data
2.1. Conceptual Framework

Different social media platforms generate information in different formats and modes
(cf. Table 1), making any kind of traffic volume estimation highly platform-dependent. For
example, a context- or text-based model trained on Twitter data cannot be used for the
image-based Flickr data. Thus, context-based analysis requires extensive media-specific
machine learning that needs to incorporate the specifics of the platform. On the other hand,
a model trained only on the location and timestamp data from Twitter can be applied to
any other platform as long as it provides the corresponding information.

Table 1. Different social media data sources along with their availability and type of data. Columns
show if the data source is publicly available or not and if it contains user location, along with the
timestamp. * Twitter users can currently decide at which spatial granularity they provide location
data or can decide to provide no geo-location information at all. These data are accessible through
the Twitter researcher API.

Social Media Publicly
Available

User Location Time
Stamp

Datatype

Twitter Yes Yes * Yes Multimedia message
Foursquare Yes Yes Yes Search, discover and rank POI
Snapchat Yes Yes Yes Multimedia message
Flickr Yes Yes Yes Image and video message
Facebook No No Yes Multimedia message
Instagram No No Yes Image and video message

The position and connectivity of road segments in a city can be expected to be as-
sociated with the average traffic volume. Roads with higher importance are assumed to
have more traffic on average than others. In addition, the traffic is hypothesised to depend
on the attractiveness of the area. The authors have assumed that this could be captured
using the density of specific POIs. A higher number of these POIs was hypothesised to
be positively associated with a higher traffic volume. The attractiveness of an area was
assumed to increase by those POIs even if the POIs are not directly reachable by car, e.g., if
POIs are located in pedestrian zones. In addition to these static factors, the traffic volume is
shaped by dynamic factors, which lead to regular and irregular patterns due to the time
of the day, the day of the week, the presence of a holiday or school vacation or special
events such as construction work, big sports events, demonstrations, etc. The authors
hypothesise that these dynamic factors could be captured by social media activity on the
Twitter platform. These activities and traffic volume could be linked directly or indirectly
depending on if one filters for passengers (hopefully not drivers) tweeting during the ride
or for all Twitter users present in a region. The latter is presumably linked to traffic volume
with some time lag. A higher level of social media activities might both precede and follow
high traffic volumes depending on the direction of the travel. If traffic volume is predicted
at a temporally aggregated level, this presumably leads to better predictions as short-term
fluctuations are averaged out. Higher traffic volumes are assumed to be related to traffic
congestion if the capacity of the road segment is exceeded.

The authors have conceptualised five different temporal resolutions for current analy-
sis (cf. Figure 1): Live Traffic layer> Time Aggregated layer > Weekday Aggregated layer > Week
Aggregated layer > OSM Speed Limit layer. The Live Traffic layer holds traffic predictions made
using the near-real-time social media data, along with other feature spaces. As soon as
this particular layer becomes outdated it will update all underlying layers, except for the
OSM Speed Limit layer. The Time Aggregated layer contains the traffic status of pre-defined
time-bins to reflect office commute hours. The Weekdays Aggregated layer represents the
traffic status aggregated over the last four weekdays—for example, by aggregating the
traffic status of the region by aggregating the last four Mondays if the user is requesting
Monday traffic information. Similarly, the Week Aggregated layer holds traffic value by
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aggregating the data of the last seven days, considering all time-bins. Furthermore, finally,
if for a given region no information is available from any of the above layers the OSM Speed
Limit layer is used to return the highway maximum speed limit. This traffic layer stack
thus would ensure that the user receives at least some information for the requested road
segment, with the highest weighting given to the Live Traffic layer and descending weight
towards the OSM Speed Limit layer. The overall traffic prediction would be a weighted
average of all these layers.

Figure 1. Conceptual layers contributing to the whole SM2T infrastructure. They are stacked in
increasing order of priority. The Live Traffic layer is generated using two identified Twitter proxies,
along with the land-use land-cover POI and betweenness centrality (cf. main text). Note that on the
left map only Twitter proxies are shown.

A relatively high availability of social media at a relatively high spatial and temporal
resolution was expected as a requirement for the reliable use of the SM2T traffic layer stack.
Since the selected feature spaces directly affect only the Live Traffic layer, the rest of the
article only explores the relationship between the two.

2.2. Cities Used for the Case Study

Eleven world cities (cf. Table 2) for which ground truth Uber speed data were available
were selected to test the different models. The bounding boxes of the city per GADM admin
level 2 boundaries [36] were used to select and clip the datasets.

Table 2. Cities used for the case study.

Country City

Brazil Sao Paulo
Germany Berlin
Kenya Nairobi
Spain Barcelona, Madrid
United Kingdom London
Ukraine Kyiv
USA Cincinnati, New York City, San Francisco, Seattle

2.3. Uber Movement Data

Uber is a mobility service provider, which has recently started providing urban vehicle
speed data under the Creative Commons Attribution Non-Commercial License [35]. The
authors used it to identify highly traffic-congested road segments in the selected cities.
The data come with an OSM highway id as a foreign key that allows matching it to the
corresponding OSM road network. Uber provides vehicle speed data for segments of OSM
road objects. The road segments are defined by specifying the OSM-id of the start and the
end of the segment. In addition, the driving direction is indicated. For the selected cities,
average movement speeds differed, being between 27.0 km/h for Sao Paulo and 51.5 km/h
for Cincinnati (cf. Table 3).
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Table 3. Number of Twitter users, number of Tweets and average Uber speed for the cities used as
case studies. Time period: March 2018 till November 2019.

Twitter Users Tweets Uber Average Speed (kph)

Barcelona 44,758 542,076 33.43
Berlin 26,070 418,932 38.97
Cincinnati 11,445 157,754 51.55
Kyiv 5398 73,046 40.36
London 151,509 1,543,018 34.10
Madrid 58,505 552,925 40.53
Nairobi 12,750 130,681 30.55
New York City 198,144 3,981,137 31.17
San Francisco 77,356 1,380,504 44.44
Sao Paulo 89,599 1,263,890 27.04
Seattle 34,694 518,950 46.72

The estimation of the traffic congestion class per tile was based on these vehicle speed
data for March 2018 till November 2019. Each road segment was assigned to a traffic
congestion class using Table 4. OSM road objects were intersected with the tiles. For each
tile the weighted mean of the traffic congestion class was calculated. Thereby, the length
of the split road segments was used as the weight. As the traffic congestion classes were
coded as 0, 1 and 2, rounding the weighted mean to the nearest integer resulted in the
estimated traffic congestion class (i.e., HTC, MTC or LTC). Road segments with missing
Uber data were ignored.

Table 4. OSM highway speed bins, along with road width measures and buffer sizes used for tweet
filtering by the two proxies: User count within a vicinity and User count on a road segment. HTC: High
Traffic Congestion, MTC: Medium Traffic Congestion, LTC: Low Traffic Congestion.

Highway Type HTC MTC LTC Buffer in Vicinity Buffer on Road
Speed bin (km/h) (m) (m)

Motorway 0.0–37.3 37.3–62.1 >62.1 300 11.25
Trunk 0.0–37.3 37.3–62.1 >62.1 150 11.25
Primary 0.0–24.8 24.8–43.5 >43.5 150 7.00
Secondary 0.0–24.8 24.8–43.5 >43.5 50 7.00
Tertiary 0.0–24.8 24.8–43.5 >43.5 50 6.50
Residential 0.0–18.6 18.6–37.3 >37.3 50 6.00

2.4. Twitter Proxy

To use the distance formula to generate traffic maps, one needs to have at least one
vehicle on a given road segment for a specific point in time with a high frequency of data
generation. In general, the SDKs of proprietary solutions generate GNSS data points every
10 s. Unlike telemetry data, geo-tagged social media data cannot be used in this manner
because of the insufficient data coverage (Twitter provides only 1% of the global tweet
coverage via its streaming API) and the innate nature by which it gets generated. A given
user generating a social media feed at an interval of 10 s or less ought to be considered as
an outlier or artefact.

There are two ways in which geolocation can be attached to tweets, if the user decides
to do so: by the coordinates and by the place key. The coordinates key was used before 2019 to
store GNSS coordinates from the device the user tweeted from. This is no longer possible as
of 2019, at least, using the official Twitter client. Third party apps—such as Instagram—still
allow the key to be filled. However, Instagram seems to be using the coordinates key for
a different purpose, providing not the current location of the user but the coordinates
from a user-specified fixed location [37]. Therefore, using the coordinates key from current
tweets would presumably lead to very misleading results. This behaviour of Instagram has
been reported prior to 2019 [37]. The place key allows the selection of the coordinates of
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a Twitter-defined named place near the location where the tweet is posted. These places
are provided with different levels of granularity: the categories are “country”, “city” and
“poi”.

The authors had access to Twitter data for March 2018 till November 2019 from the
Twitter streaming API. Tweets with the GeoCoordinates key with exact GNSS coordinates
were used. The number of distinct Twitter users and the number of tweets differed by
more than one order of magnitude between the selected cities (cf. Table 3). The low data
availability of Twitter was addressed by the use of two proxies. The User count on a road
network proxy is based on all tweets present within a given buffer of a road segment (cf.
Figure 2a). The buffer size was chosen depending on the different OSM road classes (cf.
Table 4). This proxy is intended to capture the subset of the population on the road that
tweets during the ride, which might be a small share of all road users. While the road
width of OSM road types is expected to differ in different countries, the same buffers are
used for analysis across all selected cities. Another way to estimate the actual number of
road users or vehicles on the road is to use the User count within a vicinity (cf. Figure 2b) as
a proxy. Key public spaces (cf. Table 5) were used to select tweet clusters without a buffer.

Figure 2. A sample street network in the city of Heidelberg, Germany, showing (a) how geo-tagged
tweets were selected based on the buffer around the highways for the “User count on a road segment”
proxy, and (b) how a geo-tagged tweet cluster in a public space was used for the “User count within
a vicinity” proxy.

Table 5. Public space POIs used for the User count within a vicinity proxy as defined in OSM (key–value
pair). The right column provides the values used for the different OSM keys of this proxy. These
key–value pairs cover spaces where people gather during various hours of the day or on special
events.

Key Value

amenity parking, parking_space, marketplace
highway rest_area, services, pedestrian
leisure park, garden
landuse recreation_ground, grass, village_green, cemetery, meadow

The authors tested two additional approaches to extract the traffic information from
Twitter data (cf. Table 6). The direct speed estimation approach uses data points as telemetry
data using the speed formula. Its use directly mimics the telemetry data and the way
they are used in proprietary solutions. If this approach could be used then there would
be no need for any machine learning model in the Live Traffic layer and the use of other
feature spaces. However, this approach proved not to be suitable for Twitter data due
to the low frequency of data generation by the users—users rarely tweet several times
while traversing a road segment. The context-based proxy has extensively been studied by
researchers in the past. However, its high platform dependency and lack of standard key
traffic phrases limit its transferability. The use of language-specific phrases and cultures
makes context-based analysis cumbersome and highly complex. Data availability for a
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context-based analysis is also low as only very few tweets contain traffic-related phrases or
sentiments. Users tend to further post traffic-related tweets after an actual traffic jam, so
this proxy could only be used for larger time-bins.

Table 6. Different types of proxies for geo-tagged Twitter data used in traffic modelling. Availability
and priority should be high while complexity should be low for good results of traffic forecast
modelling.

Vehicle Speed Proxy Availability Complexity Priority

Direct speed estimation Low Low Very high
User count on a road segment Medium Medium High
User count within a vicinity High High Medium
Context-based Low Very high Low

2.5. Land-Use and Land-Cover Point of Interest Proxy

Land-use and land-cover POIs represent infrastructures that serve as a lifeline to any
city. They range from supermarkets, hospitals, schools and universities to bus stops, car
parks, etc. In SM2T, selected land-use land-cover POIs are used as an additional feature
space for traffic prediction. The authors assigned the weights and radius of impact (cf. [38])
and used them during data processing to calculate their effects on the traffic of nearby road
segments.

Four approaches to aggregate or count different land-use land-cover POIs near a road
segment have been tested (cf. Figure 3). Aggregation was performed using a regular grid
for tessellation. The idea is to use these data points to flag nearby road segments with
various degrees of traffic congestion. The simplest approach (cf. Figure 3a) counts all POIs
that are present in a given bounding box. These counts were then used to mark traffic
flags, based on road type, for all road segments inside the bounding box. However, it was
observed that different POIs could have different degrees of traffic impact based on their
distance from nearby road segments and the number of people they serve. To capture this,
road buffers and/or POI weighting were also used in order to filter and weight POIs (cf.
Figure 3b–d).

2.6. Centrality Proxy

Finally, an adapted betweenness centrality measure of each road segment is used
as an additional feature space. For SM2T, the authors adapted the original betweenness
centrality measure [39] to include the spatial distribution of population density and POIs.
This set of POIs is different from the land-use and land-cover POIs being used for the POI
proxy in Section 2.5. Gao [40] showed that choosing the start and end points of simulated
trips based on population density and POI data yields a closer relationship between the
centrality indicator and the real traffic flow within a city. Major road segments that connect
the majority of the population to critical infrastructure such as supermarkets, hospitals,
etc. could be identified, and subsequently marked as more susceptible to traffic jams. The
Ohsome API [41] was used to download the city’s road network and selected POIs. We
calculated centrality by simulating 20 k trips per city, themed and weighted by human
action functions using the openrouteservice (https://openrouteservice.org accessed on
4 April 2022). The trips were simulated based on sampled pairs of locations for each
city. One location was drawn based on an uneven sampling probability approach using
population density as the probability weight. The other was selected from the human
action function POIs. Population data were derived from the Global Human Settlement
Population Layer [42,43], a raster dataset of 250 m cell size. The human action function
POIs involved POIs from the functional groups “work”, “education”, “shopping” and
“recreation”. Trips shorter than 1km were rejected as we assumed car travel. We also used a
distance–decay function to generate more short-distance trips than long-distance trips. The
matching of the routes to the OSM street network to calculate the centrality was performed
using the fast map matching developed by Canfast [44].

https://openrouteservice.org
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Figure 3. The figure shows four ways to aggregate land-use and land-cover POI data for a given
tile. For (a), a simple counting of all POIs in an area of interest is performed. In (b) a pre-defined
road buffer, per different highway type, is used to select only nearby POIs before counting. In
(c) pre-defined weights, according to the importance of the infrastructure, are used while counting,
and in (d) a pre-defined road buffer, per different highway type, in addition to weighting is used to
select and prioritise only nearby POIs before counting.

2.7. Spatial, Temporal and Thematic Resolution

The speed at which vehicles are moving on a road segment—which is inversely
proportional to the level of traffic congestion—is always a positive whole number. Ideally,
the underlying problem should be viewed as a regression problem with all feature spaces
and target labels being positive whole numbers. However, preliminary data visualisation
and statistical analysis revealed that traffic predictions on a road level with a temporal
resolution of a few minutes were not possible due to the very low availability of Twitter data.
Among all considered independent variables, social media data were the only source that
contained timestamp information. Thus, it was a controlling factor for temporal resolution
for the Live Traffic layer (cf. Figure 1). Furthermore, the number of tweets map-matched
to a given road segment was not sufficient to derive any statistically significant proxy at
the scale of road segments for regression analysis. Therefore, the authors had to decrease
the spatial, temporal and thematic resolution to make meaningful predictions. As for the
spatial resolution, four tile sizes, i.e., 50, 100, 500 and 1000 m, were investigated to identify
a good compromise between the resolution and accuracy of the prediction. As for the
temporal resolution, initially, static time-bins representing office commuting hours were
inspected (07:00–10:00 and 15:00–19:00); however, because of low number of data points
per time-bin, the temporal variation of traffic was not considered in the model. Instead,
the current study only investigated the overall nature of a given tile size in terms of traffic
congestion with no time element.

To reduce the thematic resolution, the problem was converted into a classification
problem by using the three traffic congestion classes as the final output: High Traffic
Congestion (HTC), Medium Traffic Congestion (MTC) and Low Traffic Congestion (LTC).
The definition of the three congestion classes for a given tile size is based on an equal
quantile bin approach considering tweets, land-use land-cover POIs and betweenness
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centrality indicators. The top 33% represents HTC, the bottom 33% LTC and the middle
33% MTC. Thereby, the authors were able to combine all OSM highway types, unlike for
the regression, where each highway type had to be treated separately. This led to a higher
number of training instances.

Finally, the Uber Movement data were used as the target label to train the model. Static
speed bins (cf. Table 4) were used to convert the continuous Uber data to traffic classes for
each OSM highway type (motorway, trunk, primary, secondary, tertiary and residential).

2.8. Missing Data Handling

After data processing, the dataset had multiple tiles (for each tile size) along with their
respective HTC vs. no-HTC class labels for Uber, Twitter, land-use land-cover POIs and
betweenness centrality. Since there were many tiles where at least one of the values was
missing, the authors prepared three separate datasets to train the model. In the first dataset,
only those tiles were taken where all non-null values for different columns were present.
This dataset was the smallest in terms of the number of rows. In the second dataset, all
those tiles were taken where the Twitter column had a non-null value. As for the cases
where land-use land-cover POIs and/or the betweenness centrality class was missing,
the no-HTC (dummy) label was used. Finally, in the third dataset, all tiles were taken
and all empty cells were replaced with a no-HTC (dummy) label. The reason for using a
no-HTC label as a dummy here was the assumption that the data might correctly show the
absence of any tweet, thereby indicating low traffic congestion, and hence no-HTC. For all
subsequent training, these three datasets were independently analysed.

2.9. Machine Learning Methods Comparison

To find the best-suited classification algorithm for logistic regression [45], Naive
Bayes [45], k-nearest neighbours classifier [46], Random Forest [47] and Support Vector
Machine models [48] were compared using the grid search CV approach in the Sklearn
python package [49] for hyperparameter tuning. Although many other models could have
been tested, these selected ones are the most standard models that are easy to implement
and are also lightweight. Precision (cf. Equation (1)) was used for model evaluation as this
was of highest priority for the project—recall or F1-score were not used.

precision =
TP

TP + FP
(1)

with TP being true positives and FP being false positives.
The spatial unit at which the modelling happened was the level of the tiles.

3. Results

When comparing the prediction made by the centrality class as a predictor for different
tile sizes and the three speed bins (HTC, MTC and LTC), the HTC class showed the highest
accuracy (Figure 4). The comparison of the different tile sizes indicated that the relationship
between the predictor and target variable was strongest at 100 and 50 m tile sizes (Figure 4).
Similar conclusions were supported for Twitter proxies and the land-use land-cover POI
predictors (results not shown). As the best prediction was achieved when predicting
only HTC, the multi-class classification problem was subsequently converted to a boolean
classification where HTC vs. no-HTC was evaluated and predicted.

Predictions based on the two proxies (User count on a road segment and the User count
within a vicinity) were better than using the simple tweet count for high traffic congestion
situations (cf. Figure 5). A similar result was found for the land-use land-cover POIs
aggregation using the weight and radius of the impact method.
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Figure 4. Accuracy of prediction of three traffic classes identified by the betweenness centrality
measure, with the Uber Movement classes used as ground truth (left). Colours indicate the percentage
of tiles correctly classified by the model using the adapted betweenness centrality as predictor. Extent
of over/underestimation in wrongly classified classes using this proxy (right). Colours indicate the
share of tiles incorrectly classified by the model using adapted betweenness centrality as a predictor.

Figure 5. The plot compares the performance of two Twitter aggregation methods per tile: (i) User
count on a road segment and (ii) User count on a road segment + User count within a vicinity. The colour
indicates the difference in the percentage of correctly classified tiles between the predictions based
on the two approaches. A positive value (blue) implies that the aggregation method using the
combination of the two proxies is a better predictor.
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While the prediction for high traffic congestion was almost balanced for the combination
of all cities, the predictions for the individual cities were unbalanced (cf. Figures 6 and 7).
Cincinnati was almost completely no-HTC-labelled and Sao Paulo was almost completely
HTC-labelled for the 500 and 100 m tile size. Kyiv, on the other hand, showed a more
balanced distribution of HTC and no-HTC tile locations at the 1000 m and also at the 500 m
tile size. It is interesting to note that cities that showed more high traffic congestion if the
Uber data had a higher prediction accuracy. A more realistic approach, therefore, would be
to consider all tiles from different cities to cancel out the extreme effect of this imbalance,
although all cities were also independently inspected for training.

Then, comparing the five different machine learning models in terms of precision
across all cities, the k-nearest neighbours classifier performed best in terms of average
precision for all tile sizes (cf. Figure 8). However, the difference in performance among
different models was very small, especially between the k-nearest neighbours and the
Random Forest classifier. Still, we selected the former for further analysis, due to its lower
model complexity. This is beneficial if the model should be used as part of a web service,
as lightweight models support fast prediction and hyperparameter re-adjustment. In a
study on traffic congestion prediction using a different set of predictors, the Uber team
also identified the k-nearest neighbours classifier as well as the best performing model [50].
Among the different tile sizes, 100 and 50m gave the highest average precision. Over all
models, the average precision was highest if tiles with missing feature information were
removed instead of using a dummy value for those tiles.

Figure 6. Degree of class imbalance in HTC vs. no-HTC labels per each dataset based on the Uber data
(static class definitions). All instances with at least one empty feature space have been discarded. The
x-axis shows the relationship between the number of HTC to no-HTC tiles per city for the different
tile sizes. A value of 50% indicates perfectly balanced data. “Merged” represents the combination of
all eleven cities.
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The hypertuning of the k-nearest neighbours classifier suggested an optimal number
of 30 neighbours for the 50, 100 and 500 m tile sizes (cf. Figure 9). For the 1000 m tile
size, no clearly superior value could be identified. This is caused by the very low number
of instances for such a coarse spatial resolution, which results in a very small number of
neighbours, therefore not allowing for the proper optimisation of the parameter.

Figure 7. Visualising traffic congestion classes derived from all feature spaces using a quantile
approach and validation (Uber) dataset for three cities (showing both edge case scenarios). The
number of cells with predictions differs, as the predictors were not available for all tiles. The precision
of the model predictions is presented in Figure 10.

For the 100 and 50 m tile sizes, the k-nearest neighbours classifier with 30 neighbours
achieved more than 60% precision for each city (cf. Figure 10). For the combined dataset,
the precision was above 80% for these two tile sizes. Although the precision was high, it is
safe to expect it to be between 70% and 80% because the class imbalance for the combined
dataset is still in a modestly imbalanced slab (cf. Figure 6). At the city level, precision
was positively associated with the number of Twitter users (Pearson’s r: 0.41) and with
the number of tweets (Pearson’s r: 0.37)—number of tweets and Twitter users per city
were expectedly highly correlated (Pearson’s r: 0.94). In addition, cities with a higher class
imbalance were associated with higher precision (Pearson’s r: 0.47).
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Figure 8. Comparison of the precision of five classification algorithms for different tile sizes. The
three plots represent different datasets based on how empty cells were handled using the dummy
value. The variability in the boxplots is due to the different precisions for the individual cities.

Figure 9. Selecting the best-performing number of neighbours of the k-nearest neighbours classifier
for different tile sizes. The red curve represents the combined cities. The different black colours
represent the individual cities. The vertical blue line characterises the selected value of 30 nearest
neighbours.



ISPRS Int. J. Geo-Inf. 2022, 11, 482 15 of 20

Figure 10. The performance of the k-nearest neighbours classifier (k = 30) for different tile sizes,
different cities and a combined dataset. For each city, the model was trained using a 5-fold cross-
validation approach using all cities but the selected city and validated against the latter. For the
combined dataset, the model was trained using a 5-fold cross-validation approach and with precision
calculated for the whole dataset.

4. Discussion and Limitation

The limited availability of georeferenced tweets was a major challenge for the predic-
tion of traffic speed or traffic congestion. Therefore, we had to simplify the model and rely
on proxies. The reduced model provides less information than originally intended, as it can
only distinguish between HTC and no-HTC. This might be disappointing when comparing
this approach with commercial approaches. Nevertheless, our approach captures the most
important modes: stuck in traffic or moving. This provides important information for rout-
ing as HTC situations have serious travel time implications and highly effect the stress level
of drivers [51]. Twitter discontinued its precise GNSS coordinate metadata service in 2019.
Therefore, tweet availability is unlikely to improve. However, the proxy-based approach
can easily be adapted to incorporate other publicly available geo-tagged social media data.
Extending the proxies in that respect is likely to improve the quality of prediction.

The models were tuned for precision. The precision of 81% of the k-nearest neighbours
classifier for the combined dataset at 100 m tile size indicates a good model performance.
However, as the recall was not considered during the model selection, the prediction of
the model might be too conservative, classifying road segments that are not suffering from
congestion as highly traffic congested. Therefore, routing suggestions considering the
model forecast presumably also tend to be conservative.

As traffic congestion prediction is performed at the level of tiles, the use of the predic-
tion in routing adds additional uncertainty as the congestion affects all road segments that
intersect with the tile. Traffic congestion on a highway might not affect traffic congestion at
a nearby residential road. However, in many situations it is likely that traffic congestion is
not limited to an individual road segment but affects the connected road segments as well.

Due to the lack of Uber data coverage, Asian and African cities were heavily under-
represented in our case study dataset. Only one city, Nairobi, was available from these two
continents. This raises concerns about transferring the model to Asian or African cities,
which tend to be characterised by poorer OSM data quality and less precise population
density information. For a few African or Asian cities, administrative or public domain
datasets might be available that could be used instead of the Uber dataset. However, as
these data come without reference to OSM objects, the use of these data would involve
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map-matching between the data and the OSM road network. This was outside the scope of
the current analysis but should be carried out in future studies.

To transfer the model to other cities, it will be necessary to calculate the centrality
proxy for them as well. The simulation-based approach might become computationally
demanding if the approach is transferred to a larger region, such as cities in the US or in
India. Sufficient completeness of the road network is a prerequisite of the approach—while
most cities are mapped relatively well [52], there are still cities for which completeness
might be an issue. However, roads of higher importance tend to be mapped much more
completely, so this might not be a real problem.

In addition, social media usage differs between countries. Differences affect the total
number of social media users, the social media platform and the share of georeferenced
tweets before 2019 [53]. This affects transferability, and the number of georeferenced posts
needs to be sufficiently high. The number of twitter users and georeferenced tweets differs
between the cities used as our case study (cf. Table 3). Model performance showed a
positive association with these numbers, specifically for the smaller tile sizes. Hence,
the transfer of the approach is presumably only promising for cities with a sufficient
level of georeference social media activity. For cities with at least the same frequency of
georeferenced social media posts as Kyiv (the lowest number of Twitter users and tweets
in our case study sites), the approach might be applicable. However, this needs further
testing.

For the classification of the Uber dataset to HTC and no-HTC labels, static class
definitions (Table 4) were used. While this was necessary for a transferable approach on a
global scale, it resulted in limitations in terms of the subjectiveness of the class meanings. A
high, medium or low traffic speed limit is subjective terminology, which primarily depends
upon the country, road type and the perspective of the commuter. Therefore, a more
practical approach would be to define a global dictionary of what class definitions should
be used for each city or country. However, to the best of the authors’ knowledge, this has
not been carried out by other studies so far, and further investigation in this direction was
beyond the scope of the current study.

The individual cities differed strongly with respect to the amount of traffic congestion.
While this reflects the range of traffic situations across cities, it might have impacted the
quality of the model and the transferability to other cities. While the whole dataset seems
relatively well balanced, individual cities contribute more or fewer labels for the HTC to the
no-HTC class. Thereby, the characteristics of the extreme cases Sao Paulo and Cincinnati
might have had a strong impact on what the model for all cities learned as important
features for no-HTC and HTC prediction. Further studies in this respect seem necessary.

Another challenge for future research is the normalisation of the feature spaces across
cities. The current percentile approach is purely data-driven and presumably is not transfer-
able to cities outside of the case study. This might further lead to an artificial split between
tiles of similar traffic conditions.

5. Conclusions and Future Work

Estimating traffic information from social media data is clearly challenging. Data
availability has been indicated as a major obstacle in this regard. However, we have shown
that it is possible to predict high traffic congestion when combining Twitter-derived proxy
information with adapted network betweenness measures and land-use and land-cover
POI information. We have demonstrated a reasonable way to use these proxies for the
cities in the case studies. Our study highlights many of the challenges to be addressed and
provides some guidance on reasonable compromises.

Prediction of high traffic congestion at the 100m tile level based on the presented
approach are available via a web service (cf. Figure A1, SM2T https://sm2t.heigit.org
accessed on 10 September 2022 ). This service has multiple modules in terms of API
deployment, model training and hyperparameter tuning, allowing the sharing of results
on a web-map and integration with third-party services such as the OpenRouteService. In

https://sm2t.heigit.org
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upcoming work, the authors will explore the feasibility of using the current model in Asian
and African countries, by testing other social media sources and publicly available speed
datasets as ground truth.
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Appendix A. SM2T Architecture and Interface

Figure A1. SM2T architecture and interface.
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