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Abstract: Urban built-up areas are not only the spatial carriers of urban activities but also the direct
embodiment of urban expansion. Therefore, it is of great practical significance to accurately extract
urban built-up areas to judge the process of urbanization. Previous studies that only used single-
source nighttime light (NTL) data to extract urban built-up areas can no longer meet the needs of rapid
urbanization development. Therefore, in this study, spatial location big data were first fused with
NTL data, which effectively improved the accuracy of urban built-up area extraction. Then, a wavelet
transform was used to fuse the data, and multiresolution segmentation was used to extract the urban
built-up areas of Zhengzhou. The study results showed that the precision and kappa coefficient of
urban built-up area extraction by single-source NTL data were 85.95% and 0.7089, respectively, while
the precision and kappa coefficient of urban built-up area extraction by the fused data are 96.15% and
0.8454, respectively. Therefore, after data fusion of the NTL data and spatial location big data, the
fused data compensated for the deficiency of single-source NTL data in extracting urban built-up
areas and significantly improved the extraction accuracy. The data fusion method proposed in this
study could extract urban built-up areas more conveniently and accurately, which has important
practical value for urbanization monitoring and subsequent urban planning and construction.
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1. Introduction

Urban built-up areas refer to areas that have undergone tract development and are
equipped with basic municipal public facilities [1]. Urban built-up areas are the main
areas in which human and economic activity are concentrated, and they are also the spatial
carriers for urban activity [2]. Essentially speaking, urbanization is the transformation
from rural areas to urban areas, along which the permanent manifestation is the extensive
expansion of urban built-up areas. In other words, there is a close connection between the
transformation of urban built-up areas and the urbanization level, which means that the
accurate extraction of urban built-up areas would undoubtedly contribute to the knowledge
of urbanization [3,4].

With the acceleration of China’s urbanization in recent years, the urban built-up
area in China has drastically increased. By 2020, the total urban built-up area of China
has increased by 746% to 30,521.13 square kilometers since 1972 [5]. However, the main
statistical data and extraction methods still rely on single-source and prolonged statistics
and surveys, which can no longer meet the high-quality development requirements of
China’s new urbanization. The reality that urban built-up areas are experiencing drastic
change calls for more accurate and more propagable methods for urban built-up area
extraction [6,7]. However, at present, most of the studies on urban built-up areas focus on
large cities with a higher development level and areas with larger built-up areas, while
little attention is paid to cities that are still in the period of rapid development and with a
general urban development level.
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Thanks to the rapid development of remote-sensing technology, a series of remote-
sensing data have gradually been used in urban-related studies, including nighttime light
data (NTL) [8]. Nighttime light can represent the distribution of the population and
infrastructure within urban cities by capturing urban nighttime light brightness, which is
also the reason why NTL data are widely used in the analysis of human activity and the
estimation of related social and economic factors [9–11]. Currently, the commonly used
NTL data include DMSP/OLS (Defence Meteorological Program Operational Line-Scan
System), NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging
Radiometer Suite) and Luojia-01 data, among which the time scale of DMSP/OLS NTL data
is from 1992 to 2013, the time scale of NPP/VIIRS NTL data is from 2012 and the time scale
of Luojia-01 NTL data is from June 2018 to 2022. Although the latest Luojia-01 NTL data
cannot be accessed since 2022, the original data can still be accessed. Second, compared
with the DMSP/OLS data, the spatial resolution of the NPP/VIIRS data has increased by
500 m to 1000 m, which allows for finer details in urban-related studies [12–15]. In October
2018, Wuhan University launched the Luojia-01 experimental satellite, which began to
provide high-resolution nighttime light data with a spatial resolution of 130 m. Compared
with the DMSP/OLS and NPP/VIIRS data, the great improvement in the spatial resolution
of the Luojia-01 data makes it possible to evaluate urban internal spatial structures in a
fine way [16]. Additionally, the higher spatial resolution makes the urban internal spatial
structure reflected by the Luojia-01 more complete. Therefore, the current application of
the Luojia-01 data mainly focuses on the identification of urban spatial structures, the
extraction of urban built-up areas and the delineation of urban boundaries. The Luojia-01
data have changed the study emphasis of NTL data from focusing on urban agglomerations
and metropolitan areas to focusing on a single city [17,18].

Studies on the extraction of urban built-up areas based on NTL data started with
the dichotomy method and threshold method, that is, on the premise that the built-up
area and range of the target area are known, the values of NTL data are extracted so
that the high-value range of the extracted nighttime light value is as close as possible to
the known built-up area and range [19,20]. However, this method is too cumbersome to
operate and requires a certain understanding of the study area, which makes it difficult to
popularize the methods to a large area [21]. Therefore, the current studies on the extraction
of built-up areas are mostly based on image segmentation, that is, the segmentation of
NTL data, such as edge detection segmentation, feature segmentation, object-oriented
segmentation, etc. [22–24]. Although these segmentation methods have achieved good
results in the extraction of urban built-up areas, the segmentation results have shown that
the segmented image pixels are significantly fragmented [25]. However, the current studies
on the optimization of image segmentation results are fewer, and more attention is paid to
how to use different segmentation methods to segment images [26].

As a kind of urban geographic big data, POI data can reflect the different functional
attributes of an area within an urban city through the degree of spatial distribution of
data [27]. Moreover, the agglomeration of POI data in urban spaces has a strong spatial
correlation with the distribution of the high and low values of NTL data [28], that is, NTL
data could distinguish areas with different development levels in an urban space through
the distribution of high and low NTL values [29], while POI data could reflect different
urban functions and infrastructure distribution through quantitative agglomeration [30].
Additionally, with the rapid development of cities, the internal spatial information is
increasingly complex, and it is increasingly difficult for single data to reflect such complex
spatial information [31,32]. Therefore, researchers try to fuse POI data with NTL data
to improve the feedback and observation ability of urban spatial information [33,34]. At
present, although the study on the fusion of POI data and NTL data in urban areas has
achieved good results, the current fusion of two kinds of data is mainly the elimination the
spatial outliers in NTL data by using POI data to improve the observation accuracy of NTL
data. Such fusion mainly focuses on NTL data, and the value of POI and other big data has
not been fully reflected [35,36].
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In general, the current study on data fusion and the extraction of urban built-up areas
may have the following study insufficiencies: Firstly, from the perspective of the study
area, too much attention is paid to cities with a high development level and large built-up
areas, and less attention is paid to small and medium-sized cities that are still in rapid
development [37]. Secondly, from the perspective of study methods, the effects of different
methods, especially image segmentation methods, on NTL data extraction of built-up areas
have been more discussed, and the results obtained by different segmentation methods
have not been further optimized [38]. Thirdly, from the perspective of study data, although
there have been many studies on the fusion of POI data and NTL data, image modification
based on NTL data has not maximized the role of POI data [39]. Therefore, the contribution
of this study was mainly reflected in the following aspects: First, from the study area,
this study selected the non-first-tier cities with the highest average growth rate of urban
built-up areas in China over the past ten years. Second, from the study methods, this study
supplemented the optimization of image pixels after image segmentation. Third, from the
study data, the pixel-level fusion of NTL data and POI data was performed by a feasible
method in this study, which realized the fusion of NTL data and POI data at the same level.

A new method for urban built-up area extraction is proposed in this study, which
could enrich the theoretical study of urban space. It is also believed that the accurate ex-
traction of Zhengzhou’s urban built-up area would undoubtedly contribute to the accurate
judgment of urbanization in Zhengzhou, thus providing a theoretical foundation for re-
gional governance and policymaking regarding the harmonious urban–rural development
of Zhengzhou.

2. Materials and Methods
2.1. Study Area

With the rapid urbanization of China, the expansion of built-up areas in China has
become more obvious. In order to better test the extraction effect of built-up areas, this
study selected Zhengzhou, where urban built-up areas have been expanding rapidly in the
past decade, rather than first-tier cities such as Beijing, Shanghai and Guangzhou as the
study area. In Zhengzhou, as the capital city of Henan Province (Figure 1), according to
data statistics, the growth rate of the built-up areas in Zhengzhou has generally exceeded
120% in the past decade, and more than 130% in 2020 and 2021; such a growth trend is
unique in China [40]. With the rapid development of built-up areas, the accurate extraction
of built-up areas has become an important prerequisite for formulating urban development
plans. Through the case analysis of Zhengzhou, this study discusses the extraction of
built-up areas under high-speed changes, which not only has important practical guiding
significance for the urban development and urban-rural planning of Zhengzhou during
the rapid development period but also plays a positive role in the extraction of other urban
built-up areas with less change.

The study area of this study mainly consisted of 8 administrative districts in Zhengzhou:
Jinshui District, Zhongyuan District, Guancheng District, Erqi District, Huiji District,
Shangjie District, Xinzheng District and Xingyang District.

2.2. Study Data

The study data used in this study were mainly the Luojia-01 NTL data and POI data.
The Luojia-01 data, provided by the Luojia-01 experimental satellite, can be down-

loaded for free at http://59.175.109.173:8888/Index.html (accessed on 1 January 2022).
Compared with the DMSP/OLS and NPP/VIIRS NTL data, the Luojia-01 NTL data have a
resolution of 130 m and a width of 20 km, which enables Luojia-01 NTL data to be more
perfect in spatial scale analysis [41]. Additionally, the finer numeric features of the NTL
data greatly improve its extraction accuracy within urban spaces. The specific technical
indicators of Luojia-01 are as follows: the waveband is from 0.5 to 0.9 µm, the wavelength
is from 480 to 800, the spatial resolution is from 100 to 150 m, the illumination is 10 lux,
the orbit type is a sun-synchronous circular orbit, the orbit standard altitude is from 500 to

http://59.175.109.173:8888/Index.html
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600 km and the observation period is 15 days. The NTL data of Zhengzhou from October
2018 to October 2021 were obtained for this study after accessing the website mentioned
above. Due to the discontinuity, unsaturation and it being easily affected by laser and
fire of the NTL data, the NTL values are prone to generate negative values and outliers.
Therefore, this study used radiometric calibration to modify the NTL data [42]. Thanks
to the daytime and nighttime imaging capabilities of the Luojia-01 NTL data, the non-
uniformity calibration of each pixel of the noctilucent sensor was realized by constructing a
day–night radiation reference transfer model. Specifically, the calibration model was solved
by using daytime imaging images, and then the influence of nighttime light was modified
and compensated, that is, the low-gain relative correction coefficient of the sensor pixels
calibrated in the daytime was converted to the high-gain relative correction parameter in
the nighttime based on this model [43]. The corrected NTL data are shown in Figure 2.
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POI data refer to the point dataset in a networking electronic map, which consists of
four attributes: name, address, coordinate and category [44]. At present, numerous map
companies, such as Baidu Maps, Amap and QQ Maps, have provided developers with
API (application programming interface) access services, which allow users to sense all
kinds of reasonable data. A POI can represent a shop, a building or a node in a building
in the geographic information system (GIS). Therefore, a POI point may have multiple
functions, so in order to prevent the POI point with multiple functions from interfering
with the final analysis, this study filtered and cleaned the acquired POI data through
the location and semantic constraints of the POI [45]. By accessing the API provided by
Amap (www.amap.com (accessed on 1 January 2022)), this study sourced POI data from
Zhengzhou in December 2021, and the category and quantity of POI data were 22 and
669,213, respectively. After screening, duplicate checking, filtering and cleaning all the
obtained POI data, the category and quantity were 16 and 459,817, respectively. Since the
spatial resolution of the NTL data used in this study was 130 m, this study used a 130 m
spatial grid to count the number of POIs to unify the spatial resolution of the data. The
number and spatial distribution of POI in Zhengzhou are shown in Figure 3.

www.amap.com
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2.3. Methods

The method flow chart of built-up area extraction is shown in Figure 4.
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The study idea of this study is as follows: Firstly, the NTL data were used to extract
urban built-up areas through multi-resolution segmentation, estimation of scale parameters
and spectral difference segmentation. Then, the built-up areas were extracted by the above
methods through the fusion of POI data and the NTL data, and the results of the extraction
of urban built-up areas before and after the fusion of the NTL data and POI data were
further compared. A single point of POI data is not suitable for extracting urban built-up
areas, the main reason being that the urban built-up areas extracted from POI data are too
different from the actual urban built-up areas, so they are not comparable [38,39]. Therefore,
this study only compared and analyzed the fusion results of POI data and the NTL data.

2.3.1. Wavelet Transform (WT)

As an important branch of information fusion, the purpose of image fusion is to
synthesize the multi-band information of a single sensor or the information provided
by different types of sensors, thereby eliminating the redundancy and contradiction that
may exist between the multi-sensor information so as to enhance the transparency of
the information in the image and improve the accuracy, reliability and usage of image
interpretation, thus resulting in a clear, complete and accurate information description of
the target [46–48]. At present, image fusion includes data-level fusion, feature-level fusion
and decision-level fusion, among which data-level fusion, also known as pixel-level fusion,
refers to the process of directly processing the data collected by sensors to obtain the fused
image, which is one of the focuses of the current image fusion study [49]. The advantage
of data-level fusion is to retain as much raw field data as possible while providing subtle
information that other fusion levels cannot provide. There are spatial domain algorithms
and transform domain algorithms in data-level fusion, among which the wavelet transform
is the most important and commonly used method to cover both spatial and temporal
domains [50].

As a global-scale transformation, WT is a pixel-based image fusion algorithm [51].
Compared with other fusion algorithms, WT has a better station-keeping ability in both the
time domain and the frequency by providing a dynamic “time-frequency window” [52].
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Through this window, WT can fully consider the interactive relationship between the time
domain and frequency of an image, which makes WT an ideal tool for image fusion [53].
The formula of WT is as follows:

WT(α, τ) = f (t)ϕ(t) =
1√
α

f (t)
∫ +∞

−∞
ϕ

(
t− b

α

)
dt (1)

where f is the signal vector, t is the basic wavelet function, α is the scale, τ is the translation
and b is the parameter.

Regarding the principle of WT, the original image that needed to be fused was de-
composed, and then the high- and low-frequency components of the image in different
directions (horizontal direction, vertical direction and diagonal-edge direction) were ob-
tained. The high- and low-frequency components contained all the detailed parts of the
original image with different details corresponding to the different features of the image.
Then, the detailed information of different images was compared in the dynamic window
of WT, after which fusion was realized by setting the maximum absolute value within the
WT domain as the most appropriate scale. Finally, the image was obtained after inverse
transformation was conducted on the fused image. The fusion process of the wavelet
transform is shown in Figure 5.
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2.3.2. Multiresolution Segmentation

Although image segmentation is one of the most widely used methods of interpret-
ing high-resolution remote-sensing images, the methods of image segmentation include
threshold-based segmentation, region-based segmentation, edge-based segmentation and
segmentation based on specific theories. As the rich spatial structure information and
geographical feature information in remote-sensing images have different performances at
different scales, multi-resolution segmentation is considered as a reliable method and is
widely used in image segmentation at present [54]. As an object-oriented bottom-up image
segmentation algorithm, multiresolution segmentation differs from other algorithms in the
way of segmenting images. Multiresolution segmentation can segment a target image by
merging adjacent elements on the premise of ensuring the maximum average intersegment
heterogeneity and maximum intersegment homogeneity [55].
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There are three main factors of multiresolution segmentation: scale, shape and tight-
ness. After segmentation with the selected proportion parameters, the average value and
the area of all the segmented images can be calculated. Then, the weighted mean vari-
ance after segmentation can also be calculated, and only when the variance reaches the
maximum value is the scaling factor the most appropriate.

Ck =
1
n ∑n

i=1 Cki (2)

Ck =
1
m ∑m

k=1 Ck (3)

S2 =
1
m ∑m

k=1 (Ck − C)2 (4)

where, Ck is the average luminance of a single image object in kth band, n is the number of
pixels in a segmented image, Ck is the average luminance of all objects in the image in the
kth band, Cki is the DN value of the ith pixel of segment k, m is the total number of images
after segmentation and S2 is the weighted mean variance of the DN values of images after
segmentation.

2.3.3. Estimation of Scale Parameters (ESP)

ESP is used to optimize segmentation results thanks to its full use of multiple bands
characteristic of remote sensing, which results in a connection between the estimation of
segmentation results and process. The local variance of different objects within one band
is first calculated, and then the mean value of the local variance within multiple bands is
calculated to optimize the segmentation results.

meanLV = (LV1 + LV2 + . . . . . . LVn) (5)

where LV is the local variance and LVn is the local variance of an object within one band.
When the interior homogeneity of one object reaches its maximum value, the differ-

ences among objects are the largest, and the largest scale of local variance is defined as the
optimal segmentation scale.

2.3.4. Spectral Difference Segmentation (SDS)

As a segmentation optimization method, SDS assists with the promotion of the frag-
mentation of segmented images after merging based on multiresolution segmentation and
ESP, contributing to a higher generalization of image segmentation. The formula for SDS
after normalizing the weights of bands is as follows:

Sdi f f =
∑k wk

w

(
1
n ∑n bn −

1
m ∑m bm

)
(6)

where Sdi f f is the spectral difference value between adjacent objects; k is the number of
bands; wk is the weight of the kth band; w is the sum of all band weights; n and m are the
sums of pixels within adjacent objects; and bn and bm are the gray values of the n pixel
and m pixel within adjacent objects, respectively. Sdi f f is the only parameter of the SDS
algorithm; the larger the value is, the easier the merging of adjacent objects.

3. Results
3.1. Urban Built-Up Area of Zhengzhou Extracted by Different Data
3.1.1. Urban Built-Up Area of Zhengzhou Extracted by NTL Data

As a segmentation optimization method, SDS assists with the promotion of the frag-
mentation of segmented images after merging based on multiresolution segmentation and
ESP, contributing to a higher generalization of image segmentation. The formula for SDS
after normalizing the weights of bands is as follows:
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As shown in the preprocessing result of the NTL data (Figure 2), the high NTL
values were mainly concentrated in Jinshui District, Zhengzhou railway station of Erqi
District, the college town of Zhongyuan District, the Zijingshan trading area of Guancheng
District and Xinzheng International Airport, while the NTL values in other districts were
relatively lower. Therefore, it can be seen from the distribution of the high and low NTL
values that there was a significant spatial difference in the urbanization development of
Zhengzhou, with Zhongyuan District, Jinshui District and Erqi District playing the central
role in Zhengzhou, while the other areas, including Guancheng District and Xinzheng
International Airport were mainly concentrated with lower NTL values since these areas
are located at a long distance from the urban center [56].

In this study, multiresolution segmentation was first used to segment the NTL data to
extract the urban built-up area of Zhengzhou. Then, the scale parameters of multiresolution
segmentation were determined to be 9, 0.4 and 0.7 by ESP, and the urban built-up area
extracted by determining the scale parameters was finally obtained, as shown in Figure 6.
Figure 6 shows that the urban built-up area extracted by the NTL data mainly had the
following features. First, the area extracted by the NTL data was 623.45 square kilome-
ters, accounting for 80.66% of the whole urban area of 772.92 square kilometers. Second,
although the extracted built-up area was mainly concentrated in Erqi District, Guancheng
District, Zhongyuan District and Jinshui District, there were still built-up clusters in both
Xingyang and Xinzheng. Third, from the perspective of the extracted built-up areas, there
were too many patches that resulted in the severe fragmentation of the extracted built-up
areas. Additionally, there were obvious urban void phenomena in Zhongyuan District and
Xingyang with more complex boundaries. Moreover, the main roads around Xinzheng
International Airport were all extracted as urban built-up areas by the NTL data. Generally,
the method of extracting urban built-up areas by single-source NTL data is ineffective,
which calls for subsequent studies to perfect the method.
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3.1.2. Urban Built-Up Area of Zhengzhou Extracted by Fusing NTL and POI Data

There is a deep connection between the distribution of POI data and urban function;
that is, the more concentrated the POI data are, the stronger the urban function will be.
The number and spatial distribution of POI data in Zhengzhou are shown in Figure 3.
There was a significant spatial difference in the POI data between the built-up areas and
non-built-up areas, with the POI data mainly concentrated in Erqi District, Zhongyuan
District, Jinshui District, Guancheng District and Xinzheng. By comparing the POI data to
the NTL data, the number and spatial distribution of POI data in Zhengzhou were similar
to those of the NTL data, which meant that the POI data and NTL data could be fused.

WT was used in this study to fuse the POI data and NTL data. First, this study used
WT to segment the POI data and NTL data. Second, the wavelet coefficients of different
bands were compared since the wavelet coefficients corresponded to different feature parts
of the image, so it was necessary to keep the absolute value of the wavelet coefficients at the
maximum in the WT domain of different frequency bands. Third, inverse transformation
was conducted after fusing the POI data and NTL data by setting appropriate wavelet
coefficients. The image after data fusion is shown in Figure 7. Figure 7 shows that after
data fusion, there was a more obvious spatial distribution between the high and low values
of the fused POI_NTL data, with high values mainly concentrated in Jinshui District,
Zhengzhou railway station in Erqi District, the central trading area of Guancheng District
and the urban city of Xinzheng, while the areas with higher values, such as Xinzheng
International Airport and Xingyang, were where lower values were mainly concentrated.
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Then, multiresolution segmentation was used in this study to extract the urban built-
up area in Zhengzhou by the fused POI_NTL data with segment parameters determined
by EPS values of 10, 0.5 and 0.5, and the urban built-up area was extracted after data fusion
was finally obtained, as shown in Figure 8. Figure 8 shows that the urban built-up area
had the following features. First, the area extracted after data fusion was 661.54 square
kilometers, accounting for 85.58% of the whole built-up area. Second, only five city clusters
were extracted, concentrated at the junction of Erqi District and Jinshui District as well as
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Shangjie district, Xingyang and the urban city of Xinzheng. Third, compared with the urban
built-up area extracted by the NTL data, there were fewer urban patches that were extracted
after data fusion, which contributed to the modification of the fragmentation phenomenon
within the urban built-up area. Additionally, there were no more obvious urban voids. In
particular, no clusters around Xinzheng International Airport were extracted. In general,
the fused POI_NTL data improved the extraction accuracy to a certain degree.
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3.2. Comparative Verification of the Extraction Results
3.2.1. Comparative Analysis before and after Data Fusion

By comparing the NTL data to the fused POI_NTL data, as shown in Figure 9, there
was a similarity in the macroscale between the NTL data and POI_NTL data, which could
directly represent the urban internal spatial structure. Additionally, the high and low
values of both sets of data all showed a downward trend from urban areas to rural areas.
Therefore, it can be concluded that after data fusion, the fused POI_NTL data could more
accurately represent the urban internal spatial structure by retaining the features of the
NTL data while enlarging the characteristics of the POI data.

By constantly comparing the NTL data to the fused POI_NTL data at the microscale, it
was found that there was a distortion resulting from the single attribute of NTL data taking
nighttime light brightness as the only criterion to extract the build-up area. As shown in
Figure 9, on the one hand, there was little nighttime light captured by the NTL data in
the residential communities and central business district (CBD) of Zhengzhou, which led
to the extraction of “light voids” within the urban built-up area. After data fusion, the
POI_NTL data fully combined the advantage of the POI data with that of the NTL data
by taking the distribution of the POI data in residential communities and CBD areas into
account, which made up for the deficiency of the NTL data in extracting urban built-up
areas, contributing to the stronger spatial integrity of the extracted built-up areas. On the
other hand, a large amount of nighttime light was generated at Xinzheng International
Airport and around the main roads, which led to high NTL concentrations [37]. However,
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there were no corresponding high values of the POI data in these regions, especially around
the main roads. In the altered regions around Xinzheng International Airport and around
the main roads, there were no obvious high values identified by the fused POI_NTL data,
which was more in line with the actual situation of Zhengzhou.
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Generally, although the urban internal spatial structure could be represented, the urban
built-up area could be attracted by the NTL data, and there was a distortion phenomenon
resulting from the only attribute of the NTL data. The POI data could represent the number
of structures within urban cities by showing the number and spatial distribution of the POI
data. At the same time, the actual function of urban cities could also be reflected by the
agglomeration degree of the POI data. Therefore, the fusion of the NTL data with the POI
data could undoubtedly modify the distribution phenomenon generated by the NTL data,
thus greatly improving the extraction accuracy.

3.2.2. Comparative Analysis of Extracted Urban Built-Up Areas before and after Data Fusion

As shown in Figure 10, the area of the urban built-up area extracted by the POI data
and the fused POI_NTL data were 623.45 square kilometers and 661.54 square kilometers,
accounting for 80.66% and 85.58% of the total built-up area, respectively. From the area
extracted by these two sets of data, it was found that although there were no significant
differences, the 5% improvement achieved by the fused POI_NTL data still proved that the
utilization of multiresolution segmentation was of great help in image segmentation.



ISPRS Int. J. Geo-Inf. 2022, 11, 521 13 of 18

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

greatly modified this situation and had more complete boundary details. Additionally, 
the urban clusters, which were identified by NTL data near Xinzheng International Air-
port and around main roads as built-up areas, were identified as non-built-up areas by 
the POI_NTL data, which was more consistent with reality. 

 
Figure 10. Comparison of urban built-up areas extracted by NTL data and POI_NTL data. 

Generally, although urban built-up areas could be extracted by both the NTL data 
and the POI_NTL data, there was a severe fragmentation phenomenon in the built-up 
areas extracted by the NTL data since the NTL data failed to consider the actual develop-
ment of Zhengzhou. The area extracted by the POI_NTL data not only made up for the 
deficiency of that extracted by the NTL data but also enriched the details of the extracted 
built-up area, which was more in line with reality. 

3.2.3. Precision Verification 
A total of 3000 random pixels in Zhengzhou were selected to verify the built-up area 

extracted in this study, of which 1000 pixels were training data and 2000 pixels were ver-
ification data. After conducting field visits with the help of Google Earth high-resolution 
image data, all 3000 pixels were verified to be located within the built-up area of Zheng-
zhou. The confusion matrix obtained according to the verification results is shown in Ta-
ble 1. The precision in Table 1 is the proportion of all the pixels that were successfully 
verified. While the kappa coefficient was used to verify classification precision to further 
track consistency, the possible values of the kappa coefficient ranged from −1 to 1; the 
closer the value was to 1, the better the extraction was. 

Table 1. Precision verification. 

Figure 10. Comparison of urban built-up areas extracted by NTL data and POI_NTL data.

After comparing the urban built-up area extracted by the NTL data to that extracted
by the POI_NTL data, it was found that there were many urban voids in the built-up
area extracted by the NTL data with more complex boundary details. Additionally, the
differences in nighttime light resulted in unsatisfactory results among different urban built-
up patches by extracting non-built-up areas with high nighttime light values as built-up
areas. The fused POI_NTL data greatly improved the extraction accuracy. For example,
as seen in Figure 10a,b, there were many road clusters identified by the NTL data to be
built-up areas, which was in contrast to those identified by the POI_NTL data. Second,
there were large numbers of light voids in the built-up area extracted by the NTL data,
which did not confirm the actual results. The built-up area extracted by the POI_NTL data
greatly modified this situation and had more complete boundary details. Additionally, the
urban clusters, which were identified by NTL data near Xinzheng International Airport and
around main roads as built-up areas, were identified as non-built-up areas by the POI_NTL
data, which was more consistent with reality.

Generally, although urban built-up areas could be extracted by both the NTL data and
the POI_NTL data, there was a severe fragmentation phenomenon in the built-up areas
extracted by the NTL data since the NTL data failed to consider the actual development of
Zhengzhou. The area extracted by the POI_NTL data not only made up for the deficiency
of that extracted by the NTL data but also enriched the details of the extracted built-up
area, which was more in line with reality.

3.2.3. Precision Verification

A total of 3000 random pixels in Zhengzhou were selected to verify the built-up
area extracted in this study, of which 1000 pixels were training data and 2000 pixels were
verification data. After conducting field visits with the help of Google Earth high-resolution
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image data, all 3000 pixels were verified to be located within the built-up area of Zhengzhou.
The confusion matrix obtained according to the verification results is shown in Table 1. The
precision in Table 1 is the proportion of all the pixels that were successfully verified. While
the kappa coefficient was used to verify classification precision to further track consistency,
the possible values of the kappa coefficient ranged from −1 to 1; the closer the value was to
1, the better the extraction was.

Table 1. Precision verification.

Data Urban Rural Accuracy Kappa

NTL
Urban 498 70

85.95% 0.7089
Rural 211 1221

POI_NTL
Urban 532 36

96.15% 0.8454
Rural 101 1331

In Table 1, the values in the urban areas and rural areas represent the number of the
2000 random verification points that fell into the extracted built-up areas and non-built-up
areas, namely the number of points that were successfully verified. Accuracy represents
the ratio of the number of points that were successfully verified to the total number.

As seen from Table 1, the precision of the built-up area extracted by the NTL data
and POI_NTL data were 85.95% and 96.15%, with kappa coefficients of 0.7089 and 0.8454,
respectively. From the extraction precision and kappa coefficients, the extraction effect ob-
tained by the fused POI_NTL data had an edge over that obtained by the single-source NTL
data. After data fusion, the deficiency of single-source data extraction was compensated
for, and the internal spatial structure extracted was more integrous [57].

4. Discussion

Although NTL data are one of the commonly used types of data in urban-related
studies, the deficiency of NTL data leads to large errors in the study results of urban interior
spaces. Moreover, there is light overflow and oversaturation in NTL data [58,59]. Therefore,
researchers have begun to try to fuse POI data to improve the accuracy of NTL data in
urban space on the basis of considering the strong spatial correlation between POI data and
NTL data in urban space. This study used a wavelet transform to fuse NTL data and POI
data to extract urban built-up areas. The results showed that the extraction accuracy after
data fusion reached 96.15%, which was a great improvement compared with the accuracy
of extracting urban built-up areas by the single-source NTL data [60]. Although the NTL
data could fully reflect the development gap of cities, further supplementing the POI data
on the basis of this difference could make it more accurate in extracting urban built-up
areas. Compared with existing studies on the fusion of the NTL and POI data, this study
improved the accuracy of the threshold segmentation of different data by using the ESP
SDS algorithm on the basis of multiresolution segmentation, and the segmentation accuracy
of the single-source NTL data reached 85.95%, fully demonstrating the accuracy of this
study method.

The traditional extraction and division of urban built-up areas mainly depends on the
subjective will of the government or the use of socioeconomic and statistical data [61,62]. The
extensive application of remote-sensing data represented by NTL has made the extraction of
urban built-up areas gradually move toward quantitative analysis. However, NTL data can
only judge whether a certain area is an urban area simply by capturing the nighttime light
brightness generated by urban infrastructure, which ignores the actual social development
of urban space [63]. This study fused POI data that can represent the development of urban
functions with NTL data and then formed POI_NTL data that could accurately extract
urban built-up areas, which comprehensively considered the relationship between urban
infrastructure and urban development functions and gave a huge advantage in the process
of extracting urban built-up areas [64].
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However, there is no doubt that there were some limitations in this study. From
the Luojia-01 data used in the study, firstly, compared with the observation period of the
same type of NTL data, such as NPP-VIIRS, which is 12 h, the observation period of the
Luojia-01NTL data is 15 days, which makes the monthly average method of Luojia-01NTL
data vulnerable, such as cloud cover in the observation area [65]. Secondly, there are
more and more cold white lights in cities, while the wavelength of Luojia-01NTL data
ranges from 400 to 800 µm, making Luojia-01 unable to observe these cold white lights,
which undoubtedly would have a certain impact on the results [66]. Finally, although
the spatial resolution of Luojia-01 night light is higher than that of other NTL data, the
time series segment provided by Luojia-01 is not conducive to long-term observation and
study. Additionally, the development and change in urban built-up areas are dynamic,
and the scope of urban built-up areas will change dramatically with the development of
the city. Therefore, to better extract urban built-up areas and better serve urban planning
and construction, it is necessary to extract the scope of urban built-up areas at different
periods of time to analyze the relationship between the spatial changes in built-up areas
and urban development and further propose better strategies and plans conducive to
urban development.

Since NTL data are easily affected by sensors and human activities when used in
cities, this study further used a wavelet transform to fuse the POI data to extract urban
built-up areas on the basis of NTL data, which avoided the possible problems existing
in the extraction of urban built-up areas from the single NTL data, thus minimizing the
shortcomings of the single NTL data in extracting built-up areas. Although this study took
Zhengzhou, China as a case study, the methodology of this study could be extended to the
whole of China and even the world, because from a global perspective, both NTL data and
POI data have certain limitations. The limitations of NTL data have been mentioned in the
insufficiency part of the study, while the POI data provided by Chinese service providers
do not cover global POI data, so this study was more about providing a data fusion idea for
the study of extracting global urban built-up areas, and a lot of additional work is needed
in the future process of extracting global urban built-up areas.

5. Conclusions

The accurate extraction of urban built-up areas is an important prerequisite for ana-
lyzing the urbanization process and judging the spatial relationship within urban cities.
Based on the characteristics of NTL data and POI data, new POI_NTL data were obtained
in this study by fusing NTL data and POI data. Then, by comparing the results of the
urban built-up area extracted by the single-source NTL data and the fused POI_NTL data,
the accuracy of the urban built-up area extracted by NTL data was 85.95% and the kappa
coefficient was 0.7089, while the accuracy of that obtained by the fused POI_NTL data was
96.15%, with a kappa coefficient of 0.8454. Therefore, fusion with POI data could effectively
eliminate the phenomenon of urban voids and boundary fragmentation caused by NTL
data. Moreover, POI data supplement the impact of urban functions on built-up areas on
the basis of urban infrastructure development, which significantly improve the accuracy of
urban built-up area extraction.

In this study, NTL data and POI data were fused by a wavelet transform, which not
only helped to extract more accurate urban built-up areas but also had important theoretical
and practical significance for accurately judging the urbanization level and formulating
urban spatial policy and development planning.
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