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Abstract: The rail transit station realm is an important urban spatial node that carries various be-
havioral activities and multiple functions. In order to accurately identify the spatial and temporal
distribution of population activities and functional facilities in the rail transit station realm and
understand the dynamic influence relationship between them, this paper takes four different types of
stations of Xi’an Metro Line 2 as the research object, using real-time positioning data to represent
population activities and points of interest (POIs) to represent functional facilities. An analytical
framework combining the spatial point pattern identification technique and ordinary least squares
(OLS) regression model is proposed. The results show that (1) there is spatial and temporal het-
erogeneity in the population activities in the rail transit station realm; the density distribution of
population activities in different time periods shows the characteristic of clustering within 500 m
of the station, regardless of working days or off days; (2) the distribution of shopping service POI,
catering service POI, and living service POI in different station realms shows the feature of clustering
around the stations; (3) the catering POI, living POI, shopping POI and transportation POI have
positive attraction to population activities in different time periods; the constructed OLS model
can basically explain the influence relationship between various functional facilities and population
activities in all time periods. The conclusions can help city managers understand the spatial and
temporal distribution and intrinsic mechanisms of population activities and functional facilities
from a microscopic perspective and provide an effective decision-making basis for optimizing the
allocation of functional resources in the station realm.

Keywords: rail transit station realm; spatiotemporal features; real-time positioning data; POI

1. Introduction

The rapidly developing urban subway system has greatly improved the accessibility of
the area around the station and attracted a large number of people and various services to
gather in this area, thus forming an urban space with the station as the center and people’s
daily activities influenced by the station to a certain extent [1,2]. This is the rail transit
station influence realm (referred to as station realm in this paper). In Hong Kong, rail transit
shares 43.9% of the daily public transportation trips of permanent residents, and nearly 50%
of citizens live within a radius of 500 m from the station [3]. In Tokyo, where rail transit is
developed, the rail transit travel share rate in Tokyo’s 23 districts exceeded 77% in 2018 [4].
In Northwest China, where the development of rail transit is relatively late, the share of
rail transit in urban public transport in Xi’an will be over 50% in 2021 [5]. In addition, rail
transit–oriented development models such as TOD [6], station-city integration [7], and
station integrated development [8] are favored by urban planners and managers around
the world, especially for developing countries facing traffic congestion problems caused by
rapid urbanization. Thus, the urban rail station area has become an important region to
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play the function of gathering the city, to create public transportation to support and guide
urban development, and to improve the quality of the urban environment [9,10]. Therefore,
in order to develop a policy for sustainable spatial development of the station realm that
meets public demands, urban managers and designers must improve their knowledge of
the spatial pattern of the area. This is especially true when understanding the intrinsic
influence relationships between functional facilities and population activities.

In general, the construction of major transportation infrastructure affects the distribu-
tion of urban elements and thus reshapes the spatial pattern of cities [11,12]. In previous
studies, many scholars have revealed the spatial features of the rail transit station domain
in terms of land use structure [13,14], industrial distribution [15,16], etc., but there is little
literature addressing the detailed revelation of the spatial features of human activities in
the station domain, especially considering the dynamic distribution changes of population
activities in space under different time periods. Meanwhile, most studies have focused on
the mechanisms of rail transit’s influence on land use [17,18], accessibility [19,20], and land
price [21,22] around stations, while few studies have explored the relationship between
urban functions and population activities, especially considering the dynamic influence
mechanisms under different time periods of working days and off days. The public space
around the rail station is a special space dominated by the activity trajectory of residents,
and people are the main actors of activities in the public space [23]. Therefore, population
activities are an important part of the space of the rail transit station realm. Consequently,
to complement the above research status gap, we attempt to identify the spatial point
pattern of population activities and urban functions in the station realm using more refined
and real-time positioning big data on the ArcGIS platform and further develop regression
models to explore the dynamic influence mechanism between population activities and
urban functions.

In today’s rapidly developing information technology, big data has greatly enriched
the methods and ways for researchers to obtain data. Compared with the traditional survey
methods based on observation and experience, big data has the advantages of rich sources,
large sample size, and real-time, which can reflect the characteristics of survey subjects more
objectively [24]. Although many researchers have used multi-source data such as mobile
phone signaling [25,26], the Metro Automatic Fare Collection System (Metro AFC) [27,28],
social media [29–31], and Wi-Fi signaling technology [32] to explore user travel activities
and distribution features, the above big data sources have some limitations in the use of
the microscopic station space region. Mobile phone signaling technology is usually used
to extract the Original and Destination (OD) data of residents’ traffic travel [33], but the
distribution density of communication base stations is small (the coverage radius of urban
areas is generally 100~500 m) [34]. Using the base station to send and receive data may cause
spatial positioning errors, which in turn affects the accuracy of crowd identification. Metro
AFC is a system that uses automatic ticket gates to record the exit and entry station and
time of each passenger and uploads this data to a database with a specific frequency [35],
the data can provide a large amount of passenger travel information, including passenger
codes, entrance times, exit times, departure and destination stations, etc. However, the
AFC data are only applicable to the statistics of the total passenger flow of the rail transit
network, and the real-time passenger distribution in space is not available [36]. In addition,
the use of social media platforms such as Facebook, Twitter, and Weibo to collect analytical
data related to population activity trajectories is not sufficient to represent the activity
characteristics of people of all ages, since most of the contributors are young people [37].
The Wi-Fi signaling technology needs to plan and deploy significant signal equipment to
ensure full coverage of signals in the station area region in order to ensure the accuracy
of data collection; however, this greatly increases the research cost [38]. In this study, we
choose the mobile terminal program developed by WeChat, Easygo applet (which displays
the thermal distribution of people flow in the currently selected area based on the map).
These data have the following advantages [39,40]: (1) strong real-time performance. The
data of WeChat comes from the GPS positioning information of the mobile intelligent
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terminals of the crowd. It has the characteristics of dynamic update and real-time feedback;
(2) high accuracy: the extraction range of the data of Easygo is only a 25 m × 25 m grid,
which is more suitable for research at the micro-scale; (3) high coverage: the positioning
data of Easygo mainly comes from WeChat, a social software owned by Tencent, which
covers a wider population in China and has strong utilization value; (4) easy availability:
Easygo directly provides an API interface to make data easier to obtain directly. Therefore,
the real-time positioning data of Easygo is suitable for this paper to identify the population
distribution and changes in the station realm at the microscopic scale.

The study has two main objectives. The first one is to demonstrate the use of posi-
tioning big data to explore the distribution features of population activities and functional
facilities within the study area at the microscopic scale. The second objective is to analyze
the relationship between population activities and functional facilities over time using
ordinary least squares (OLS) models. In summary, the main purpose of our study is to take
the rail transit station realm as the research unit, use real-time positioning data from Easygo
and POI data from AutoNavi Map, and visualize and analyze the spatial distribution of
population activities and functional facilities within the station realm based on the spatial
pattern tool of geographic information system (GIS). Then, an ordinary least squares (OLS)
model is used to further explore the correlation between the spatial characteristics of popu-
lation activity distribution and functional facilities and to analyze the dynamic influence
relationship between them.

The main contributions of this paper are as follows:

1. Expansion of theoretical research. Focusing on the dynamic spatial distribution
changes of population activities, we study in depth the inner mechanism of population
activities and various functional facilities, which enriches the theoretical system of
spatial pattern research in the station realm.

2. Innovation in research scale. By taking the station realm as an independent and
complete spatial unit, we break the limitation of traditional urban spatial boundaries,
and thus realize the spatial pattern features of population activities and functional
facilities from a more microscopic perspective.

3. Innovation of technical means. We use real-time and more accurate positioning data
(Easygo data), an analysis framework combining spatial point pattern identifica-
tion technology, and an ordinary least squares (OLS) regression model. Based on
identifying the spatial distribution features of population activities and functional
facilities in the station realm, the dynamic influence relationship between the two is
further reflected.

The rest of this paper is organized as follows. Section 2 presents the study area.
Section 3 explains the basis for selecting research stations, the method for defining the
station realm, the source of the study data, and the analysis method. Section 4 shows the
results of the kernel density analysis and OLS regression analysis. Sections 5 and 6 provide
a discussion and summary of the analysis results.

2. Study Area

Xi’an is the capital city of Shaanxi Province and the political, economic, and cultural
center of Northwest China, with a population of 12.95 million [41]. At present, there are
eight rail transit lines in operation in Xi’an. In 2011, the first Metro Line 2 was put into
operation, with a total length of 26.7 km and a total of 21 stations [42]. It is not only the line
with the highest average daily passenger flow in Xi’an (Figure 1), but also the core line that
overlaps with the city’s central axis and connects multiple functional development areas in
the north and south. Metro Line 2 is a very important case study, because it has a profound
impact on the urban spatial structure along and around the station. Therefore, fully
grasping its characteristics and laws has strong reference significance for the sustainable
development of the future metro station surrounding areas in Shaanxi Province and even
the entire Northwest China.
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In this paper, each station of Line 2 is classified based on the method proposed by
Duan Degang et al. [43] to classify station types by the land use composition around the
station (Table 1). Under the premise of including all types and considering the geographical
location in Xi’an where the stations are located (Figure 2), we selected a total of four typical
stations, namely Xing Zheng Zhong Xin Station, Long Shou Yuan Station, Bei Da Jie Station,
and Wei Yi Jie Station, as the research objects of this paper (Table 2).

Table 1. Classification basis of rail transit stations.

Station Types Classification Basis

Residential The planning and construction of land around the station is
mainly residential land; the proportion of land is ≥45%.

Public Service

The planned land around the station is mainly for administrative
offices, cultural education, and other public administration and
public services, with the proportion of land greater than 15%, and
the proportion of residential land is <45%.

Commercial Service
The planned land around the station is mainly commercial,
business, entertainment, and recreation land, with the proportion
of land >15%, and the proportion of residential land is <45%.

Transportation
The station is intended to connect with external transportation
facilities. The proportion of land for transportation facilities is
>30%, and the proportion of residential land is <45%.

Industrial
The planning land around the station is mainly industrial land
and storage land, with a proportion of land >10%, and the
proportion of residential land is <45%.

Hybrid The planning land around the station is diverse, with no obvious
advantageous land, and the ratio is more balanced.

Table 2. Classification results of four station types.

Code Name Abbreviation Location Land Use Nature

a Xing Zheng Zhong Xin STN XZZX
Second Ring
Road–Third
Ring Road

Hybrid

b Lou Shou Yuan STN LSY
First Ring

Road–Second
Ring Road

Residential

c Bei Da Jie STN BDJ First Ring Road Commercial service

d Wei Yi Jie STN WYJ
Second Ring
Road–Third
Ring Road

Public service

https://weibo.com/xianditie
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3. Materials and Methods

As shown in Figure 3, a five-stage research methodology was used: (i) determination
of station realm; (ii) data collection and processing; (iii) spatial point pattern identification;
(iv) regression analysis; (v) feature induction. stage (i) defines the scope of the station realm,
stage (ii) is the preparation of the data for analysis, and stages (iii) through (v) include the
analysis of data and the summary of results. Specifically, the stage of spatial point pattern
identification reveals the characteristics of population activities and urban function distri-
bution in the station realm, and the spatial relationship analysis is the further explanation
of the characteristics and phenomena.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 26 
 

 

 

Figure 3. The framework of the research process. 

3.1. Rail Transit Station Realm 

The walking scale is usually the core element to define the scope of the rail transit 

station realm [44]. At present, the definition of the rail transit station area is mainly based 

on the area in which the station entrance can be reached within 10 to 15 min walking 

distance and that is closely related to the rail function [9,45]. However, in practice, since 

the scale standard is not a fixed value, the station area range value tends to vary from city 

to city. For example, the walking distance of the station realm in Canadian cities is mostly 

between 300 m and 900 m, while it is 400 to 800 m in the US [46,47]. Hyungun Sung delin-

eated the Seoul rail transit station impact area with a reasonable walking range of 500 m 

[20]. In Shenzhen, China, some scholars proposed that the public habitual walking time is 

mostly concentrated in a 6~10 min interval walking range, or about 400~700 m, based on 

the survey [48]. In addition, some scholars believe that the rail transit station realm is not 

simply delineated by abstract geometric radius; it is also influenced by topographic space, 

road pattern, plot function, and other factors [49]. 

Therefore, taking the BDJ Station of the Xi’an Metro Line 2 as an example, we firstly 

use questionnaires and infrared velocimetry to conduct field surveys on the acceptable 

walking time (Figure 4a) and average walking speed (Figure 4b) of pedestrians around 

the BDJ Station, respectively. Secondly, the walking time of 10 min and average walking 

speed of 1.18 m/s are selected based on the relevant literature and actual demand, and the 

walking scale is calculated as 708 m. The walking scale is used as a radius to set up a buffer 

zone on ArcGIS and is adjusted according to the actual situation of urban roads and land 

integrity to finally obtain the station realm of BDJ (Figure 5). Other research station realm 

ranges in this paper are defined by the same method (Figure 6). 

Figure 3. The framework of the research process.



ISPRS Int. J. Geo-Inf. 2022, 11, 485 6 of 24

3.1. Rail Transit Station Realm

The walking scale is usually the core element to define the scope of the rail transit
station realm [44]. At present, the definition of the rail transit station area is mainly based on
the area in which the station entrance can be reached within 10 to 15 min walking distance
and that is closely related to the rail function [9,45]. However, in practice, since the scale
standard is not a fixed value, the station area range value tends to vary from city to city.
For example, the walking distance of the station realm in Canadian cities is mostly between
300 m and 900 m, while it is 400 to 800 m in the US [46,47]. Hyungun Sung delineated the
Seoul rail transit station impact area with a reasonable walking range of 500 m [20]. In
Shenzhen, China, some scholars proposed that the public habitual walking time is mostly
concentrated in a 6~10 min interval walking range, or about 400~700 m, based on the
survey [48]. In addition, some scholars believe that the rail transit station realm is not
simply delineated by abstract geometric radius; it is also influenced by topographic space,
road pattern, plot function, and other factors [49].

Therefore, taking the BDJ Station of the Xi’an Metro Line 2 as an example, we firstly
use questionnaires and infrared velocimetry to conduct field surveys on the acceptable
walking time (Figure 4a) and average walking speed (Figure 4b) of pedestrians around
the BDJ Station, respectively. Secondly, the walking time of 10 min and average walking
speed of 1.18 m/s are selected based on the relevant literature and actual demand, and the
walking scale is calculated as 708 m. The walking scale is used as a radius to set up a buffer
zone on ArcGIS and is adjusted according to the actual situation of urban roads and land
integrity to finally obtain the station realm of BDJ (Figure 5). Other research station realm
ranges in this paper are defined by the same method (Figure 6).
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3.2. Data Source and Collection
3.2.1. Data Source

As mentioned above, this study considers the spatial distribution of pedestrians and
urban functions simultaneously. The data mainly comes from WeChat’s Easygo applet and
AutoNavi Map’s API. In addition, data such as pedestrian walking time and walking speed
were collected through field surveys.

WeChat is an instant messaging software launched by China’s Tencent on 21 January
2011. It supports mobile operating systems such as Android and IOS. As of 30 June 2021,
the software’s monthly active users (MUA) exceeded 1.2 billion, making it the most active
social software in China [50]. In addition, WeChat accounts for about 69.2% of China’s
communication software [51]; excluding children, elementary school students, and the
elderly, who rarely use mobile phones, the data can fully cover various activities of the
population of all ages. Easygo is a WeChat built-in applet. By recording the real-time
location information of WeChat users, it gives the real-time pedestrian location in the form
of spatial point data, which has the characteristics of low acquisition cost, high spatial
resolution, and real-time dynamic change. Therefore, the above points are the reasons why
the data of Easygo can reflect the spatial distribution features of pedestrians in this study.

POI (Point of interest) data mainly include spatial information and attribute infor-
mation data of geographic entities closely related to people’s lives. It can quickly and
intuitively obtain the distribution of various functions in urban space, which is superior
to traditional research data [52]. In addition, different from the previous studies on the
relationship between rail stations and surrounding urban land through the nature of land
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use, POI data is more microscopic and has more advantages in data accuracy, which can
more intuitively reflect the spatial agglomeration characteristics of urban functions [53]. In
this study, POI mainly reflects the spatial distribution of urban functions in the station realm
and conducts correlation analysis with the spatial activity characteristics of pedestrians.

In summary, for the scope of this study, Easygo‘s point data represent population
activities; AutoNavi Map’s points of interest represent urban functional facilities.

3.2.2. Data Collection

The data for population activities and POIs in this paper are sourced from the Ten-
cent Location Big Data Service window (https://heat.qq.com/index.php, accessed on
15 November 2021) and the AutoNavi Map’s Public Application Programming Interface
(API) (https://lbs.amap.com, accessed on 30 December 2021). These applications can
collect all the data in the delimited area and export them to csv files. In order to protect
the privacy of WeChat users, we only extract the geographic location and time information
of users when collecting data on Easygo and do not collect data containing personally
identifiable information such as name, age, and gender. Similarly, we only extract the type
of service facilities and geographic location in extracting the points of interest of AutoNavi
map. The details are shown in Table 3.

Table 3. The specific metadata of the obtained original dataset.

Data Attributes Easygo AutoNavi Map

Location
Longitude Longitude

Latitude Latitude

Time information
Date –

Time period

Ancillary information Number of active people Place name

Data categorization Place address

Data ID Date City functional nature

Existing studies have shown that the daily activities of the inner-city population usu-
ally vary cyclically on a weekly basis and that there are some differences in the distribution
of the population between working days and off days [39,54]. In this study, the Easygo
data were collected for 7 consecutive days from 15 November to 21 November 2021 (20
and 21 were off days and 15 to 19 were working days) using the boundary of each research
station realm as the data collection scope (Figure 7); the collection time was from 7:00 a.m.
to 22:00 p.m. (according to the Xi’an metro operation time), and a total of 193,592 raw
data in CSV format, including activity date, activity number, longitude and latitude, were
collected. In order to accurately identify the spatial distribution features, after preliminary
experimental validation, we selected the 17th (Wednesday) and 20th (Saturday) to represent
the population activities on working days and off days.

The POI data were also collected within the boundaries of each research station realm;
the collection time was 30 December 2021, with a total of 12,283 pieces of data collected. In
this paper, the classification of the collected POI data refers to the relevant literature [53,55];
10 categories closely related to daily life are selected according to the primary classification
code as shown in Appendix A. The quantity statistics of POI data are shown in Figure 8. To
make the research results more convincing, we remove the POIs of public service facilities,
because the amount of data is too small in each study station realm, and public facilities
such as restrooms, telephone booths, and newsstands would not be overly attractive to
pedestrians under normal circumstances.

https://heat.qq.com/index.php
https://lbs.amap.com
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All the above data were converted from raw data to point data based on latitude and
longitude information using the ArcGIS platform and were summarized and integrated
according to the names of the stations in order to prepare for the next stage.

3.3. Data Analytical Methods

In order to visualize the location, shape and size of the spatial clustering of the study
objects, we used kernel density to identify the spatial point pattern of human activities
and urban functions, and explored the basic features and patterns of spatial distribution
of each research station realm. In addition, we further analyzed the changing relationship
between population activities and urban functions in the station realm space by ordinary
least squares (OLS).

3.3.1. Kernel Density Analysis

Kernel Density Analysis can reflect the distribution of the whole area by showing the
aggregation of points by density based on the values of the input point elements and their
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distribution and produce a continuous raster graph (heat map) [56]. In this study, kernel
density analysis is used to explore the state of spatial distribution of human activities and
functional facilities in each station realm. Kernel density analysis has been widely used in
the field of urban space–related research [57–59]. The calculation equation is as follows:

Density =
1

(radius)2

n

∑
i=1

 3
π
·popi

(
1 −

(
disti

radius

)2
)2
For disti < radius (1)

where i = 1, . . . , n are the input points. Only points in the sum are included if they lie
within the radius distance of the (x,y) position. Disti is the distance between point I and the
(x,y) position.

3.3.2. Ordinary Least Squares

Ordinary least squares (OLS) is the most commonly used regression method to assess
the relationships between urban spatial elements [60,61]. In this paper we focus on the
coefficient of each explanatory variable, which reflects the strength and type of relationship
between the explanatory and dependent variables. When the sign associated with the
coefficient is positive, the coefficient is positively related to the dependent variable, and
conversely, it is negatively related. In addition, probabilities (p-values) can help us find
which variables are statistically significant (p < 0.01) and thus deserve further analysis. The
model of OLS can be described as Equation (2):

y = β0 + β1x1 + β2x2 + · · · βnxn + ε (2)

where y is the dependent variable, xn is the explanatory variable, βn is the regression
coefficient, and ε is the random error. In this study, the number of active people in the
study station realm is the dependent variable, and the number of POIs in each functional
facility is the explanatory variable. Table 4 shows the explanatory variables and their
descriptive statistics.

Table 4. Definition and descriptive statistics of explanatory variables.

Code Explanatory Variables Total Mean Standard Deviation

V1 Entertainment POIs 181 45.25 16.50
V2 Financial Service POIs 184 46.00 21.35
V3 Government Agency POIs 386 96.50 39.03
V4 Medical and Health Care POIs 376 94.00 83.29
V5 Accommodation Service POIs 418 104.50 48.14
V6 Catering Service POIs 2466 616.50 235.76
V7 Living POIs 1702 425.50 233.29
V8 Shopping POIs 3173 793.25 404.96
V9 Transportation Service POIs 592 21.50 5.45

V10 Public Service POIs 86 148.00 34.32

4. Results
4.1. The Spatial Distribution of Population Activities

The size of the search radius in the kernel density analysis has a significant effect on
the refinement of the analysis results. According to the related literature [62], we took the
average side length of 200 m of the natural blocks composed of roads in each study station
realm as the threshold value and took the radius of 50 m, 100 m, 150 m, 200 m and above,
respectively, for the detection analysis. The results show that there are too many first-level
hotspots within 100 m (Figure 9a) and too many integrated above 200 m (Figure 9e), while
the hotspot levels between 100 and 200 m are basically stable (Figure 9b–d), which only
affects the smaller levels of hotspots. Therefore, this paper takes the middle number of
150 m as the search radius.
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The visualization of the kernel density results of the population activities in each
research station realm is shown in Figure 10. The results show that the location, shape,
and size of the population activity aggregation area during the day change spatially along
with time, which indicates that the population activity in the station realm is spatially
non-stationary. In terms of the overall spatial distribution, we measured the distance
between the peak areas of the nuclear density of population activity (dark areas) and the
stations in each research station realm using the metric tool of ArcGIS, and we found that
these peak areas were mainly distributed within 500 m of the station perimeter (Figure 11),
which indicates a high level of population activity within this range. In terms of spatial
position, the population activities in the XZZX station realm are mainly concentrated in the
large shopping mall on the south side; the population activities in the LSY station realm are
mainly distributed in the neighborhoods and commercial complexes around the station;
the population activities in the BDJ station realm are mainly concentrated in a number of
large medical institutions on the east side of the station and the large shopping mall on the
south side; there are several universities and urban villages in the WYJ station realm, so the
population activities are mainly concentrated in these areas.

In terms of temporal distribution features, the peak kernel density of population
activities in the four study station realms for each period on working days and off days is
shown in Figure 12. During working days, population activity is basically dominated by
commuting characteristics, with the morning peak period generally lasting from 7:00 a.m.
to 9:00 a.m., and the evening peak mainly concentrated between 6:00 p.m. and 8:00 p.m.
On off days, the peak time for population activity is generally at or after 11:00 a.m. This
indicates that on off days people choose to be out later compared to working days due to
the absence of demands such as work and school. In addition, the mean value of the kernel
density of population activity is higher on off days than on working days after 11:00 a.m.,
which could indicate that the population is more active on off days than on working days
during that period.

It is worth mentioning that the population activity in the LSY Station realm shows
a continuous increase between 6:00 and 10:00 p.m., and the kernel density of population
activity reaches its highest value at 10:00 p.m. The field survey reveals that a large number
of night markets appear around the station during this period, which attracts the population
to gather here.
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4.2. The Spatial Distribution of Functional Facilities

The results of the kernel density analysis for each type of POI in the four research
station realms are shown in Figure 13.
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As shown in Figure 13a, the POIs of various functions in the Xing Zheng Zhong Xin
station realm show a spatial distribution feature of high in the south and low in the north.
The POIs of various functional facilities in the Long Shou Yuan station realm are generally
distributed around the station (Figure 13b), especially the six types of facilities, namely
shopping POIs, catering POIs, living POIs, transportation POIs, government agency POIs,
and accommodation POIs, which have the characteristic of higher density the closer they
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are to the station. As shown in Figure 13c, the distribution features of each functional
facility in the Bei Da Jie station realm differ significantly. Five types of facilities, namely
shopping POI, catering POI, living POI, accommodation POI, and financial POI, are more
densely distributed in the south of the station realm than in the north. In addition, the
density distribution of medical and health POIs is much higher in the east-central part of
the station realm than in other regions. The results of the kernel density analysis of the
station realm of Wei Yi Jie (Figure 13d) show that we find that the POIs of each functional
facility are distributed along both sides of Chang’an South Road (north–south direction)
and Chang Ming Road (east–west direction).

In general, shopping service POIs, catering service POIs, and living service POIs show
spatial distribution features around the stations in each research station realm. However,
the different land composition within diverse types of station realms makes the density
distribution features of functional facilities vary significantly, such as entertainment POIs,
government agency POIs, and medical and health POIs. However, through comparative
analysis, we found that population activities and functional facilities have geographically
similar peak kernel density coverage areas in the station realm, which indicates that areas
with a high-density distribution of functional facilities within the station realm are more
attractive for people to move around in.

4.3. Spatiotemporally Varying Impact of Functional Facilities on Population Activities

In order to more accurately assess the dynamic influence relationship between func-
tional facilities and population activities, based on the boundaries of each study station
realm, a grid with an image element scale of 25 × 25 m was created on the ArcGIS platform
as the spatial statistical unit for the regression analysis in this paper (which is consistent
with the collection scale of our population activity data). Then, the dependent variable
(population activity) and the explanatory variable (functional facility) were connected to
this grid for OLS regression analysis. However, variance inflation factors (VIFs) also needed
to be calculated to avoid multicollinearity among the explanatory variables of the model
and to exclude variables with VIF values greater than 10 [63]. As shown in Table 5, the
VIF values of each explanatory variable in the four research station realms are less than 10,
indicating that there is no cointegration among the explanatory variables and that they are
suitable to form a regression model.

Table 5. VIF values of each explanatory variable in the research station realm.

Node
Explanatory Variables

V1 V2 V3 V4 V5 V6 V7 V8 V9

a 1.077146 1.052008 1.003226 1.153893 1.167818 1.281808 1.331359 1.177643 1.003262
b 1.136314 1.036239 1.002621 1.089429 1.189986 1.414797 1.365890 1.355947 1.015039
c 1.121328 1.174433 1.101934 1.048102 1.073300 1.185059 1.509962 1.322163 1.036715
d 1.038070 1.014958 1.006687 1.033388 1.085360 1.369630 1.172820 1.377559 1.007235

As shown in Table 6, the explanatory variables in the Xing Zheng Zhong Xin station
realm (hybrid type)—medical and health POIs (V4), catering POIs (V6), living POIs (V7),
shopping POIs (V8), and transportation POIs (V9)—have a positive relationship with
population activity during almost all hours of the working days and off days. This indicates
that the higher number of these functional facilities is also more attractive for population
activities. In particular, the catering POIs and living POIs have a significant positive
correlation. The entertainment POI (V1) has a negative relationship with population
activity most of the time, indicating that an increase in the number of such functional
facilities does not attract more activity. In addition, the financial service POI (V2) and
government agency POI (V3) have a positive relationship with population activities on
working days, while the off days have more of a negative relationship.
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Table 6. The OLS regression results for the XZZX station realm.

Day Period
Explanatory Variables

Intercept V1 V2 V3 V4 V5 V6 V7 V8 V9

Working
Day

8:00 0.0658 −0.1072 0.1199 * −0.0048 −0.0790 0.0930 * 0.0091 0.0064 0.0668 * 0.0114
10:00 0.1023 −0.0012 0.1214 * 0.0083 0.0165 0.0070 0.0135 0.0086 0.0495 * 0.0614 *
12:00 0.1084 −0.0349 0.0480 0.0025 0.0934 −0.0313 0.0342 * 0.0282 * 0.0571 * 0.0954 *
14:00 0.0911 −0.0738 −0.0022 0.0364 * 0.0432 0.0347 0.027 * 0.0272 * 0.0260 0.0607 *
16:00 0.1093 0.0150 0.0765 0.0452 * 0.0352 0.0352 * 0.0453 * 0.0164 * 0.0334 0.0823 *
18:00 0.1037 −0.0458 0.0612 0.0113 0.1589 * 0.0154 0.0370 * 0.0191 * 0.0306 0.0269
20:00 0.0887 −0.0889 0.0181 −0.0140 0.1215 * 0.0287 0.0485 * 0.0202 * 0.0193 0.0554 *
22:00 0.0742 −0.0083 −0.0271 −0.0163 −0.0485 0.0786 0.0328 * 0.0157 * 0.0618 * 0.0310

Off Day

8:00 0.0616 −0.0285 −0.0127 0.0051 0.1692 * 0.0203 0.0102 0.0019 0.03094 * 0.0098
10:00 0.0857 −0.0150 0.0092 −0.0117 0.1781 * −0.0713 0.0388 * 0.0154 * 0.0350 * 0.0264
12:00 0.0903 −0.0306 −0.0416 −0.0063 0.0838 0.0666 0.0488 * 0.0266 * 0.0428 * 0.0580 *
14:00 0.0943 −0.0162 −0.0101 −0.0173 0.0384 −0.0100 0.0523 * 0.0175 * 0.0470 * 0.0586 *
16:00 0.1036 −0.0426 −0.0459 −0.0117 0.0204 0.0838 0.0447 * 0.0445 * −0.0129 0.0438
18:00 0.0999 −0.1286 −0.0249 −0.0146 0.2333 * −0.0714 0.0322 * 0.0346 * 0.0372 * 0.0575 *
20:00 0.0792 0.0128 0.0255 −0.0049 −0.0979 −0.0182 0.0347 * 0.0291 * 0.0126 0.0287
22:00 0.0757 0.0103 0.1721 * −0.0155 −0.0161 0.0429 0.0380 * 0.0204 * 0.03133 * 0.0310
8:00 0.0616 −0.0285 −0.0127 0.0051 0.1692 * 0.0203 0.0102 0.0019 0.03094 * 0.0098

10:00 0.0857 −0.0150 0.0092 −0.0117 0.1781 * −0.0713 0.0388 * 0.0154 * 0.0350 * 0.0264

* Asterisks next to numbers indicate statistically significant (p < 0.01).

The OLS regression results for the Long Shou Yuan station realm (residential type)
are shown in Table 7. Among them, the financial POIs (V2), accommodation POIs (V5),
and catering POIs (V6) show a significant positive relationship on both working days and
off days, indicating that these three types of facilities are highly attractive to population
activities most of the time. The medical and health POIs (V4) have a negative effect on
population activity most of the time. In addition, the entertainment POIs (V1) have a
positive relationship on working days most of the time compared to off days, indicating
that the entertainment POIs (V1) are more attractive to population activity on working
days than off days.

Table 7. The OLS regression results for the LSY station realm.

Day Period
Explanatory Variables

Intercept V1 V2 V3 V4 V5 V6 V7 V8 V9

Working
Day

8:00 0.2122 0.0339 0.0773 −0.0306 −0.0352 0.0277 0.0110 0.02139 * 0.0033 −0.0165
10:00 0.1886 0.0457 0.2109 * −0.0055 −0.0711 0.0615 * 0.0025 0.0152 0.0168 * 0.0909 *
12:00 0.1759 0.0938 0.1826 * 0.0113 −0.0454 0.0172 0.0290 * −0.0054 0.0202 * 0.0772 *
14:00 0.1638 0.0948 0.1541 * 0.0053 −0.0468 0.0287 0.0244 * 0.0069 0.0289 * 0.0953 *
16:00 0.1673 −0.0462 0.1976 * 0.0113 −0.0677 0.0196 0.0241 * 0.0190 0.0271 * 0.0684 *
18:00 0.1813 0.0343 0.1831 * −0.0059 −0.0132 0.0457 0.0210 * 0.0139 0.0255 * 0.1256 *
20:00 0.2522 0.0557 0.1148 −0.0326 0.0145 0.0445 0.0353 * 0.0105 0.0141 * 0.0442
22:00 0.2838 0.0282 0.0704 −0.0312 −0.0741 0.0651 0.0337 * 0.0001 0.0045 0.0636 *

Off Day

8:00 0.2163 0.0116 0.0157 −0.0198 −0.0315 0.0691 * 0.0193 * 0.0048 0.0006 0.0219
10:00 0.2671 0.0427 0.1393 * −0.0304 −0.0085 0.0202 0.0362 * 0.0005 0.0183 * 0.0253
12:00 0.1761 0.0472 0.0697 −0.0080 −0.0086 0.0182 0.0125 0.0110 0.0208 * 0.1236 *
14:00 0.2429 −0.0534 0.1604 * −0.0420 −0.0823 0.0976 * 0.0236 * 0.0186 0.02849 * 0.1069 *
16:00 0.2327 −0.0688 0.1281 * −0.0082 −0.0423 0.0850 * 0.0258 * 0.0187 0.0262 * 0.1048 *
18:00 0.1927 −0.0325 0.1617 * −0.0055 −0.0378 0.0538 0.0212 * 0.0189 0.0320 * 0.1238 *
20:00 0.2424 0.0503 0.1234 * −0.0414 −0.1110 0.0499 0.0265 * 0.0204 0.0099 −0.0028
22:00 0.2876 −0.0138 0.0263 −0.0195 −0.0619 0.0685 * 0.0167 −0.0040 0.0180 * 0.0321

* Asterisks next to numbers indicate statistically significant (p < 0.01).

As shown in Table 8, the medical and health POIs (V4), catering POIs (V6), shopping
POIs (V8), and transportation POIs (V9) in the Bei Da Jie station realm (commercial service
type) have a positive relationship with population activity during most of the working
days and off days. In particular, the medical and health POIs (V4) have a significant
positive impact on all time periods, due to the presence of several large or comprehensive
public hospitals within the Bei Da Jie station realm, and the high accessibility of the metro
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makes it even more convenient for residents from other areas to come here for medical
care; this indicates that quality medical resources can be more attractive to population
activity. The financial POIs (V2) and the government institution POIs (V3) have a positive
relationship with population activity only during specific times of the working day. It is
worth mentioning that the accommodation services POIs (V5) have a positive relationship
with population activity during off days, while it is mostly negative during working days.
Combined with the results of the kernel density analysis of population activity, it can be
found that the Bei Da Jie station realm may be visited by more outsiders on off days, thus
enhancing the attractiveness of the accommodation service POIs for population activity.

Table 8. The OLS regression results for the BDJ station realm.

Day Period
Explanatory Variables

Intercept V1 V2 V3 V4 V5 V6 V7 V8 V9

Working
Day

8:00 0.2220 −0.0136 −0.0030 −0.0406 0.0729 * 0.0679 * 0.0105 −0.0110 −0.0010 0.0487
10:00 0.2239 −0.0047 0.0377 0.0112 0.1117 * 0.0466 * 0.0263 * −0.0192 0.0075 0.0917 *
12:00 0.2127 −0.0792 −0.0002 0.0044 0.0970 * −0.0276 0.0360 * 0.0016 0.0027 0.0651 *
14:00 0.1958 −0.1045 0.0357 0.0208 0.0708 * 0.0154 0.0335 * 0.0057 0.0002 0.0907 *
16:00 0.2194 −0.0509 −0.0450 −0.0196 0.0810 * −0.0018 0.0198 * −0.0032 0.0147 * 0.0975 *
18:00 0.2366 −0.0796 0.0505 −0.0301 0.0782 * −0.0102 0.0418 * −0.0041 0.0157 * 0.0576
20:00 0.2680 −0.0589 −0.0552 −0.0001 0.0409 0.0098 0.0193 * 0.0157 0.0083 0.0236
22:00 0.2596 0.0207 −0.0185 −0.0233 0.0382 0.0303 0.0013 −0.0052 0.0013 0.0267

Off Day

8:00 0.2181 0.0200 −0.0121 −0.0110 0.0856 * 0.0438 0.0154 −0.0029 −0.0035 0.0269
10:00 0.2274 0.0912 0.0306 −0.0351 0.0696 * 0.0650 * 0.0163 0.0215 0.0075 0.1067 *
12:00 0.2596 −0.0850 −0.0053 −0.0180 0.0808 * 0.0443 0.0295 * −0.0135 0.0136 * 0.0403
14:00 0.2501 −0.0883 0.0316 −0.0345 0.0621 * 0.0399 0.0286 * −0.0179 0.0155 * 0.1182 *
16:00 0.2547 −0.1418 0.0533 0.0093 0.0900 * 0.0444 0.0385 * 0.0057 0.0083 0.0018
18:00 0.2448 −0.0014 0.1015 * −0.0132 0.0453 * 0.0589 * 0.0230 * −0.0157 0.0148 * 0.0851 *
20:00 0.2559 0.0237 −0.0117 −0.0242 0.0612 * 0.0216 0.0239 * −0.0245 0.0050 0.0387
22:00 0.2532 0.0323 −0.0056 −0.0546 0.0751 * −0.0048 0.0146 0.0155 0.0003 0.0321

* Asterisks next to numbers indicate statistically significant (p < 0.01).

As shown in Table 9, most of functional facilities in the Wei Yi Jie station realm
(public service type) have a positive relationship with population activity, except for the
entertainment POIs (V1) and government institution POIs (V3). In addition, through the
field survey, we found that there are several higher education schools and educational
training institutions in the Wei Yi Jie Station realm, leading to the existence of many
inexpensive rental rooms, restaurants, school supply stores, courier stations, and other
facilities that are closely related to campus life within the area. Therefore, accommodation
POIs (V5), catering POIs (V6) and living service POIs (V7) have a strong attraction to
population activities most of the time.

In terms of overall spatial relationships, the “Accommodation POIs (V5)”, “Catering
POIs (V6)”, “Living POIs (V7)”, “Shopping POIs (V8)”, and “Transportation POIs (V9)” in
each research station realm have positive relationships with population activity most of the
time. In particular, the catering service POIs have a strong positive attraction to population
activities, the reason for which can be traced back to the long-standing Xi’an food culture,
where restaurants have become one of the most important places for social activities for
citizens. On the other hand, the transportation facility POIs generally have a significant
positive relationship with population activity from 12:00 p.m. to 6:00 p.m., indicating that
people have high utilization of public transportation during this time.
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Table 9. The OLS regression results for the WYJ station realm.

Day Period
Explanatory Variables

Intercept V1 V2 V3 V4 V5 V6 V7 V8 V9

Working
Day

8:00 0.2272 0.0540 0.0887 0.0191 0.1261 * 0.0648 * 0.0254 * 0.0281 0.0114 0.0031
10:00 0.2542 0.0163 0.1352 * 0.0380 0.0806 0.0210 0.0035 0.0279 0.0219 0.0187
12:00 0.2119 −0.0144 0.0843 0.0539 0.1875 * 0.0164 0.0384 * 0.0236 0.0145 0.0649
14:00 0.2113 −0.0143 0.1203 * −0.0344 0.0125 0.0811 * 0.0282 * 0.0485 * 0.0034 0.1023 *
16:00 0.2100 0.0660 0.1541 * 0.0291 0.0291 0.0222 0.0060 0.0599 * 0.0024 0.0024 *
18:00 0.2385 −0.0506 0.1521 * 0.0488 0.1015 0.1080 * 0.0214 0.0630 * −0.0001 0.0589
20:00 0.2686 0.0305 0.0670 −0.0348 0.0671 0.0201 0.0501 * 0.0328 0.0215 −0.0007
22:00 0.2649 0.0652 0.0894 −0.0011 0.1094 0.0229 0.0173 0.0567 * 0.0168 −0.0345

Off Day

8:00 0.1778 0.0073 0.0650 0.0156 0.1248 * 0.0349 0.0308 * 0.0101 0.0289 * 0.0072
10:00 0.2118 0.0144 0.0294 −0.0259 0.0551 0.1529 * 0.0423 * 0.0303 0.0100 0.0342
12:00 0.2594 −0.0079 0.0341 0.0351 0.0379 0.1212 * 0.0368 * 0.0140 0.0202 0.0713
14:00 0.2371 −0.0140 0.0590 0.0047 0.0230 0.0484 * 0.0567 * 0.0485 0.0127 0.0166
16:00 0.2460 −0.0535 0.0566 −0.0307 0.0885 0.0407 0.0416 * 0.0144 0.0287 * 0.1208 *
18:00 0.2498 0.0104 0.0730 −0.0519 −0.0480 0.0581 0.0286 * 0.0316 0.0084 0.0821 *
20:00 0.2531 0.0249 −0.0147 −0.0211 0.0859 0.0599 0.0317 * 0.0386 * 0.0256 −0.0107
22:00 0.2595 −0.0433 −0.0293 −0.0455 0.0138 0.0720 * 0.0305 * 0.0647 * 0.0028 −0.0094

* Asterisks next to numbers indicate statistically significant (p < 0.01).

In addition, from a temporal perspective, the entertainment services POIs (V1) usually
have a positive relationship with the population activity only in the evening. The financial
services POIs (V2) generally have a positive impact on working days (excluding BDJ
Station). Since the financial institutions are usually closed on off days, they have a negative
impact for most of the day. Government agency POIs (V3) are generally only open to
their staff, so there is a significant negative correlation for population activity within each
research station realm for most of the time, whether it is a working day or an off day.

It is worth mentioning that medical and health facilities (V4) have a positive correlation
with population activity most of the time, except for LSY Station. Several provincial or
municipal public hospitals (e.g., Xi’an Central Hospital, the Second Affiliated Hospital
of Xi’an Jiaotong University, etc.) are concentrated within the BDJ station realm, and
the medical and health facilities (V4) have a significant positive attraction for population
activities almost all day long. On the contrary, although there are several private clinics
and community medical service centers in the LSY station realm, the POI of medical and
health facilities has a negative correlation with population activity most of the time due to
the lack of large public hospitals.

5. Discussion

This study investigated the spatial features of the four study station realms of Xi’an
Metro Line 2 based on positioning data from Easygo applet and POI data from AutoNavi
Map and further analyzed the dynamic influence relationships of functional facilities with
population activities in the station realm under different time periods through OLS models.

The results of the spatial point pattern identification show the following:

1. There is a clustering of population activities within the metro station realm, especially
in the areas within 500 m of the station. Consistent findings were revealed by several
studies in different cities [64–66]. In addition, the peak periods of population activity
in the station realm are between 7:00 and 9:00 a.m. and between 6:00 and 8:00 p.m.
on working days. On the off days, the population activity is more active during the
time period from 11:00 a.m. to 5:00 p.m. In Xi’an, although the proportion of public
transportation trips is increasing year by year, with the metro ratio exceeding 50%
in 2021 [5], urban traffic congestion is still a serious problem. Therefore, identifying
changes in the active time of population activities helps city managers accurately and
effectively optimize the operation time and structure of public transportation, thus
alleviating problems such as traffic congestion in the city.
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2. In this paper, we found that the three types of functional facilities, namely shopping
services, catering services, and living services, in each study station realm exhibit the
feature that their density distribution is higher when they are closer to the station.
The density distribution features of other functional facilities in different types of
station realms vary greatly. In fact, the development of rail transit in China started late
compared to developed countries, and stations are often built in already developed
urban environments [67], which also leads to the spatial development of station realms
being restricted by public policies, transportation supply, station location, land use
structure, etc. [68,69], making it difficult to form a high-density, mixed functional
structures around stations as advocated by TOD and station-city integration models.
In this paper, we summarize the spatial distribution features of various functional
facilities in different types of station realms. However, the realization of diverse
urban functions clustered around the station with the support of national policies and
high-quality urban renewal, thus promoting comprehensive, composite, and efficient
development of the station realm, remains a complex issue. The relationship between
rail transit and urban functional facilities needs further research.

3. It is worth mentioning that although POI data cannot record “informal activity”
facilities that are mobile and self-organized, using real-time location data and field
surveys, we found the presence of night markets in some station realms, which cause
population clustering at night. The existing literature shows that night markets have
an impact on the economic development and quality of life of residents in a region [70].
On the one hand, night markets can provide a means of subsistence for some of the
unemployed [71] and can also serve as a vehicle for a region’s unique culture and
customs [72], contributing to economic development. On the other hand, the excessive
lighting, noise, and waste generated by night market activities can have a negative
impact on the health of suppliers as well as local residents [73,74]. Therefore, the
development of a night market economy in station realms with a base of night market
activities can be effective in enhancing the vitality of the area, but the resulting public
safety issues should be of concern to city managers and urban researchers.

The results of the regression analysis showed the following:

1. The POI variables, such as catering, living, shopping, and transportation, showed
a high positive attraction for population activities within the station realm. This
indicates that these types of services and facilities will be more likely to attract ac-
tivities in this area, which is also consistent with the results of the current related
studies [37,75]. In particular, catering service POIs and population activity have a
significant positive correlation in all four research station realms, which indicates
that catering strongly attracts population activity. For city managers, focusing on
developing the local food culture can effectively improve the vitality of station realms.
In addition, the study found that medical and health care POIs have a more significant
positive correlation with population activity in station realms with a relatively high
concentration of general or public hospitals. Especially under the influence of the
COVID-19 pandemic, the demand for medical resource capacity and medical service
facilities has greatly increased, making the allocation of quality medical and health
resources more attractive for population activity. This finding helps city managers to
better optimize the allocation of public health care resources in station realms.

2. From a dynamic perspective, there are different coefficients of variation on weekdays
and off days for all POI categories in different types of station realms. For example,
the financial services POIs, government POIs, and accommodation services POIs in
the Xing Zheng Zhong Xin station realm have a positive relationship with population
activity only on working days. In the Bei Da Jie station realm, the accommodation
service POI is more attractive to demographic activities on off days than on working
days. In addition, transportation facilities are significantly more positively related to
population activity on working days than on off days. This suggests that on working
days people are more likely to take public transportation to work, school, and other



ISPRS Int. J. Geo-Inf. 2022, 11, 485 20 of 24

daily activities, while on off days people may be more likely to rest at home or choose
to travel by private car. In conclusion, the analytical framework developed in this
paper basically describes the relationship between various types of POI facilities and
population activities, and these research results can help city managers understand the
needs of people’s daily activities in different types of station realms from a dynamic
perspective, so as to improve the allocation of urban public resources more effectively.

In terms of data, unlike exploring population distribution features by using big data
such as mobile phone signaling, social media, and Wi-Fi signaling technologies [25–32],
this paper uses the higher precision and better timeliness of Easygo positioning data, which
provides a reliable data source for researchers to identify the dynamic distribution features
of population activities from a microscopic perspective. Existing studies have shown the
importance of POI data for studying the spatial and temporal distribution features and
mechanisms of urban population density [76]. Therefore, the real-time positioning data of
Easygo and the POI data of AutoNavi Map used in this paper help to enable researchers to
obtain more convincing analysis results.

However, there are still some limitations in this study, which may be a feasible direction
for improvement. First, due to the lack of staff and time constraints, only four stations
in Xi’an Metro Line 2 were selected for this study to conduct specific investigation and
analysis. If all stations of Metro Line 2 could be investigated and studied, the spatial
features of rail transit station realms would be more completely understood. In addition,
the survey data in the study are not comprehensive enough to obtain data on the land use
status and population flow before the completion of Metro Line 2. If the spatial features
of the station realm before and after the completion of the metro can be compared and
analyzed in the future, the practical application value of the research results will be further
enhanced to support the development of metro station realms.

6. Conclusions

Public rail transportation is essential in people’s daily travel. With the rapid develop-
ment of the city metro and the increase in the frequency of people’s use of stations, various
urban functions that provide convenience to people’s lives are gradually concentrated in
the stations and the surrounding areas where passengers gather. In this context, a full
understanding of the spatial features of the existing metro station realm and the influence
mechanism between the two is crucial for the future urban renewal of the area as well as
the planning of others. This study achieves quantitative research on the spatial distribution
of population activities and urban functional facilities by combining real-time positioning
data and POI data to help identify the spatial features of the station realm. By building
OLS models, we further found that “catering”, “living”, “shopping”, and “transportation”
have positive relationships with population activities in metro station realms most of the
time, while financial institutions and government agencies have positive relationships at
specific times. Medical and health facilities in particular have stronger associations in sta-
tion realms where general or public hospitals are concentrated. In addition, the regression
results basically explain the phenomenon and causes of crowd gathering in time and space,
which helps to better understand the characteristics and patterns of the spatial distribution
of station realms and make the formulation of related strategies more effective.

Overall, research on location-based big data resources such as WeChat’s Easygo
applet and AutoNavi Map’s POI enables researchers to clearly identify the spatiotemporal
distribution status of population activities and functional facilities at the micro level and
understand people’s demand for urban functions from a dynamic perspective.
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Appendix A

Table A1. Definition and classification of POI data.

Serial Number Primary Classification Secondary Classification Tertiary Classification

1 Entertainment
Culture Museums, science and technology museums, libraries,

etc.
Leisure and Recreation Parks, playgrounds, KTV, etc.
Sports and Fitness Swimming pools, badminton courts, gymnasiums, etc.

2 Financial Service
Bank Bank management, banks, credit unions, etc.
Insurance Insurance management, insurance, etc.
Securities Securities management, investment, guarantee, etc.

3 Government Agency

Government Provincial, city (local), district governments, etc.
Public, Prosecution, Law Public security, public prosecutor’s office, court
Taxation State tax, local tax
Social groups Public groups at all levels

4 Medical and Health Care

Medical institutions Hospitals, medical centers, clinics
Epidemic Prevention and Control Epidemic prevention, medical examination
Health Care Rehabilitation Health care, rehabilitation
Pharmacy Pharmacies, medical equipment stores

5 Accommodation Service Hotel Express hotels, hotels, hostels, guest houses

6 Catering Service

Chinese restaurants Local flavor restaurants, hot pot restaurants, etc.
Foreign restaurants Western restaurants, foreign cuisine restaurants
Fast food restaurants KFC, McDonalds, Pizza Hut, etc.
Teahouse Teahouses
Beverage stores Coffee shops, cold drink stores, dessert stores, etc.

7 Living Service
Supply service office Various types of bill payment points, electricity

maintenance, gas maintenance, etc.

Daily life service Housekeeping, dry cleaners, wedding services,
hairdressing, etc.

Ticket office Train ticket office, bus ticket office, etc.

8 Shopping

Store
Supermarkets, shopping malls
Electrical appliances, digital product stores
Tobacco, wine, tea, souvenir, and clothing stores

Flowers, pets Flower or pet stores
Furniture, building materials Furniture stores, building materials markets
Wholesale market Wholesale markets

9 Transportation Service
Public Transportation Stops Bus stops, cab stands, public bicycle storage points, etc.
Transportation parking facilities Various types of parking lots

Car Service Gas stations, car rentals, traffic vehicle management,
etc.

10 Public Service Public facilities Newsstands, telephone booths, public restrooms, etc.

The “secondary” and “tertiary” classifications in the table are not fully listed.
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