
Citation: Fosci, P.; Psaila, G. Soft

Integration of Geo-Tagged Data Sets

in J-CO-QL+ . ISPRS Int. J. Geo-Inf.

2022, 11, 484. https://doi.org/

10.3390/ijgi11090484

Academic Editors: Wolfgang Kainz

and Huayi Wu

Received: 4 June 2022

Accepted: 7 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Soft Integration of Geo-Tagged Data Sets in J-CO-QL+

Paolo Fosci and Giuseppe Psaila *

Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5,
24044 Dalmine, Italy
* Correspondence: giuseppe.psaila@unibg.it; Tel.: +39-035-205-2355

Abstract: The possibility offered by the current technology to collect and store data sets regarding
public places located on the Earth globe is posing new challenges, as far as the integration of these
data sets is concerned. Analysts usually need to perform such an integration from scratch, without
performing complex and long preprocessing or data-cleaning tasks, as well as without performing
training activities that require tedious and long labeling of data; furthermore, analysts now have to
deal with the popular JSON format and with data sets stored within JSON document stores. This
paper demonstrates that a methodology based on soft integration (i.e., data integration performed
through soft computing and fuzzy sets) can now be effectively applied from scratch, through the
J-CO Framework, which is a stand-alone tool devised to process JSON data sets stored within JSON
document stores, possibly by performing soft querying on data sets. Specifically, the paper provides
the following contributions: (1) It presents a soft-computing technique for integrating data sets
describing public places, without any preliminary pre-processing, cleaning and training, which
can be applied from scratch; (2) it presents current capabilities for soft integration of JSON data
sets, provided by the J-CO Framework; (3) it demonstrates the effectiveness of the soft integration
technique; (4) it shows how a stand-alone tool able to support soft computing (as the J-CO Framework)
can be effective and efficient in performing data-integration tasks from scratch.

Keywords: off-line integration of geo-tagged data sets; data sets about public places; soft integration
methodology; effective soft integration through a stand-along tool

1. Introduction

Integrating geo-spatial information has become a crucial task in the current world.
In fact, in the era of Open Data and Big Data, a plethora of sources can provide both
authoritative and non-authoritative data sets concerning places. The situation is further
complicated by the fact that social media provide people with tools for describing places
in a non-controlled way. For example, Facebook provides its users with the functionality
to define a “page”; a specific category of the page describes a “public place”, such as
restaurants, pubs, air dressers, universities, parks and so on; through its API (Application
Programming Interface), pages could be queried, on the basis of their category, location,
coordinates, and so on. Another interesting service is called Google Places: it is a sub-service
of Google Maps; Google Places API can be used to query its corpus to find places of interest, on
the basis of category, location, and so on; this corpus is built by Google Maps by integrating
both authoritative and non-authoritative data, these latter ones given by users through the
social interface provided by Google Maps.

In the current scenario, it is very easy to collect data sets from multiple sources, such
that these data sets provide geo-tagged information about public places. Since current
APIs of social media and Open-Data portals provide data as (possibly) geo-tagged JSON
documents (JSON stands for JavaScript Object Notation, see [1]), JSON document stores
are the natural storage where to save such data sets. Consequently, integrating geo-
tagged data sets describing public places asks for suitable tools, which are able to work
on JSON document stores. This is the reason why at University of Bergamo (Italy), we

ISPRS Int. J. Geo-Inf. 2022, 11, 484. https://doi.org/10.3390/ijgi11090484 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11090484
https://doi.org/10.3390/ijgi11090484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-9050-7873
https://orcid.org/0000-0002-9228-560X
https://doi.org/10.3390/ijgi11090484
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11090484?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2022, 11, 484 2 of 26

are devising [2–5] an innovative tool, called J-CO Framework, to perform the complex
integration and querying of (possibly geo-tagged) JSON data sets.

Nevertheless, integrating geo-tagged data sets describing public places is not a novel
problem; in general, traditional approaches rely on machine-learning techniques that
require a preliminary training phase. In [6], the problem was addressed in a different
way, because the context of “online” aggregation was considered; a fuzzy relation was
defined, which provides an easy-to-compute metric that is suitable for online integration of
data about public places; the experiments demonstrated that the approach is effective and
comparable, in terms of effectiveness, with off-line classification techniques. However, the
technique presented in [6] was hard-coded within the software prototype; this fact made
us able to include some pre-processing steps on strings that were performed on the fly,
immediately after place descriptors were acquired. However, the approach seems to be
general and could be applied for integrating data sets in an off-line way too, with data
sets stored within JSON stores. Paradoxically, this apparently small change of context
constitutes a significant challenge: in fact, the straightforward solution could be to still
hard-code the technique into a software tool, but this approach is not coherent with the
world of JSON document stores. We think that exploiting a stand-alone tool able to
query JSON stores is preferable, since it is transparent and comprehensible for analysts;
however, a stand-alone tool for processing JSON data sets is necessarily less flexible than
a programming language. Thus, the challenge is the following: is it possible to identify a
stand-alone tool and adapt the integration technique presented in [6] to the case of off-line
integration of geo-tagged JSON data sets from JSON stores?

The current evolution of J-CO-QL+, the query language of the J-CO Framework, pro-
vides constructs for evaluating membership of JSON documents to fuzzy sets [7–9]. Thus,
the straightforward idea of checking the current capability of J-CO-QL+ for integrating
JSON data sets describing public places has come out: specifically, since J-CO-QL+ is able
to deal with complex soft querying of JSON data sets and the technique presented in [6]
for online integration of data sets concerning public places is based on fuzzy relations, we
had the intuition of mixing the two approaches. In other words, given two sets of place
descriptors represented as JSON documents and stored within a JSON document store, in
this paper, we experiment with the application of the fuzzy technique presented in [6] (to
be precise, a slightly evolved version of it) by means of the J-CO Framework, in an off-line
manner. The goal is to verify that this approach is suitable in an off-line context, without
previous training activities and intervention by humans to label data sets for driving the
learning phase (typical of classification techniques). Definitely, we want to demonstrate that
the availability of a stand-alone tool such as the J-CO Framework, which is able to process
JSON data sets by applying soft computing and fuzzy sets, indeed provides analysts with a
powerful tool to address a problem faced by data analysts, in an effective and (possibly)
efficient way.

Summarizing, the contribution of the paper is manifold: (1) Presenting a soft-computing
technique for integrating data sets describing public places, without any preliminary pre-
processing, cleaning and training, which can be applied from scratch; (2) presenting current
capabilities for soft integration of JSON data sets, as they are provided by J-CO-QL+;
(3) demonstrating the effectiveness of the soft integration technique in a harder context than
that considered in [6]; (4) showing how a stand-alone tool able to support soft computing (as
J-CO-QL+) can be effective and efficient in performing data-integration tasks from scratch.

The paper is organized as follows. Section 2 presents relevant related work concerned
with the paper. Section 3 provides a brief introduction to relevant concepts concerning
fuzzy-set theory. Section 4 introduces the main features of the J-CO Framework. Section 5
precisely explains the addressed problem and introduces the methodology we follow,
which relies on the concept of fuzzy relation. Section 6 presents and discusses the script
written by means of J-CO-QL+, which practically applies the methodology presented in
Section 5; each single instruction is explained, in order to illustrate how it behaves and its
contribution within the script. Section 7 reports the results of an experimental evaluation,

ISPRS Int. J. Geo-Inf. 2022, 11, 484 3 of 26

in which we evaluated effectiveness and, marginally, execution times. Finally, Section 8
draws the conclusions and possible future work.

2. Related Work

This paper embraces two different research lines: soft querying on databases in general
and on JSON document stores in particular (Section 2.1), as well as the integration of data
sets describing public places (Section 2.2).

2.1. Soft Querying on Databases

Providing data users with capabilities for flexibly querying databases is an old chal-
lenge. In particular, when selection conditions can rely on vague predicates, queries
become “soft”, meaning that they are tolerant to thresholds (e.g., given a Boolean predicate
price <= 30 to select cheap products, a product whose price is 30.45 is not selected, while
instead it could be of interest) and selected items could be ranked on the basis of their
relevance to the selection condition. Fuzzy sets appeared as the formal framework to
specify soft selection conditions [10]. Since relational-database technology dominated the
panorama of database technology, many works were conducted to propose an extension of
SQL (the standard query language for relational databases) towards soft querying based
on fuzzy sets. Some popular proposals are SQLf [11,12] (for which we can mention an
attempt to implement it [13]) and its extension named SQLf3 (which copes with constructs
introduced in SQL3), as well as FQUERY for Access [14,15] (designed to operate on databases
managed by Microsoft Access). Among all these proposals, SoftSQL [16–18] provided users
with a statement to define non-trivial “linguistic predicates”, to be used in the extended
SELECT statement to select table rows through linguistic predicates. The interested reader
can find various surveys on the topic [19,20]; in particular, the work [21] is a very large
handbook that summarizes all research work on this topic.

The advent of NoSQL (Not only SQL) databases [22], i.e., databases that do not rely on
the classical relational model, has started a novel era in data management. In particular,
the popularity obtained by the JSON (JavaScript Object Notation) format to represent
any kind of complex data is facing the data engineer with the novel (with respect to
relational databases) concept of “JSON document store”, i.e., a database which stores JSON
documents in a native way. The most famous JSON document store is MongoDB [23],
but many others are available (such as CouchDB [24], exploited within the block-chain
platform called HyperLedger Fabric [25]). As a result, this novel scenario is revamping the
topic of soft querying on databases, this time on NoSQL databases in general and on JSON
document stores in particular.

An extension of MQL, the MongoDB query language, is proposed in [26]; in this exten-
sion, called “fMQL”, “fuzzy labels” can be used to query JSON documents, since they are
equivalent to linguistic predicates; unfortunately, the work [26] does not provide any indi-
cation about how to define fuzzy labels. A further limitation of the proposal is that, for each
single JSON document, only one membership degree is implicitly evaluated (in contrast,
J-CO-QL+ allows for dealing with many membership degrees for each single document).

Finally, the work [27] proposes an approach for soft querying JSON documents: the
corpus of JSON documents is preliminarily translated into fuzzy RDF triples [28]; then, the
query is translated into fSPARQL [29], a fuzzy extension of SPARQL [30]. In our opinion,
this approach is not suitable for processing JSON documents, because it does not work on
the original documents, but on an alternative representation of them.

2.2. Integrating Data Sets Describing Public Places

The topic of aggregating information about public places coming from internet sources
has been investigated in the last decade. Many different approaches have been followed.

For example, the work [31] adopts the DAS technique to integrate data about public
places uniquely by exploiting string similarity on names, in particular by comparing the
two strings without and with tokenization.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 4 of 26

The work [32] compares different string-similarity metrics with various machine
learning methods, to solve the problem of toponym matching. The results demonstrate that
machine learning methods (in particular, classifiers) perform better than string-similarity
metrics. Obviously, they cannot be applied from scratch, without preliminary labeling and
training activities. Similarly, the work [33] exploits a neural network to perform “toponym
matching”, i.e., pairing strings that represent the same location.

The work [34] addresses the problem of “geo-spatial data conflation” (the general
name of the problem addressed in this paper) by adopting an entropy-based technique: the
key idea is to use phonetic transcriptions, to compensate mistakes in writing names.

Another work that can be considered as related to this paper is [35], in which “se-
mantic aligning” of heterogeneous geo-spatial data sets (GDs) is addressed. Specifically,
it proposed an efficient similarity matching technique, which integrates various category
systems simultaneously.

Finally, the closest work to this paper is [6]: this work could be considered the natural
evolution of it. Specifically, a complex fuzzy relation is defined to perform public-place
conflation in an online way. A comparison with a famous classification technique (i.e.,
“Random-Forest” classifiers) was performed, showing that the fuzzy approach is effective
in a comparable way. Here, the definition of the fuzzy relation is improved to cope with
not-cleaned names and addresses, as well as it is applied within the context of the J-CO
Framework for the off-line integration of JSON data sets.

3. Basic Notions on Fuzzy Sets

In [36], Zadeh introduced the Fuzzy-Set Theory. It was rapidly clear that it had (and
still has) an enormous potentiality to be successfully applied to many areas of computer
science, such as decision making, control theory, expert systems, artificial intelligence,
natural-language processing, and so on. Here, we report some basic concepts, which
constitute the basis to understand the main contribution of this paper.

Definition 1. Fuzzy Set. Consider a “universe set” U. A fuzzy set (or type-1 fuzzy set) A in U
(A ⊆ U) is a mapping A : U → [0, 1]. The value A(x) is referred to as the membership degree
of the element x to the fuzzy set A. Alternatively, the notation µA(x) ∈ [0, 1] can be used.

Clearly, given an item x ∈ U, if A(x) = 0, this means that x does not belong at all to
A; an intermediate value 0 < A(x) < 1 means that x partially belongs to A (the greater the
value, the higher its degree of membership); if A(x) = 1, this means that the item x fully
belongs to A.

Consequently, a fuzzy set is “empty” if and only if its membership function is identi-
cally zero for each x ∈ U.

Furthermore, given two fuzzy sets A in U and B in U, they are “equal” (denoted as
A = B), if and only if A(x) = B(x) (alternatively, µA(x) = µB(x)) for all x ∈ U.

Operators on fuzzy sets can be easily defined, by extending the classical operators on
traditional sets.

Definition 2. Union, Intersection and Complement. Consider a universe U and two fuzzy sets
A in U and B in U.

The union of two fuzzy sets A and B, denoted as S = A ∪ B , generates a novel fuzzy
set S whose membership function is S(x) = max(A(x), B(x)), for each x ∈ U (alternatively,
µS(x) = max(µA(x), µB(x))).

The Intersection of two fuzzy sets A and B, denoted as I = A ∩ B , generates a novel fuzzy
set S whose membership function is I(x) = min(A(x), B(x)), for each x ∈ U (alternatively,
µI(x) = min(µA(x), µB(x))).

The Complement of a fuzzy set A, denoted as C = A , generates a novel fuzzy set C whose
membership function is C(x) = 1− A(x), for each x ∈ U (alternatively, µC(x) = 1− µA(x)).

ISPRS Int. J. Geo-Inf. 2022, 11, 484 5 of 26

Classical logical operators are mapped onto operators on fuzzy sets: the OR operator is
mapped onto the union; the AND operator is mapped onto the intersection; the NOT operator
is mapped onto the complement.

Fuzzy sets are useful to represent vague concepts, which characterize many real-life
application contexts. For example, if the universe is the set of people, we could think to
divide them into “young” and “old”. However, is a person whose age is 40 actually young
or old? He/she is a little bit young and a little bit old, neither fully young nor fully old.

Various other operators on fuzzy sets can be defined. In the following definition, we
introduce the “weighted aggregation” operator.

Definition 3. Weighted Aggregation. Given a universe U and two fuzzy sets A in U and B in
U, the weighted aggregation operator W = wagβ(A, B) (with β ∈ [0, 1]) generates a new fuzzy
set W whose membership function is defined as W(x) = β× A(x) + (1− β)× B(x) (alternatively,
µW(x) = β× µA(x) + (1− β)× µB(x)).

Example 1. Through the membership degree, it is possible to denote partial membership of an item
x ∈ U to A; this way, vague linguistic concepts can be modeled. For example, given a public place
p, its membership to the PopularPlaces fuzzy set could be partial, denoting a place that is not so
popular; thus, the membership degree measures its degree of popularity, for example on the basis of
the number of likes obtained on social media.

Suppose that on the same universe of public places, we conceive the CheapRestaurants fuzzy
set, whose membership degree denotes the perception that a public place is cheap (this perception
could be induced by analyzing menus published on social media).

We now illustrate how to aggregate the PopularPlaces and the CheapRestaurants fuzzy sets
to obtain interesting places.

• If we are looking for “popular and cheap restaurants”, we could formulate the search as
“PopularPlaces AND CheapRestaurants” (in terms of fuzzy sets, it is
I = PopularPlaces ∩ CheapRestaurants). Clearly, the lower membership degree deter-
mines the actual relevance of a place p.

• If we are looking for “popular or cheap restaurants”, we could formulate the search as
“PopularPlaces OR CheapRestaurants” (in terms of fuzzy sets, it is S = PopularPlaces ∪
CheapRestaurants). Clearly, the higher membership degree determines the actual relevance
of a place p (a place could be not popular, but highly cheap).

• If we are looking for “popular and possibly cheap restaurants”, we could formulate the
search as “70% PopularPlaces AND 30% CheapRestaurants” (in terms of fuzzy sets, it is
W = wag0.7(PopularPlaces, CheapRestaurants)). Clearly, the final membership degree is
dominated by the degree of popularity, but a popular place that is also a cheap restaurant has a
higher membership degree than a popular place that is not at all a cheap restaurant.

The three above-mentioned searches are examples of “soft queries”, where selection conditions
are expressed in a vague way; the resulting membership degree denotes the “relevance” of an item to
the soft query.

Furthermore, notice that when the names given to fuzzy sets linguistically characterize items
in a proper way, these names can be used in soft conditions to linguistically express them.

Definition 4. Fuzzy Relation. Consider two universes U1 and U2. A fuzzy relation R on U1
and U2, is defined as R : U1 ×U2 → [0, 1]. R(x1, x2) ∈ [0, 1], with x1 ∈ U1 and x2 ∈ U2, is the
membership degree of the relation between x1 and x2; the meaning of the relation is linguistically
expressed by the name of the relation.

Through the concept of fuzzy relation, it is possible to model the strength of a relation
between two items x1 ∈ U1 and x2 ∈ U2. Nevertheless, notice that a fuzzy relation is a
particular case of fuzzy set in the universe U = U1 ×U2. Thus, we can reformulate the
relation as R : U → [0, 1], where x = 〈x1, x2〉 ∈ U; consequently, we can write, in an
equivalent way, either R(x1, x2) or R(〈x1, x2〉).

ISPRS Int. J. Geo-Inf. 2022, 11, 484 6 of 26

In this paper, we work on the universe of JSON documents. So, given a document
d ∈ U, the focus will be on the evaluation of its membership degrees to one or more
fuzzy sets.

4. The J-CO Framework

The J-CO Framework is a suit of software tools able to process JSON data sets, in a
way that is independent of the data source. In fact, it is able to obtain data sets both from
JSON document stores (such as MongoDB) and from web sources. It is built around the
J-CO-QL+ language and it contains various tools, as illustrated in Figure 1.

• The J-CO-QL+ Engine actually processes J-CO-QL+ queries. It obtains data to process
from JSON document stores and from web sources; it is able to store results again into
JSON document stores.

• J-CO-DS is a simplified JSON document store [37]: it is designed to provide users
with the capability of storing large single JSON documents (usually, popular JSON
document stores are not able to deal with very-large single JSON documents). J-CO-
DS does not provide any internal computational capability, i.e., it does not provide a
query language: in fact, it is part of the J-CO Framework, in which the component that
provides computational capabilities is the J-CO-QL+ Engine.

• J-CO-UI is the user interface of the framework. It provides users with a graphical
interface to interactively write J-CO-QL+ queries in a step-by-step way; users can also
inspect intermediate results.

Figure 1. The J-CO Framework.

4.1. The Query Language

J-CO-QL+ is the current evolution of the original J-CO-QL (see [3–5]): as its prede-
cessor, it is designed to provide high-level and declarative statements, which does not
require programming skills to be used; by means of them, it is possible to specify complex
procedures (scripts) that are able to retrieve, integrate, transform and save JSON data sets.
With respect to its predecessor, J-CO-QL+ maintains the same approach, but revises syntax
and semantics of statements, to improve their usability and effectiveness. Hereafter, we
present its data model and its execution model.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 7 of 26

4.1.1. Data Model

Here, we present the data model on which J-CO-QL+ relies.

• The basic item to process is a JSON document. A document is represented within a
pair of braces “{” and “}”; it is a sequence of fields separated by commas.
A field is a “name: value” pair, where “name” is the field name, while “value” is the
value of the field; the name is always enclosed within double quotes (e.g., "name");
the value can be a number, a string (enclosed either within double quotes or single
quotes), a Boolean value, a nested sub-document (enclosed within a pair of braces
“{” and “}”) or an array (enclosed within square brackets “[” and “]”, whose items
can be any kind of JSON value, separated by commas).

• J-CO-QL+ gives a special meaning to root-level fields whose name becomes with “~”;
these names are compliant with JSON naming rules, but J-CO-QL+ considers some of
them in a special way, as illustrated hereafter.

– The root-level ~fuzzysets field is used to represent membership degrees of a
d document to fuzzy sets. It works as a “key-value” map: given a field within
~fuzzysets, the field name is the name of the fuzzy set to which the membership
degree has been evaluated; the value is a real number in the range [0, 1], which
denotes the membership degree. This way, given a d document, it is possible to
represent its membership to many fuzzy sets.

– The root-level ~geometry field represents geometries (also called “geo-tagging”)
of spatial entities represented as JSON documents. In this paper, we do not make
use of geometries (the interested reader can refer to [5]).

• A “collection” is an unordered multi-set of heterogeneous documents, i.e., it can
contain multiple copies of the same document.

4.1.2. Execution Model

The execution model is the same presented in previous publications [5,7]. Hereafter,
we briefly summarize it.

• A “query” q = (i1, i2, . . . , in) is a sequence of instructions ij, with 1 ≤ j ≤ n. A query
is a “pipe of instructions”.

• Each instruction ij receives an input “query-process state” sj−1 and generates a new
query-process state sj.

• A “query-process state” sj (with 0 ≤ j ≤ n) is a tuple sj = 〈tc, IR, DBS, FO, JSF〉.
– tc is called “temporary collection”, since it is a collection of JSON documents that

passes through the pipe of instructions, that contains temporary results of the
query process.

– IR is the “Intermediate-Results databaase”, i.e., a database that is exclusive for
the query process, to store intermediate results to be used later.

– DBS is the set of “database descriptors”, used to handle connections with external
JSON document stores.

– FO is the set of “Fuzzy Operators” defined within the query; they allows for
evaluating membership degrees to fuzzy sets (see Section 6.2).

– JSF is the set of user-defined “JavaScript Functions”; they are defined throughout
the query to complete computational capabilities of the query language (see [38]).

• The initial query-process state is s0 = 〈tc : ∅, IR : ∅, DBS : ∅, FO : ∅, JSF : ∅〉. Each
instruction possibly modifies one member of the query-process state.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 8 of 26

5. Problem and Methodology

In this section, we discuss the premises from which the paper has originated and
introduce the problem we addressed as a case study (Section 5.1). Then, we present the
methodological framework, which this work relies on (Section 5.2).

5.1. Premises and Problem

In [6], a fuzzy method for the online aggregation of POIs (Points of Interest) is pre-
sented. The problem addressed in that paper can be summarized as follows: if a web
application has to integrate descriptors of public places (or POIs) caught on the fly from
external services, the decision whether two descriptors actually describe the same public
place or not must be taken in real time: techniques that require off-line work cannot be used.

In [6], it was proved that the technique can obtain very high levels of accuracy, ab-
solutely comparable with off-line techniques; consequently, here, we argue that the same
technique could be effectively adopted to integrate two data sets describing public places, in
an off-line way. In particular, the novel support for soft querying [7] provided by J-CO-QL+

(the query language of the J-CO Framework) has modified the scenario: in fact, the J-CO
Framework is a stand-alone tool designed for manipulating and querying collections of
JSON data sets. Consequently, it is straightforward to explore the possibility to exploit it
for applying the fuzzy technique presented in [6] for integrating two collections of public-
place descriptors coming from two different sources, by adopting a database approach
(querying data by means of a query language) instead of hard coding the methodology
with a programming language.

Hereafter, we present the problem. Then, Section 5.2 presents an improved formulation
of the fuzzy technique presented in [6] that will be applied in J-CO-QL+ scripts (discussed
in Section 6).

Problem 1. Consider two collections of descriptors D1 and D2. A descriptor d (such that either
d ∈ D1 or d ∈ D2) describes a public place; we assume that d is a tuple whose minimal shape is
d = 〈name, address, lat, lon〉, where d.name is the name of the public place, d.address is the raw
address (i.e., as it is provided by the data source, without any pre-processing or cleaning) of the
public place, while d.lat and d.lon are, respectively, the latitude and longitude of the public place.
Depending on the source, these fields could be missing (either null value or zero-length string).

Supposing that descriptors in D1 and D2 are related to the same municipality, we want to
build the collection SP = {p1, p2, . . . } of pairs of descriptors pi : 〈d1,h, d2,k〉 (with d1,h ∈ D1 and
d2,k ∈ D2) such that it is very likely that d1,h and d2,k actually describe the same public place.

5.2. Fuzzy Relation for Matching Public Places

The key contribution of [6] is a fuzzy relation called MatchingPlaces. Given two
descriptors d1 and d2, it is written as MatchingPlaces(d1, d2). Its membership degree
denotes the possibility that d1 and d2 describe the same place. If we consider the universe
P = D1×D2 of pairs pi : 〈d1,h, d2,k〉, through the MatchingPlaces fuzzy relation we want to
build the fuzzy set PRP in P of Possibly-Relevant Pairs for which the membership degree
of pi is PRP(pi) > 0.

To actually decide whether descriptors in a pi pair actually describe the same public
place, a minimum threshold α ∈ [0, 1] is used to focus on Relevant Pairs RP ⊆ PRP, where
RP(pi) ≥ α.

However, given a descriptor d1,h ∈ D1, it could appear several times in RP, because
there might be many relevant pairs in which it is involved. For each d1,h ∈ D1, the subset
RP1,h ⊆ RP is the set of pairs pi ∈ RP such that p1.d1 = d1,h; if RP1,h is not empty, the pair
p1,h ∈ RP1,h such that RP1,h(p1,h) ≥ RP1,h(pi), for all pi ∈ RP1,h, appears in SP (because
the two paired descriptors are actually supposed to describe the same place).

In the remainder of this section, we introduce the complete formal framework.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 9 of 26

5.2.1. Basic Functions and Relations

The MatchingPlaces fuzzy relation is defined by means of some basic functions and
fuzzy relations.

Given two pairs of coordinates, i.e., lat1, lon1 and lat2, lon2 (denoting latitude and
longitude of two points on the earth globe), the Distance function computes the “Geodesic
Distance” [39] between the two points in km; it is denoted as Distance(lat1, lon1, lat2, lon2).
On this basis, it is possible to define the Close membership function that, given a distance
dist (in km) determines whether the distance denotes that two points are close; it is denoted
as Close(dist); an example of a typical membership function for this concept (the same
exploited in [6]) is depicted in Figure 2: notice that, on the basis of the geodesic distance
between the two points, the membership degree is 1 when the distance is between 0 and
50 m; then, it linearly decreases from 50 up to 1000 m. In Section 6.2, we will define a more
sophisticated membership function.

The Close membership function can be used as the basis for defining the ClosePlaces
fuzzy relation: given two place descriptors d1 and d2, ClosePlaces(d1, d2) = Close(Distance
(d1.lat, d1.lon, d2.lat, d2.lon)).

Figure 2. Sample Close membership function taken from [6].

Given two strings s1 and s2, the Similar fuzzy relation is denoted as Similar(s1, s2). As
a membership function, any string-similarity metric whose value is in the range [0, 1] could
be used; in [6], the Jaro-Winkler similarity metric [40–43] was used; here, we still use it, but
in a more sophisticated way (see Section 6.2).

Based on the Similar relation, which is defined on the universe of strings, it is pos-
sible to define two derived relations that are defined on the universe of descriptor pairs
P = D1 × D2.

The SimilarAddress fuzzy relation denotes the extent to which the address fields of the
two descriptors are similar; it is defined as SimilarAddress(d1, d2) = Similar(d1.address,
d2.address).

The SimilarName fuzzy relation denotes the extent to which the name fields of the two
descriptors are similar; it is defined as SimilarName(d1, d2) = Similar(d1.name, d2.name).

5.2.2. The SameLocation Relation

The MatchingPlaces relation is obtained by previously evaluating the SameLocation
fuzzy relation. It is denoted as SameLocation(d1, d2). Its membership function changes,
depending on the fact that fields concerning geographical aspects (i.e., address and coordi-
nates) in d1 and d2 are missing or not. Hereafter, we provide three different definitions of
the SameLocation relation, one for each sub-case to deal with.

• Case A: missing address(es). If d1.address is missing, or d2.address is missing or both,
but the two pairs of coordinates are available, only these latter ones can be used to
evaluate the SameLocation relation.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 10 of 26

• Case B: missing coordinate(s). When one or more coordinates in d1 and d2 are missing,
but both addresses d1.address and d2.address are available, only these latter ones can
be used to evaluate the SameLocation relation.

• Case C: addresses and coordinates are all available. When in d1 and d2 all geo-
graphical fields (i.e., address and coordinates) are available, they all contribute to the
evaluation of the SameLocation relation.

Once the three cases of interest have been identified, it is possible to define the
SameLocation relation.

Definition 5. Case A. Given two descriptors d1 and d2, for which either d1.address or d2.address
or both are missing, while the lat and lon fields are not null in both d1 and d2, the SameLocation
relation is defined as follows:

SameLocation(d1, d2) = ClosePlaces(d1, d2)

i.e., the membership degree of the SameLocation relation coincides with the membership degree of
the ClosePlaces relation.

Definition 6. Case B. Given two descriptors d1 and d2 for which at least one among d1.lat, d1.lon,
d2.lat and d2.lon is null, while both d1.address and d2.address are available, the SameLocation
relation is defined as follows:

SameLocation(d1, d2) = SimilarAddress(d1, d2)

i.e., the membership degree of the SameLocation relation coincides with the membership degree of
the SimilarAddress relation.

Definition 7. Case C. Given two descriptors d1 and d2, for which all the fields d1.address, d1.lat,
d1.lon, d2.address, d2.lat and d2.lon are available, the SameLocation relation is defined as follows:

SameLocation(d1, d2) = wagβgeo (SimilarAddress(d1, d2), ClosePlaces(d1, d2))

i.e., the membership degree of the SameLocation relation is the weighted aggregation of the Similar
Address relation and of the ClosePlaces relation; βgeo ∈ [0, 1] is the weight of the first term (the
similarity between addresses).

In Section 6.3, we use βgeo = 0.55: this way, the similarity between addresses slightly
prevails over closeness; indeed, if two addresses are very similar, their similarity contributes
more than coordinates; this way, the effect of erroneous coordinates that give rise to high
distances is mitigated.

5.2.3. Global MatchingPlaces Relation

At this point, we can define the global MatchingPlaces relation.

Definition 8. Given two descriptors d1 and d2, for which both fields d1.name and d2.name are
available, and for which the SameLocation relation is defined and SameLocation(d1, d2) ≥ αgeo
(with αgeo ∈ [0, 1]), the MatchingPlaces relation is defined as follows:

MatchingPlaces(d1, d2) = wagβname(SimilarName(d1, d2), SameLocation(d1, d2))

i.e., the membership degree of the MatchingPlaces relation is obtained by aggregating the mem-
bership degrees of the SimilarName relation and of the SameLocation relation, by means of the
weighted aggregator with weight βname for similarity of names.

In Section 6.4, we set βname = 0.6: this way, the similarity between names prevails
over the membership degree of the SameLocation relation. The rationale is the following:
given two similar names, they contribute only for the 60%; the remaining 40% is given
by the geographical contribution. However, in order to avoid the two descriptors whose
geographical contribution is not significant, the αgeo threshold is introduced: if the mem-
bership degree of the SameLocation fuzzy relation is less than αgeo, d1 and d2 are no longer
considered eligible to be the same place: two places can have very similar names (even

ISPRS Int. J. Geo-Inf. 2022, 11, 484 11 of 26

identical—imagine two restaurants of the same chain), but if there is the doubt that they
are reasonably close, they could be a wrong pair. In Section 6.3, we set this threshold as
αgeo = 0.4.

The membership degree of the MatchingPlaces fuzzy relation is used to determine
whether a pair actually belongs to the RP set of relevant pairs, i.e., RP(pi) ≥ α means
MatchingPlaces (p1.d1, p1.d2) ≥ α. In Section 6.4, we set this threshold as α = 0.8, be-
cause in our experiments (see Section 7.1), we found this is the threshold that gives the
best effectiveness.

6. Presenting the Script

In this section, we provide the technical contribution of the paper. Specifically, we
demonstrate how the current version of J-CO-QL+ is able to perform the soft integration of
two collections containing JSON documents that describe public places, obtained from two
different data sources.

6.1. Data Set

A MongoDB database called ijgiDb contains two collections of JSON documents: the
first one is called FacebookDescriptors and its documents are descriptors of pages that
present public places mostly located in the area of Manchester (UK); the second collection is
called GoogleDescriptors and its documents are descriptors of places mostly located in the
area of Manchester (UK) as well, obtained from Google Places. The FacebookDescriptors
collection contains 5738 documents, while the GoogleDesciptors collection contains
5214 documents. Figure 3a shows a sample document in the FacebookDescriptors collec-
tion, while Figure 3b reports a sample document in the GoogleDescriptors collection. The
reader can notice that Facebook descriptors clearly distinguish the address (in the fbStreet
field) from the city name (in the fbCity field) from the ZIP code (in the fbZip field). In con-
trast, within a Google Places descriptor, the content of the gAddress field is less clean, because
it contains the city name too. This also demonstrates that we are working on names and
addresses as they are provided by Facebook and Google Places, without any pre-processing
or cleaning (in [6], addresses were cleaned from numbers and urban designations, such as
“street”). Consequently, here, we are addressing a less favorable situation.

{

 "id" : 266,

 "idLink" : "1761andLilysBar"

 "fbName" : "1761 & Lily's Bar",

 "fbCity" : "Manchester",

 "fbCountry" : "United Kingdom",

 "fbLatitude" : 53.4802297,

 "fbLongitude" : -2.2435781,

 "fbStreet" : "2 Booth Street",

 "fbZip" : "M2 4AT",

}

(a)

{

"gId" : "ChIJ--wWob6xe0gRBF_8…",

"gName" : "Hope Studios"

"gAddress" : "52 Newton Street, Ma…",

"gCity" : "Manchester",

"gLatitude" : 53.4821537,

"gLongitude" : -2.2322586,

}

(b)

Figure 3. Examples of documents representing place descriptors. (a) Example of document in the
FacebookDescriptors collection. (b) Example of document in the GoogleDescriptors collection.

6.2. Defining Fuzzy Operators

We start presenting the J-CO-QL+ script. The first part of the script is reported in
Listing 1.

The key concept provided by J-CO-QL+ to evaluate membership degrees of JSON
documents is the concept of “fuzzy operator”. Such an operator is called within soft
conditions: given some actual parameters (expressions based on document fields), the
operator returns a membership degree. This degree will be used to evaluate the overall
membership degree of a document to a specific fuzzy set.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 12 of 26

Listing 1. J-CO-QL+ script: fuzzy operators.

1. CREATE FUZZY OPERATOR Close
PARAMETERS

 distance TYPE Float

PRECONDITION

distance >= 0

EVALUATE

distance

POLYLINE

 [(0.00, 1.00), (0.05, 1.00), (0.20, 0.50), (0.60, 0.10), (1.00, 0.00)];

2. CREATE FUZZY OPERATOR Similar
PARAMETERS

 st1 TYPE String,

 st2 TYPE String

EVALUATE

JARO_WINKLER_SIMILARITY(st1, st2)

POLYLINE

 [(0.00, 0.00), (0.60, 0.40), (0.70, 0.80), (0.80, 1.00), (1.00, 1.00)];

3. CREATE FUZZY OPERATOR WeightedAggregationBeta
PARAMETERS

 f1 TYPE Float,

 f2 TYPE Float,

 beta TYPE Float

PRECONDITION

f1 IN_RANGE [0, 1] AND

 f2 IN_RANGE [0, 1] AND

 beta IN_RANGE [0, 1]

EVALUATE

f1*beta + f2*(1-beta)

POLYLINE

 [(0.00, 0.00), (1.00, 1.00)];

6.2.1. The Close Fuzzy Operator

The instruction on line 1 of the J-CO-QL+ script in Listing 1 defines the Close fuzzy
operator: it evaluates the degree of closeness of two places, on the basis of the distance
between them. Hereafter, we describe the instruction in details.

• The PARAMETERS clause defines the formal parameters of the operator. Specifically,
only the distance parameter is defined.

• The PRECONDITION clause defines a condition on the parameters: if the condition is
not satisfied, the evaluation of the fuzzy operator stops and an error signal is raised.
Specifically, the precondition says that the distance must be no less than 0.

• The EVALUATE clause specifies a mathematical expression on the parameters, whose
value is used as x-axis coordinate against the membership function defined by the
subsequent POLYLINE clause. In the Close fuzzy operator, the expression simply takes
the value of the distance parameter.

• The POLYLINE clause specifies the membership function actually used to compute
the membership value. The function is defined as a polyline, by a sequence of pairs
(xi, yi), where xi can be any real value, while yi ∈ [0, 1]; given two consecutive points
(xi, yi) and (xi+1, yi+1), it must be xi < xi+1. Each pair of consecutive points defines
a segment. Given an x value, if it is between x1 and xn (in the case of n points),
the corresponding y value is considered as a membership degree; if x < x1, the
membership degree is y1; if x > xn, the membership degree is yn.

Figure 4a reports the polyline defined for the Close fuzzy operator. Notice that it is
not the same defined in [6] (reported in Figure 2): in fact, we opted for a function that
immediately penalizes distances that are between 50 m and 600 m, because two places
in the same neighborhood are not perceived as very close when their distance becomes
greater than 100 m.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 13 of 26

(a) (b) (c)

Figure 4. Membership functions for the fuzzy operators in Listing 1. (a) Close; (b) Similar;
(c) WeightedAggregationBeta.

6.2.2. The Similar Fuzzy Operator

The instruction on line 2 of the J-CO-QL+ script in Listing 1 creates the Similar fuzzy
operator. Its goal is to evaluate a membership degree on the basis of the similarity degree
of two strings. The operator is described in detail hereafter.

• The operator receives two parameters, called st1 and st2; they are the two strings
to compare.

• No precondition is specified: in the case of empty or null strings, the operator returns 0
as membership degree, because the similarity degree is 0.

• The EVALUATE clause calls the built-in (i.e., provided by J-CO-QL+) function named
JARO_WINKLER_SIMILARITY, to obtain the similarity degree of the two strings. The
similarity degree is a value in the range [0, 1]. In the case of null or zero-length strings,
the returned similarity degree is 0.

• The POLYLINE clause defines the membership function depicted in Figure 4b. Notice
that it penalizes similarity degrees that are less than 0.7, while membership degrees
that are greater than 0.8 are rewarded: this is due to the sometimes bizarre behavior
of the Jaro-Winkler similarity, that returns high similarity degrees even when strings
only shares some characters, but are not actually similar; furthermore, for strings such
as “The Gray Horse” and “GrayHorse”, the similarity degree is around 0.7, although
they clearly have to be considered very similar. With this shape, we try to compensate
the behavior of the Jaro-Winkler similarity, so as to deal with raw addresses and names
(i.e., not cleaned from articles, numbers, punctuation, and so on).

6.2.3. The WeightedAggregationBeta Fuzzy Operator

The instruction on line 3 of the J-CO-QL+ script in Listing 1 defines the third fuzzy
operator. This is called WeightedAggregationBeta and its goal is to perform the “weighted
aggregation” wagβ (see Definition 3). In fact, J-CO-QL+ does not provide such an operator
in its language; through the WeightedAggregationBeta fuzzy operator, we show how to
introduce novel fuzzy concepts. The fuzzy operator is described in detail hereafter.

• The operator receives three parameters: f1 and f2 are the two values in the range [0, 1]
to aggregate, while beta is the aggregation weight (in the range [0, 1] too) of f1 with
respect to f2.

• The PRECONDITION clause ensures that the actual values of the three parameters are in
the range [0, 1] (notice the IN_RANGE predicate).

• The EVALUATE clause actually performs the weighted aggregation.
• The POLYLINE clause defines a very simple membership function, which is reported in

Figure 4c: it is a straight segment from the point (0, 0) to the point (1, 1); this way, the
value computed by the EVALUATE clause is returned, as it is, as membership degree.

6.3. Retrieving and Pairing Descriptors

Once the three fuzzy operators are defined, it is time to start working on the data set.
This is conducted by the second part of the J-CO-QL+ script, which is reported in Listing 2.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 14 of 26

Listing 2. J-CO-QL+ script: retrieving and joining collections.

4. USE DB ijgiDb
 ON SERVER MongoDB 'http://127.0.0.1:27017';

5. JOIN OF COLLECTIONS
 FacebookDescriptors@ijgiDb AS f, GoogleDescriptors@ijgiDb AS g

 CASE

 // Case A: missing address(es)

 WHERE (FIELD .f.fbStreet IS NULL OR

 FIELD .g.gAddress IS NULL OR

 .f.fbStreet = "" OR

 .g.gAddress = "") AND

FIELD .f.fbLatitude IS NOT NULL AND

 FIELD .f.fbLongitude IS NOT NULL AND

 FIELD .g.gLatitude IS NOT NULL AND

 FIELD .g.gLongitude IS NOT NULL

 GENERATE

 CHECK FOR

FUZZY SET ClosePlaces USING

Close (GEODESIC_DISTANCE(.f.fbLatitude, .f.fbLongitude,

.g.gLatitude, .g.gLongitude)),

 FUZZY SET SameLocation USING ClosePlaces

 ALPHACUT 0.4 ON SameLocation

 // Case B: missing coordinate(s)

 WHERE FIELD .f.fbStreet IS NOT NULL AND

 FIELD .g.gAddress IS NOT NULL AND

 .f.fbStreet != "" AND

 .g.gAddress != "" AND

 (FIELD .f.fbLatitude IS NULL OR

 FIELD .f.fbLongitude IS NULL OR

 FIELD .g.gLatitude IS NULL OR

 FIELD .g.gLongitude IS NULL)

 GENERATE

 CHECK FOR

FUZZY SET SimilarAddress USING Similar (.f.fbStreet, .g.gAddress),

 FUZZY SET SameLocation USING SimilarAddress

 ALPHACUT 0.4 ON SameLocation

 // Case C: addresses and coordinates all available

 WHERE FIELD .f.fbStreet IS NOT NULL AND

 FIELD .g.gAddress IS NOT NULL AND

 .f.fbStreet != "" AND

 .g.gAddress != "" AND

 FIELD .f.fbLatitude IS NOT NULL AND

 FIELD .f.fbLongitude IS NOT NULL AND

 FIELD .g.gLatitude IS NOT NULL AND

 FIELD .g.gLongitude IS NOT NULL

 GENERATE

 CHECK FOR

FUZZY SET SimilarAddress USING Similar (.f.fbStreet, .g.gAddress),

 FUZZY SET ClosePlaces USING

Close (GEODESIC_DISTANCE(.f.fbLatitude, .f.fbLongitude,

 .g.gLatitude, .g.gLongitude)),

FUZZY SET SameLocation USING

WeightedAggregationBeta(MEMBERSHIP_OF(SimilarAddress),

MEMBERSHIP_OF(ClosePlaces), 0.55)

 ALPHACUT 0.4 ON SameLocation;

The instruction on line 4 connects the query process to the database. After this
instruction, it will be possible to access the ijgiDb database to retrieve and store collections.

The JOIN OF COLLECTIONS instruction on line 5 retrieves the two source collections
(called FacebookDescriptors and GoogleDescriptors) and creates all possible pairs of
documents contained in the two collections. Then, the subsequent CASE clause evaluates a
pool of conditions on these pairs to possibly evaluate fuzzy sets on the actually-interesting
pairs and discards the others. The instruction is explained in detail hereafter.

• The instruction retrieves the FacebookDescriptors collection from the ijgiDb
database and aliases it as f; similarly, it retrieves the GoogleDescriptors collection
from the same database and aliases it as g.
For each f document from the f collection and for each g document from the g
collection, a new d document is created. This document contains two fields: the first
one is called f and its value is the source f document; the second one is called g
and its value is the source g document. The d document is further processed by the
subsequent CASE clause.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 15 of 26

Figure 5 reports an example of d document, which is obtained by joining the two
sample documents reported in Figure 3; notice the names of the root-level fields.

{

"f" : {

"id" : 266,

"idLink" : "1761andLilysBar"

"fbName" : "1761 & Lily's Bar",

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbLatitude" : 53.4802297,

"fbLongitude" : -2.2435781,

"fbStreet" : "2 Booth Street",

"fbZip" : "M2 4AT",

},

"g" : {

"gId" : "ChIJ--wWob6xe0gRBF_8…",

"gName" : "Hope Studios"

"gAddress" : "52 Newton Street, Ma…",

"gCity" : "Manchester",

"gLatitude" : 53.4821537,

"gLongitude" : -2.2322586,

}

}

Figure 5. Example of document generated by the JOIN OF COLLECTIONS instruction on line 5 of the
J-CO-QL+ script, before the CASE clause.

• The CASE clause evaluates a pool of selection conditions expressed within a WHERE
clause; if a d document is selected by a condition, it is processed according to the
subsequent sub-clauses. Many WHERE branches are possible: a d document is processed
by the branch associated with the first WHERE condition that it satisfies; if no condition
is satisfied, d is discarded (it will not appear in the output temporary collection).
Specifically, the CASE clause in the instruction on line 5 in Listing 2 contains three WHERE
branches: each of them deals with one of the three situations considered for defining
the SameLocation relation by Definitions 5–7. Hereafter, we separately discuss the
behavior of the three branches.

– The first WHERE branch deals with the case A of the SameLocation fuzzy relation,
defined in Definition 5. The condition is true if either the value for the fbStreet
field is missing or the value for the gAddress field is missing or both are miss-
ing, and all coordinates are available. If a d document meets the condition, the
GENERATE block further processes d through the CHECK FOR clause, whose goal is
to evaluate the membership degrees of d to fuzzy sets.
Specifically, two FUZZY SET branches are present: the former evaluates the
ClosePlaces fuzzy set, the latter evaluates the SameLocation fuzzy set.
The membership degree to the ClosePlaces fuzzy set is obtained by the associ-
ated USING clause: this is a “soft condition”, in which fuzzy operators (such as
those defined in Section 6.2) and fuzzy-set names can be composed by the usual
(fuzzy) logical operators AND, OR and NOT; the resulting membership degree is the
membership degree to the evaluated fuzzy set. If this is the first membership
degree evaluated for d, then d does not have the special ~fuzzysets field: in this
case, the field is added and within it only one single field is present, having the
same name of the evaluated fuzzy set, whose value is the computed membership
degree. In contrast, if the ~fuzzysets field is already present, it is extended with
one extra internal field, describing the membership degree to the new evaluated
fuzzy set.
Specifically, the first branch evaluates the membership degree to the ClosePlaces
fuzzy set, by means of the Close fuzzy operator (see Listing 1), which is called pass-
ing the geodesic distance computed by the GEODESIC_DISTANCE built-in function.
The second FUZZY SET branch evaluates the membership degree to the
SameLocation fuzzy set, by assuming that it coincides with the ClosePlaces
fuzzy set (see Definition 5). Finally, the ALPHACUT clause discards the d doc-
ument from the output temporary collection if its membership degree to the
SameLocation fuzzy set is less than 0.4; remember that this is the αgeo threshold
mentioned within Definition 8. Figure 6a reports a sample document generated

ISPRS Int. J. Geo-Inf. 2022, 11, 484 16 of 26

by the first WHERE branch; notice the presence of the ~fuzzysets field and its
inner fields.

– The second WHERE branch deals with case B of the SameLocation relation (see
Definition 6), i.e., at least one coordinate is null but both addresses are present.
In this case (see Definition 6), the membership degree to the SimilarAddress
fuzzy set is evaluated by means of the Similar fuzzy operator, which evaluates
the fuzzy similarity relation between two strings (in this case, the two addresses).
Then, as defined by Definition 6, the second FUZZY SET branch tells that the
SameLocation fuzzy set coincides with the SimilarAddress fuzzy set. Again, the
ALPHACUT clause puts the d document into the output temporary collection if the
membership degree to the SameLocation fuzzy set is no less than 0.4 (the αgeo
threshold in Definition 8). Figure 6b shows a sample document generated by the
second WHERE branch.

– The third WHERE branch deals with case C of the SameLocation fuzzy relation
(see Definition 7), i.e., both all addresses and all coordinates are available. Con-
sequently, the membership degrees to three different fuzzy sets are evaluated:
the first one is the SimilarAddress fuzzy set, by means of the Similar fuzzy
operator applied to addresses; the second one is the ClosePlaces fuzzy set, by
means of the Close fuzzy operator applied to the geodesic distance between the
two points.
The third FUZZY SET branch evaluates the membership degree to the fuzzy
set named SameLocation: according to Definition 7, it is obtained by calling
the WeightedAggregationBeta fuzzy operator, whose goal is to perform the
weighted aggregation: it receives the two values (in the range [0, 1]) to aggregate
and the β weight.
The USING soft condition calls the WeightedAggregationBeta fuzzy operator,
passing the membership values to the SimilarAddress fuzzy set and to the
ClosePlaces fuzzy set, which are obtained by means of the MEMBERSHIP_OF built-
in function (that extracts the membership degree from within the ~fuzzysets
field). The third parameter is the constant value 0.55: thisis the βgeo weight pre-
sented and discussed in Definition 7. The ALPHACUT clause discards the evaluated
document if its membership degree to the SameLocation fuzzy set is less than 0.4
(the αgeo threshold mentioned in Definition 8).
Figure 6c reports a sample document generated by the third branch; notice that
the ~fuzzysets field has three inner fields.

{

"f" : {

"id" : 233,

"idLink" :"pages/Mustaphs/16487095…",

"fbName" : "Mustaph's",

"fbStreet" : null,

"fbZip" : "SK3 9",

"fbCity" : "Stockport",

"fbCountry" : "United Kingdom",

"fbLatitude" : 53.40252971,

"fbLongitude" : -2.163522497

},

"g" : {

"gId" : "ChIJ-ZU5iW-ze0gR7YewCI-…",

"gName" : "Mustaphs",

"gAddress" : "11 Castle Street, St…",

"gCity" : "Stockport",

"gLatitude" : 53.4024049,

"gLongitude" : -2.1636548,

},

"~fuzzysets" : {

"ClosePlaces" : 1.0,

"SameLocation" : 1.0

}

}

(a)

{

"f" : {

"id" : 528,

"idLink" : "bettereastmanchester",

"fbName" : "East Manchester Leisure…",

"fbStreet" : "189 Grey Mare Lane",

"fbZip" : "M11 3ND",

"fbCity" : "Manchester ",

"fbCountry" : "",

"fbLatitude" : null,

"fbLongitude" : null

},

"g" : {

"gId" : "ChIJAdYbKW2xe0gRCVJcmIJ…",

"gName" : "East Manchester Leisure…",

"gAddress" : "189 Grey Mare Lane,…",

"gCity" : "Manchester",

"gLatitude" : 53.4775529,

"gLongitude" : -2.1955198

},

"~fuzzysets" : {

"SameLocation" : 1.0,

"SimilarAddress" : 1.0

 }

}

(b)

{

 "f" : {

"id" : 4193,

"idLink" : "FoodCycle-Manchest…",

"fbName" : "FoodCycle Manchester",

 "fbStreet" : "The Roby, 307 Dicken…”,

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbZip" : "M13 0NG",

"fbLatitude" : 53.4554234,

"fbLongitude" : -2.205004

},

 "g" : {

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY",

"gName" : "FoodCycle Manchester",

"gAddress" : "307 Dickenson Road, M…",

"gCity" : "Manchester",

"gLatitude" : 53.4552679,

"gLongitude" : -2.205912

},

"~fuzzysets" : {

"ClosePlaces" : 0.958144669398663,

"SameLocation" : 0.81180003253166,

"SimilarAddress" : 0.692063511458657

}

}

(c)

Figure 6. Examples of documents generated by the JOIN OF COLLECTIONS instruction on line 5.
(a) Example for Case A. (b) Example for Case B. (c) Example for Case C.

The temporary collection produced by the instruction on line 5 of Listing 2 contains het-
erogeneous documents, as far as the structure of the ~fuzzysets field is concerned, but all
have the inner SameLocation field, denoting the membership degree to the SameLocation

ISPRS Int. J. Geo-Inf. 2022, 11, 484 17 of 26

fuzzy set; it will be used in the next instruction, to evaluate the membership degree to the
MatchingPlaces fuzzy set.

Furthermore, notice that SameLocation, ClosePlaces and SimilarAddresses are
called “fuzzy sets”, while they were defined in Section 5 as “fuzzy relations”: this is not a
mistake, but the consequence of the fact that JSON documents represent pairs of descriptors;
consequently, fuzzy relation on pairs are translated into fuzzy sets on JSON documents.

6.4. Relevant Pairs

All documents contained in the temporary collection produced by the instruction on
line 5 (Listing 2) have the membership degree to the SameLocation fuzzy set no less than
αgeo = 0.4, as required by Definition 8. The FILTER instruction on line 6 in Listing 3 actually
evaluates the membership degree to the MatchingPlaces fuzzy set, which corresponds
to the MatchingPlces relation defined in Definition 8. The FILTER instruction on line 6 is
described in detail hereafter.

• The FILTER statement takes the temporary collection as input and generates a new
temporary collection by applying a CASE clause. The behavior of this clause is the
same as in the JOIN OF COLLECTIONS statement.

• On line 6, only one WHERE branch is present: if a document does not meet the selection
condition, it is discarded from the output temporary collection.
Specifically, the selection condition selects those documents having both the names in
the two paired descriptors, so as to evaluate the membership degree to the SimilarName
fuzzy set.

• The first FUZZY SET branch in the CHECK FOR clause evaluates the membership degree
to the SimilarName fuzzy set; again, in the USING soft condition, the Similar fuzzy
operator (see Listing 1) is called, this time passing names (instead of addresses).

• The second FUZZY SET branch can finally evaluate the membership degree to the
MatchingPlaces fuzzy set, corresponding to the MatchingPlaces fuzzy relation de-
fined by Definition 8. Remember that the fuzzy relations named SameLocation and
SimilarName are aggregated by means of the weighted aggregation operator. In
Listing 1, we defined the WeightedAggregationBeta fuzzy operator, which here is
used to aggregate the SimilarName fuzzy set and the SameLocation fuzzy set; the
SimilarName fuzzy set weights for the 60% of the final membership degree (this is the
βname weight mentioned in Definition 8), so that similarity between names moderately
prevails over geographical similarity (whose goal is to cofirm that two places having
similar or identical names are actually the same place). The resulting membership
degree becomes the membership degree to the MatchingPlaces fuzzy set.
The three sample documents reported in Figure 6 become as reported in Figure 7;
notice the presence of the MatchingPlaces inner field within the ~fuzzysets field.

Listing 3. J-CO-QL+ script: matching places.

6. FILTER
 CASE

 WHERE WITH .f.fbName, .g.gName AND

 KNOWN FUZZY SETS SameLocation

 GENERATE

 CHECK FOR

 FUZZY SET SimilarName USING Similar(.f.fbName, .g.gName),

 FUZZY SET MatchingPlaces USING

WeightedAggregationBeta (MEMBERSHIP_OF (SimilarName),

MEMBERSHIP_OF (SameLocation), 0.60)

 ALPHACUT 0.8 ON MatchingPlaces

 BUILD {

 .f : .f,

 .g : .g,

 .rank : MEMBERSHIP_OF(MatchingPlaces) }

 DEFUZZIFY;

7. SAVE AS RelevantPairs@ijgiDb;

ISPRS Int. J. Geo-Inf. 2022, 11, 484 18 of 26

{

"f" : {

"id" : 233,

"idLink" :"pages/Mustaphs/16487095…",

"fbName" : "Mustaph's",

"fbStreet" : null,

"fbZip" : "SK3 9",

"fbCity" : "Stockport",

"fbCountry" : "United Kingdom",

"fbLatitude" : 53.40252971,

"fbLongitude" : -2.163522497

},

"g" : {

"gId" : "ChIJ-ZU5iW-ze0gR7YewCI-…",

"gName" : "Mustaphs",

"gAddress" : "11 Castle Street, St…",

"gCity" : "Stockport",

"gLatitude" : 53.4024049,

"gLongitude" : -2.1636548,

},

"~fuzzysets" : {

"ClosePlaces" : 1.0,

"MatchingPlaces" : 1.0,

"SameLocation" : 1.0,

"SimilarName" : 1.0

}

}

(a)

{

"f" : {

"id" : 528,

"idLink" : "bettereastmanchester",

"fbName" : "East Manchester Leisure…",

"fbStreet" : "189 Grey Mare Lane",

"fbZip" : "M11 3ND",

"fbCity" : "Manchester ",

"fbCountry" : "",

"fbLatitude" : null,

"fbLongitude" : null

},

"g" : {

"gId" : "ChIJAdYbKW2xe0gRCVJcmIJ…",

"gName" : "East Manchester Leisure…",

"gAddress" : "189 Grey Mare Lane,…",

"gCity" : "Manchester",

"gLatitude" : 53.4775529,

"gLongitude" : -2.1955198

},

"~fuzzysets" : {

 "MatchingPlaces" : 1.0,

"SameLocation" : 1.0,

"SimilarAddress" : 1.0,

"SimilarName" : 1.0

}

}

(b)

{

 "f" : {

"id" : 4193,

"idLink" : "FoodCycle-Manchest…",

"fbName" : "FoodCycle Manchester",

 "fbStreet" : "The Roby, 307 Dicken…”,

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbZip" : "M13 0NG",

"fbLatitude" : 53.4554234,

"fbLongitude" : -2.205004

},

 "g" : {

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY",

"gName" : "FoodCycle Manchester",

"gAddress" : "307 Dickenson Road, M…",

"gCity" : "Manchester",

"gLatitude" : 53.4552679,

"gLongitude" : -2.205912

},

"~fuzzysets" : {

"ClosePlaces" : 0.958144669398663,

"MatchingPlaces" : 0.924720013012664,

"SameLocation" : 0.81180003253166,

"SimilarAddress" : 0.692063511458657,

"SimilarName" : 1.0

}

}

(c)

Figure 7. Examples of documents transformed by the FILTER instruction on line 6 before the BUILD
section. (a) Example for Case A. (b) Example for Case B. (c) Example for Case C.

• At this point, only relevant pairs must be kept, i.e., those pairs whose membership
degree to the MatchingPlaces fuzzy set is no less than α = 0.8. The ALPHACUT clause
does that.

• The final BUILD section (which is optional, this is why it was not present in the JOIN OF
COLLECTIONS instruction on line 5 in Listing 2) restructures all survived documents.
Specifically, a novel rank field is added, whose value is the membership degree to the
MatchingPlaces fuzzy set. This field is necessary, because the subsequent DEFUZZIFY
option discards the ~fuzzysets field (as a consequence, documents are “defuzzified”).
Figure 8 reports the final state of the three sample documents reported in Figure 7.
Notice the presence of the rank field, whose value is the membership degree of the
MatchingPlaces fuzzy set.

{

"f" : {

"id" : 233,

"idLink" :"pages/Mustaphs/16487095…",

"fbName" : "Mustaph's",

"fbStreet" : null,

"fbZip" : "SK3 9",

"fbCity" : "Stockport",

"fbCountry" : "United Kingdom",

"fbLatitude" : 53.40252971,

"fbLongitude" : -2.163522497

},

"g" : {

"gId" : "ChIJ-ZU5iW-ze0gR7YewCI-…",

"gName" : "Mustaphs",

"gAddress" : "11 Castle Street, St…",

"gCity" : "Stockport",

"gLatitude" : 53.4024049,

"gLongitude" : -2.1636548,

},

"rank" : 1.0,

}

(a)

{

"f" : {

"id" : 528,

"idLink" : "bettereastmanchester",

"fbName" : "East Manchester Leisure…",

"fbStreet" : "189 Grey Mare Lane",

"fbZip" : "M11 3ND",

"fbCity" : "Manchester ",

"fbCountry" : "",

"fbLatitude" : null,

"fbLongitude" : null

},

"g" : {

"gId" : "ChIJAdYbKW2xe0gRCVJcmIJ…",

"gName" : "East Manchester Leisure…",

"gAddress" : "189 Grey Mare Lane,…",

"gCity" : "Manchester",

"gLatitude" : 53.4775529,

"gLongitude" : -2.1955198

},

"rank" : 1.0,

}

(b)

{

 "f" : {

"id" : 4193,

"idLink" : "FoodCycle-Manchest…",

"fbName" : "FoodCycle Manchester",

 "fbStreet" : "The Roby, 307 Dicken…”,

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbZip" : "M13 0NG",

"fbLatitude" : 53.4554234,

"fbLongitude" : -2.205004

},

 "g" : {

"gId" : "ChIJ3T0-vdWze0gRBPlxJfafcnY",

"gName" : "FoodCycle Manchester",

"gAddress" : "307 Dickenson Road, M…",

"gCity" : "Manchester",

"gLatitude" : 53.4552679,

"gLongitude" : -2.205912

},

"rank" : 0.924720013012664

}

(c)

Figure 8. Examples of documents generated by the FILTER instruction on line 6. (a) Example for Case
A. (b) Example for Case B. (c) Example for Case C.

The instruction on line 7 in Listing 3 saves the temporary collection into the ijgiDb
database, with name RelevantPairs. Its documents contain the most promising pairs of
descriptors (remember the RP set mentioned in Section 5.2), but it could happen that, e.g.,
the same Google Places descriptor is associated with more than one Facebook descriptor.
Clearly, it is the case to choose the pair having the highest rank (i.e., building the final SP
set mentioned in Section 5.2). This is discussed in Section 6.5.

6.5. Choosing the Best Pairs

The last part of the J-CO-QL+ script is reported in Listing 4. It actually chooses the
best pairs that involves each single Google Places descriptor obtained by line 6 in Listing 3.
Indeed, the original J-CO-QL language (from which J-CO-QL+ derives) was designed to
cope with this kind of task too (see [3,4]). Hereafter, we briefly describe this last part of
the script.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 19 of 26

• The GET COLLECTION instruction on line 8 again obtains the RelevantPairs collection
from the database, again making it the temporary collection.

• The GROUP instruction on line 9 groups documents in the temporary collection, on
the basis of the gId field, which is the identifier of Google Places descriptors. For
each group, a novel document is generated into the output collection, such that it
has the gId field and an array called gGroup, in which all grouped documents are
reported. This array is sorted in reverse order of value of the rank field within grouped
documents. Figure 9a reports an example of the grouped document.

• The EXPAND instruction on line 10 unnests again all grouped documents. For each
output document, the gPair field is added to the global ones (apart from the expanded
array); this new field contains two inner fields: the item field contains the unnested
document; the position field denotes the position occupied by the unnested item in
the gGroup array.
As a result, the temporary collection generated by line 10 contains as many documents
in the RankedPairs collection, but now they are tagged with the relative order for
Google Places descriptors on the basis of the rank field. Figure 9b reports an example
of an unnested document.

• The FILTER instruction on line 11 actually selects only documents that previously
occupied the first position in their group (based on the reverse order of rank, they are
the ones with the highest rank). The BUILD section builds the same structure again, as
in the RelevantPairs collection. Figure 9c reports an example of resulting document.

• Finally (on line 12) the last temporary collection is saved into the ijgiDb database
with name SamePlaces, which is the desired output of the process.

{

"g" : {

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ"

},

"gGroup" : [

{

"rank" : 1.0,

"f" : {

"id" : 1773,

"idLink" : "TheFootparlour",

"fbName" : "The Footparlour",

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbStreet" : "448 Burnage Lane",

"fbZip" : "M19 1LH",

"fbLatitude" : 53.42517,

"fbLongitude" : -2.20296

},

"g" : {

"gId" :"ChIJH7MYbLKze0gRVIeX3GGlHFQ",

"gName" : "The Foot Parlour",

"gAddress" : "448 Burnage Lan…",

"gCity" : "Manchester",

"gLatitude" : 53.4252831,

"gLongitude" : -2.2031884

}

},

{

"rank" : 0.810648074150466,

"f" : {

"id" : 1996,

"idLink" : "burnageM19",

"fbName" : "The Food Box",

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbStreet" : "227 Burnage Lane",

"fbZip" : "M19 1FN",

"fbLatitude" : 53.43231411,

"fbLongitude" : -2.200215987

},

"g" : {

"gId" :"ChIJH7MYbLKze0gRVIeX3GGlHFQ",

"gName" : "The Foot Parlour",

"gAddress" : "448 Burnage Lan…",

"gCity" : "Manchester",

"gLatitude" : 53.4252831,

"gLongitude" : -2.2031884

}

}

]

}

(a)

{

"g" : {

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ"

},

"gPair" : {

 "position" : 1,

"item" : {

"rank" : 1.0,

"f" : {

"id" : 1773,

"idLink" : "TheFootparlour",

"fbName" : "The Footparlour",

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbStreet" : "448 Burnage Lane",

"fbZip" : "M19 1LH",

"fbLatitude" : 53.42517,

"fbLongitude" : -2.20296

},

"g" : {

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ",

"gName" : "The Foot Parlour",

"gAddress" : "448 Burnage Lane…",

"gCity" : "Manchester",

"gLatitude" : 53.4252831,

"gLongitude" : -2.2031884

}

}

}

}

(b)

{

"rank" : 1.0,

"f" : {

"id" : 1773,

"idLink" : "TheFootparlour",

"fbName" : "The Footparlour",

"fbCity" : "Manchester",

"fbCountry" : "United Kingdom",

"fbStreet" : "448 Burnage Lane",

"fbZip" : "M19 1LH",

"fbLatitude" : 53.42517,

"fbLongitude" : -2.20296

},

"g" : {

"gId" : "ChIJH7MYbLKze0gRVIeX3GGlHFQ",

"gName" : "The Foot Parlour",

 "gAddress" : "448 Burnage Lane, Ma…",

"gCity" : "Manchester",

"gLatitude" : 53.4252831,

"gLongitude" : -2.2031884

}

}

(c)

Figure 9. Examples of documents during selection of BestPairs in Listing 4. (a) Example of document
after GROUP instruction on line 9. (b) Example of document during EXPAND instruction on line 10
before the BUILD clause. (c) Example of document after EXPAND instruction on line 10.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 20 of 26

Listing 4. J-CO-QL+ script: Selecting the best pairs.

8. GET COLLECTION RelevantPairs@ijgiDb;

9. GROUP
PARTITION WITH .g.gId

 BY .g.gId

INTO .gGroup

 ORDER BY .rank TYPE NUMERIC DESC;

10. EXPAND
UNPACK WITH .gGroup

 ARRAY .gGroup

TO .gPair;

11. FILTER
CASE WHERE WITH .gPair AND

 .gPair.position = 1

 GENERATE

 BUILD {

.f : .gPair.item.f,

.g : .gPair.item.g,

.rank : .gPair.item.rank };

12. SAVE AS SamePlaces@ijgiDb;

7. Experimental Evaluation

In this section, we report a brief evaluation of the results that can be obtained by
the J-CO-QL+ script. We exploited the same data set adopted in [6], related with the
city of Manchester (UK). Remember, from Section 6.1, that the FacebookDescriptors
collection contains 5738 descriptors, while the GoogleDescriptors collection contains
5214 descriptors. Both collections contain descriptors about a variety of different public
places, such as restaurants, pubs, hairdressers, universities, parks and so on.

7.1. Effectiveness

In order to evaluate the effectiveness of the method, we performed a sensitivity
analysis by varying the value of the α threshold from 0.5 to 0.99.

We used the same test set again, which was used in the work [6]: it contained a total
of 400 pairs, selected among the 5738× 5214 total pairs, evaluated by a human as Good or
Bad. We randomly selected 300 pairs from the starting 400 pairs, and from each pair we
extracted the related 300 Google Places descriptors and 300 Facebook descriptors; among all
possible pairs, 103 pairs were labeled as Good pairs (and obviously the remaining 197 were
labeled as Bad).

Then, we run the script on these two reduced collections of descriptors. Table 1 reports
the results of our experiments. Specifically, the first colum reports the single values for the
alpha-cut α; the second and third columns report the number of relevant pairs saved by line
7 of the J-CO-QL+ script (Listing 3) into the RelevantPairs collection and the number of
pairs generated by line 12 of the script (Listing 4) and saved into the SamePlaces collection,
respectively. The, columns from 4 to 7 reports the number TP of true positive pairs, the
number TN of negative pairs, the number FP of false positive pairs and the number FN
of false negative pairs, respectively. Finally, the last three columns reports “Precision”
(defined as TP/(TP + FP)), “Recall” (defined as TP/(TP + FN)) and “Accuracy” (defined
as (TP + TN)/(TP + TN + FP + FN)), respectively. These three latter values are depicted
in Figure 10: the x-axis reports the values of the alpha-cut α parameter; precision is depicted
by the blue line, recall is depicted by the red line and accuracy is depicted by the black line.

Analyzing Table 1 and Figure 10, it is possible to see that the best combination of
values for precision, recall and accuracy were obtained for α = 0.8: precision is 0.962, recall
is 0.981 and accuracy is 0.980. Indeed, this value for α appears to be the best compromise
between the need to keep as many pairs as possible and the fact that those pairs actually
describe the same place, even though names, addresses and coordinates are different. The
reader can further notice that higher values of α give rise to a precision of 1 with poor recall,
while lower values for α give rise to a recall of 1 with poor precision. To conclude this

ISPRS Int. J. Geo-Inf. 2022, 11, 484 21 of 26

analysis, notice that with α = 0.85, the accuracy is the same as the one obtained for α = 0.8;
it could be considered as a valid alternative choice, with better precision but low recall.

Table 1. Sensitivity analysis.

Alpha Cut Relevant Pairs Same Places TP TN FP FN Precision Recall Accuracy

0.50 253 163 103 137 60 0 0.632 1.000 0.800

0.55 178 139 103 161 36 0 0.741 1.000 0.880

0.60 140 124 103 176 21 0 0.831 1.000 0.930

0.65 119 112 103 188 9 0 0.920 1.000 0.970

0.70 110 108 101 190 7 2 0.935 0.981 0.970

0.75 109 107 101 191 6 2 0.944 0.981 0.973

0.80 106 105 101 193 4 2 0.962 0.981 0.980

0.85 98 97 97 197 0 6 1.000 0.942 0.980

0.90 90 90 90 197 0 13 1.000 0.874 0.957

0.95 80 80 80 197 0 23 1.000 0.777 0.923

0.99 71 71 71 197 0 32 1.000 0.689 0.893

Figure 10. Sensitivity analysis of precision, recall and accuracy.

Thus, we can state that the novel formulation for the MatchingPklaces relation and
the complex membership functions adopted for the Similar fuzzy operator and for the
Close fuzzy operator are effective, provided that α = 0.8.

We can consider the results reported in [6] as a baseline for further evaluating the
effectiveness of the novel formulation of the technique.

Remember that the version presented in [6] (for online aggregation) performed pre-
processing tasks on names and addresses, so as to clean them from urban designations
and numbers. In contrast, the present version does not. The main reason is that such a
kind of pre-processing and cleaning is not easy to do within J-CO-QL+ scripts; however,
the flexibility of the CREATE FUZZY OPERATOR statement as far as the possibility to define
complex shapes for membership functions seems to be effective. Consequently, the proper
baseline to consider is the best result presented in [6]. There, a comparison with a machine-
learning technique, namely “Random Forest” classification, was performed, by applying it
on the same data set. Results are reported in Table 2: for the three considered techniques,
precision, recall and F1-score (defined as 2× (precision× recall)/(precision + recall)) are

ISPRS Int. J. Geo-Inf. 2022, 11, 484 22 of 26

reported. Notice that in [6], the proposed technique was as effective as random-forest
classifiers; the current version outperform them, even though names and addresses are
neither pre-processed nor cleaned. Observe that the old version of the fuzzy technique
and the Random-Forest technique, applied on the data set describing public places in
Manchester (UK), obtain the same identical effectiveness; this is why [6] states that the two
techniques are comparable.

Table 2. Comparison with experimental results presented in [6].

Technique Precision Recall F1-Score

Current version 0.962 0.981 0.971
Best of [6] 0.931 0.931 0.931

Random Forest (from [6]) 0.931 0.931 0.931

Consequently, we can say that the current version improves the old one and is suitable
to be executed as a J-CO-QL+ script. Furthermore, it still maintains the advantage provided
by the old version in comparison with classification techniques, i.e., it can be applied from
scratch, without knowing the data set; in contrast, classification techniques ask for a training
step on previously labeled training sets, which is a time-consuming and critical activity.

7.2. About Execution Times

Before concluding this work, we report some considerations about execution times.
Usually, this aspect is not considered in the literature about integration of geographical

data sets: authors were focused on the effectiveness of the proposed techniques, but did not
consider efficiency. However, in our opinion, this is not a negligible aspect for the practical
use of integration techniques, in particular with large data sets to integrate.

In this paper, the goal is neither to provide the most efficient technique, nor to evaluate
execution times of a plethora of techniques proposed in the literature. Here, the goal is to
observe “what to expect” while running the J-CO-QL+ script on a real data set, such as the
one we used for our experiments.

We decided to consider a working environment that could be a common situation:
analysts are equipped with stand-alone PCs, on which they perform their daily activi-
ties. On these PCs, they might have a running instance of MongoDB, which stores their
data sets about geographical places, as well as an installation of the J-CO Framework;
indeed, not necessarily analysts are equipped with super-computers. Consequently, we
run experiments on a laptop PC powered by an Intel quad-Core i7-8550-U processor, run-
ning at 1.80 GHz, equipped with 16 GB RAM and 250 GB Solid-State Drive and running
the Java Virtual Machine version 1.8.0_251 (the J-CO-QL+ Engine is written in the Java
programming language).

Table 3 reports the execution times of the script discussed in this paper. We used the
full data set reporting descriptors of public places located in Manchester (UK). Remember
that it contains 5738 Facebook descriptors and 5214 Google descriptors.

Table 3 reports the execution times observed for each single instruction in the script;
the right-most column reports the cumulative execution time after each instruction. Clearly,
the overall execution time is dominated by the JOIN OF COLLECTIONS instruction, which
actually builds 5738× 5214 = 29, 917, 932 pairs of descriptors; it takes 216.61 s. Looking at
the other instructions they contribute only less than 4 s, so that the overall execution time is
220.804 s, i.e., about 3.6 min.

In terms of user perception, waiting for about 3 min is acceptable in this context, in
which near-real time performances are not expected. Furthermore, we want to remark that
once the two data sets to integrate are available, the J-CO-QL+ script can be applied from
scratch, and a few minutes later the integrated data set is obtained. This is an incredible
advantage if compared with the adoption of classification techniques, because there is no
need to build training sets labeled by humans; this activity can take from several hours
to several days (depending on the size of the training set) and is prone to errors and

ISPRS Int. J. Geo-Inf. 2022, 11, 484 23 of 26

misunderstanding, as well as its effectiveness depends on the way the training sets are
built before labeling.

Table 3. Execution times of the J-CO-QL+ script.

N. Instruction Instruction Time (s) Incremental Time (s)

1 CREATE FUZZY OPERATOR 0.000 0.000
2 CREATE FUZZY OPERATOR 0.000 0.000
3 CREATE FUZZY OPERATOR 0.000 0.000
4 USE DB 0.003 0.003
5 JOIN OF COLLECTIONS 216.661 216.664
6 FILTER 1.262 217.926
7 SAVE AS 0.529 218.455

8 GET COLLECTION 0.106 0.106
9 GROUP 0.035 0.141

10 EXPAND 1.910 2.051
11 FILTER 0.091 2.142
12 SAVE AS 0.207 2.349

Total Time (s) 220.804

8. Conclusions and Future Work

To conclude, it is time to summarize and discuss the contribution of the paper, as well
as to sketch future developments.

8.1. Conclusions

This paper addresses the problem of soft integrating data sets describing public places,
when these data sets are represented as JSON documents and are stored within a JSON
document store. Specifically, fuzzy-set theory provides the formal framework for the
integration methodology presented in the paper: the MatchingPlaces fuzzy relation is
the core of the proposed methodology. Then, the soft integration method is applied in a
practical way by means of the J-CO Framework: a script (or query) written in J-CO-QL+ (the
query language of the J-CO Framework) is written, which implements the soft integration
method, by exploiting its fuzzy capabilities. This is the main contribution of the paper:
showing that a novel stand-alone tool (the J-CO Framework), suitable for performing the
soft integration of geo-tagged JSON data sets stored within JSON document stores, is now
available for analysts and spatial-data engineers.

Hereafter, we would like to perform some considerations.

• The effectiveness that the script obtains is very interesting: with the value of the α
threshold set to α = 0.8, it is possible to obtain the best balance between precision and
recall, which are slightly less than 100%.

• Execution times are good too: less than 4 min to perform the soft integration is
absolutely acceptable (the reader can notice that writing the full script from scratch
takes longer).

• The complex membership functions that it is possible to specify in fuzzy operators (see
Section 6.2) were exploited to deal with bizarre behavior of the Jaro-Winkler string-
similarity metric. In fact, it returns high similarity values for strings that appears
to be very different (in the sense that they do not denote similar names or similar
addresses). However, we experienced also the opposite behavior, i.e., two strings
that were actually very similar obtained not-so-high similarity degree. The complex
membership function that we defined for the Similar fuzzy operator allowed us to
compensate this behavior.

8.2. Future Work

As future works, many activities are planned along the development of the J-CO
Framework and its application to data integration problems.

ISPRS Int. J. Geo-Inf. 2022, 11, 484 24 of 26

• First of all, we are going to complete the extension of all J-CO-QL+ statements with
support for fuzzy concepts. In particular, we are going to address the problem of
defining “soft aggregators” that can be applied on arrays of JSON documents; we will
adopt the same approach followed for defining fuzzy operators.

• Various types of fuzzy sets have been proposed in the literature (for example, Intuition-
istic Fuzzy Sets [44,45] and Type-2 Fuzzy Sets [46–48]. In our perspective evolution,
we plan to extend J-CO-QL+ to support multiple types of fuzzy sets simultaneously.

• Many challenges concerning integration and processing of geo-tagged data sets are
arising. For example, the GeoJSON format [49] represents a geographical information
layer as a unique, giant, JSON document. We conceived the idea of defining a domain-
specific language for querying features within GeoJSON documents [50], which is
translated into J-CO-QL+ scripts. We plan to further explore this idea, by identifying
other application domains and defining novel domain-specific languages to translate
into J-CO-QL+. Indeed, the idea of devising the J-CO Framework came out while
working on an international project [51,52], in which Big Data concerning mobility
had to be collected and processed.

The J-CO Framework is available on a public GitHub repository (https://github.com/
JcoProjectTeam/JcoProjectPage, accessed on 1 September 2022).

Author Contributions: Conceptualization and methodology, Giuseppe Psaila; software, Paolo Fosci;
writing—original draft preparation, Giuseppe Psaila; writing—review and editing, Paolo Fosci and
Giuseppe Psaila; experiments, Paolo Fosci. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All collection data sets used for the experiments, reported in this
paper, can be freely download from the J-CO Framework GitHub repository at: https://github.com/
JcoProjectTeam/JcoProjectPage/tree/main/papers/dataset/ijgi2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, T. The Javascript Object Notation (JSON) Data Interchange Format. 2014. Available online: https://www.rfc-editor.org/

rfc/rfc7159.txt (accessed on 1 September 2022).
2. Bordogna, G.; Capelli, S.; Psaila, G. A big geo data query framework to correlate open data with social network geotagged posts.

In Proceedings of the Annual International Conference on Geographic Information Science, Wageningen, The Netherlands, 10–11
May 2017; pp. 185–203.

3. Bordogna, G.; Ciriello, D.E.; Psaila, G. A flexible framework to cross-analyze heterogeneous multi-source geo-referenced
information: The J-CO-QL proposal and its implementation. In Proceedings of the International Conference on Web Intelligence,
Leipzig, Germany, 23–26 June 2017; pp. 499–508.

4. Bordogna, G.; Capelli, S.; Ciriello, D.E.; Psaila, G. A cross-analysis framework for multi-source volunteered, crowdsourced, and
authoritative geographic information: The case study of volunteered personal traces analysis against transport network data.
Geo-Spat. Inf. Sci. 2018, 21, 257–271. [CrossRef]

5. Psaila, G.; Fosci, P. J-CO: A Platform-Independent Framework for Managing Geo-Referenced JSON Data Sets. Electronics 2021,
10, 621. [CrossRef]

6. Psaila, G.; Toccu, M. A Fuzzy Technique for online Aggregation of POIs from Social Media: Definition and Comparison with
Off-Line Random-Forest Classifiers. Information 2019, 10, 388. [CrossRef]

7. Fosci, P.; Psaila, G. Towards flexible retrieval, integration and analysis of json data sets through fuzzy sets: A case study.
Information 2021, 12, 258. [CrossRef]

8. Fosci, P.; Psaila, G. J-CO, a Framework for Fuzzy Querying Collections of JSON Documents. In Proceedings of the International
Conference on Flexible Query Answering Systems, Bratislava, Slovakia, 19–24 September 2021; Springer: Cham, Switzerland;
pp. 142–153.

9. Psaila, G.; Marrara, S. A First Step Towards a Fuzzy Framework for Analyzing Collections of JSON Documents. In Proceedings
of the IADIS AC 2019, Cagliari, Italy, 7–9 November 2019; pp. 19–28.

10. Blair, D.C. Information Retrieval, 2nd ed. C.J. Van Rijsbergen. London: Butterworths; 1979: 208 pp. Price: $32.50. J. Am. Soc. Inf.
Sci. 1979, 30, 374–375. [CrossRef]

11. Bosc, P.; Pivert, O. SQLf: A relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 1995, 3, 4895977. [CrossRef]

https://github.com/JcoProjectTeam/JcoProjectPage
https://github.com/JcoProjectTeam/JcoProjectPage
https://github.com/JcoProjectTeam/JcoProjectPage/tree/main/papers/dataset/ijgi2022
https://github.com/JcoProjectTeam/JcoProjectPage/tree/main/papers/dataset/ijgi2022
https://www.rfc-editor.org/rfc/rfc7159.txt
https://www.rfc-editor.org/rfc/rfc7159.txt
http://doi.org/10.1080/10095020.2017.1374703
http://dx.doi.org/10.3390/electronics10050621
http://dx.doi.org/10.3390/info10120388
http://dx.doi.org/10.3390/info12070258
http://dx.doi.org/10.1002/asi.4630300621
http://dx.doi.org/10.1109/91.366566

ISPRS Int. J. Geo-Inf. 2022, 11, 484 25 of 26

12. Bosc, P.; Pivert, O. SQLf query functionality on top of a regular relational database management system. In Knowledge Management
in Fuzzy Databases; Springer: Berlin/Heidelberg, Germany, 2000; pp. 171–190.

13. Galindo, J.; Medina, J.M.; Pons, O.; Cubero, J.C. A server for fuzzy SQL queries. In Proceedings of the International Conference
on Flexible Query Answering Systems, Roskilde, Denmark, 13–15 May 1998; pp. 164–174.

14. Zadrozny, S.; Kacprzyk, J. Fquery for access: Towards human consistent querying user interface. In Proceedings of the 1996
ACM Symposium on Applied Computing, Philadelphia, PA, USA, 17–19 February 1996; pp. 532–536.

15. Kacprzyk, J.; Zadrożny, S. FQUERY for Access: Fuzzy querying for a Windows-based DBMS. In Fuzziness in Database Management
Systems; Springer: Berlin/Heidelberg, Germany, 1995; pp. 415–433.

16. Bordogna, G.; Psaila, G. Modeling soft conditions with unequal importance in fuzzy databases based on the vector p-norm. In
Proceedings of the IPMU COnference, Malaga, Spain, 22–27 June 2008.

17. Bordogna, G.; Psaila, G. Customizable flexible querying in classical relational databases. In Handbook of Research on Fuzzy
Information Processing in Databases; IGI Global: Hershey, PA, USA, 2008; pp. 191–217.

18. Bordogna, G.; Psaila, G. Soft Aggregation in Flexible Databases Querying based on the Vector p-norm. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 2009, 17, 25–40. [CrossRef]

19. Kacprzyk, J.; Zadrozny, S. SQLf and FQUERY for Access. In Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS
International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada, 25–28 July 2001; Volume 4, pp. 2464–2469.

20. Urrutia, A.; Tineo, L.; Gonzalez, C. FSQL and SQLf: Towards a standard in fuzzy databases. In Handbook of Research on Fuzzy
Information Processing in Databases; IGI Global: Hershey, PA, USA, 2008; pp. 270–298.

21. Galindo, J. Handbook of Research on Fuzzy Information Processing in Databases; IGI Global: Hershey, PA, USA, 2008.
22. Han, J.; Haihong, E.; Le, G.; Du, J. Survey on NoSQL database. In Proceedings of the 2011 6th International Conference on

Pervasive Computing and Applications, Port Elizabeth, South Africa, 26–28 October 2011; pp. 363–366.
23. Chodorow, K. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013.
24. Anderson, J.C.; Lehnardt, J.; Slater, N. CouchDB: The Definitive Guide: Time to Relax; O’Reilly Media, Inc.: Sebastopol, CA,

USA, 2010.
25. Garcia Bringas, P.; Pastor, I.; Psaila, G. Can BlockChain technology provide information systems with trusted database? The case

of HyperLedger Fabric. In Proceedings of the International Conference on Flexible Query Answering Systems, Amantea, Italy,
2–5 July 2019; Springer: Cham, Switzerland; pp. 265–277.

26. Abir, B.K.; Amel, G.T. Towards fuzzy querying of NoSQL document-oriented databases. In Proceedings of the DBKDA 2015: The
Seventh International Conference on Advances in Databases, Knowledge, and Data Applications, Rome, Italy, 24–29 May 2015;
p. 163.

27. Almendros-Jimenez, J.M.; Becerra-Teron, A.; Moreno, G. Fuzzy queries of social networks with FSA-SPARQL. Expert Syst. Appl.
2018, 113, 128–146. [CrossRef]

28. Manola, F.; Miller, E.; McBride, B. RDF Primer. W3C Recommendation (2004). Available online: http://www.w3.org/TR/rdf-
primer (accessed on 1 September 2022).

29. Cheng, J.; Ma, Z.M.; Yan, L. f-SPARQL: A flexible extension of SPARQL. In Proceedings of the International Conference on
Database and Expert Systems Applications, Bilbao, Spain, 30 August–3 September 2010; Springer: Berlin/Heidelberg, Germany;
pp. 487–494.

30. Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 2009, 34, 16.
[CrossRef]

31. Kilinc, D. An Accurate Toponym-Matching Measure Based On Approximate String Matching. J. Inf. Sci. 2016, 42, 138–149.
[CrossRef]

32. Santos, R.; Murrieta-Flores, P.; Martins, B. Learning to combine multiple string similarity metrics for effective toponym matching.
Int. J. Digit. Earth 2018, 11, 913–938. [CrossRef]

33. Rui, S.; Patricia, M.F.; Pavel, C.; Bruno, M. Toponym matching through deep neural networks. Int. J. Geogr. Inf. 2018, 32, 324–348.
34. Li, L.; Xing, X.; Xia, H.; Huang, X. Entropy-Weighted Instance Matching between Different Sourcing Points of Interest. Entropy

2016, 18, 45. [CrossRef]
35. Yu, L.; Qiu, P.; Liu, X.; Lu, F.; Wan, B. A Holistic Approach to Aligning Geospatial Data with Multidimensional Similarity

Measuring. Int. J. Digit. Earth 2018, 11, 845–862. [CrossRef]
36. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249.

[CrossRef]
37. Psaila, G.; Fosci, P. Toward an Anayist-Oriented Polystore Framework for Processing JSON Geo-Data. In Proceedings of the

International Conferences on WWW/Internet, ICWI 2018 and Applied Computing 2018, Budapest, Hungary, 21–23 October 2018;
IADIS (International Association for Development of the Information Society): Budapest, Hungary, 2018; pp. 213–222.

38. Fosci, P.; Psaila, G. Powering Soft Querying in J-CO-QL with JavaScript Functions. In Proceedings of the International Workshop
on Soft Computing Models in Industrial and Environmental Applications, Bilbao, Spain, 22–24 September 2021; Springer: Cham,
Switzerland; pp. 207–221.

39. Solomon, J.; Rustamov, R.; Guibas, L.; Butscher, A. Earth mover’s distances on discrete surfaces. ACM Trans. Graph. (ToG) 2014,
33, 67. [CrossRef]

40. Jaro, M.A. UNIMATCH, a Record Linkage System: Users Manual; Bureau of the Census: Washington, DC, USA, 1980.

http://dx.doi.org/10.1142/S0218488509006017
http://dx.doi.org/10.1016/j.eswa.2018.06.051
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-primer
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1177/0165551515590097
http://dx.doi.org/10.1080/17538947.2017.1371253
http://dx.doi.org/10.3390/e18020045
http://dx.doi.org/10.1080/17538947.2017.1359688
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1145/2601097.2601175

ISPRS Int. J. Geo-Inf. 2022, 11, 484 26 of 26

41. Jaro, M.A. Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc.
1989, 84, 414–420. [CrossRef]

42. Winkler, W.E. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage. In
Proceedings of the Section on Survey Research Methods; American Statistical Association: Boston, MA, USA, 1990; pp. 354–359.

43. Winkler, W.E. The State of Record Linkage and Current Research Problems; Statistical Research Division, U.S. Bureau of the Census:
Washington, DC, USA, 1999.

44. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 187–196. [CrossRef]
45. De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001, 117, 209–213.

[CrossRef]
46. Karnik, N.N.; Mendel, J.M. Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 2001, 122, 327–348. [CrossRef]
47. Mendel, J.M. Type-2 fuzzy sets and systems: An overview. IEEE Comput. Intell. Mag. 2007, 2, 20–29. [CrossRef]
48. Mendel, J.M.; John, R.B. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127. [CrossRef]
49. Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Hagen, S.; Schaub, T. The GeoJSON Format; Internet Engineering Task Force (IETF):

Fremont, CA, USA, 2016.
50. Fosci, P.; Marrara, S.; Psaila, G. Soft Querying GeoJSON Documents within the J-CO Framework. In Proceedings of the

16th International Conference on Web Information Systems and Technologies (WEBIST 2020), online, 3–5 November 2020;
SciTePress—Science and Technology Publications, Lda.: Setubal, Portugal, 2020; pp. 253–265.

51. Burini, F.; Cortesi, N.; Gotti, K.; Psaila, G. The Urban Nexus Approach for Analyzing Mobility in the Smart City: Towards the
Identification of City Users Networking. Mob. Inf. Syst. 2018, 2018, 6294872. [CrossRef]

52. Bordogna, G.; Cuzzocrea, A.; Frigerio, L.; Psaila, G.; Toccu, M. An interoperable open data framework for discovering popular
tours based on geo-tagged tweets. Int. J. Intell. Inf. Database Syst. 2017, 10, 246–268. [CrossRef]

http://dx.doi.org/10.1080/01621459.1989.10478785
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/S0165-0114(98)00235-8
http://dx.doi.org/10.1016/S0165-0114(00)00079-8
http://dx.doi.org/10.1109/MCI.2007.380672
http://dx.doi.org/10.1109/91.995115
http://dx.doi.org/10.1155/2018/6294872
http://dx.doi.org/10.1504/IJIIDS.2017.087255

	Introduction
	Related Work
	Soft Querying on Databases
	Integrating Data Sets Describing Public Places

	Basic Notions on Fuzzy Sets
	The J-CO Framework
	The Query Language
	Data Model
	Execution Model

	Problem and Methodology
	Premises and Problem
	Fuzzy Relation for Matching Public Places
	Basic Functions and Relations
	The SameLocation Relation
	Global MatchingPlaces Relation

	Presenting the Script
	Data Set
	Defining Fuzzy Operators
	The Close Fuzzy Operator
	The Similar Fuzzy Operator
	The WeightedAggregationBeta Fuzzy Operator

	Retrieving and Pairing Descriptors
	Relevant Pairs
	Choosing the Best Pairs

	Experimental Evaluation
	Effectiveness
	About Execution Times

	Conclusions and Future Work
	Conclusions
	Future Work

	References

